Classifying Psychotropics by Mechanism of Action Rather Than Indication

Total Page:16

File Type:pdf, Size:1020Kb

Classifying Psychotropics by Mechanism of Action Rather Than Indication Guest Editorial Neuroscience-based Nomenclature: Classifying psychotropics by mechanism of action rather than indication Stephen M. Stahl, MD, PhD An important new initiative to Table 1 reclassify psychiatric medications is 11 Pharmacological domains underway. Currently, psychotropic Acetylcholine drugs are named primarily for their Dopamine clinical use, usually as a member of GABA Glutamate NbN renames 1 of 6 classes: antipsychotic, anti- Histamine depressant, mood stabilizer, stimu- Ion channel the >100 known lant, anxiolytic, and hypnotic.1,2 Melatonin psychotropic drugs by Norepinephrine This naming system creates confusion Opioid 1 of the 11 principle because so-called antidepressants com- Orexin pharmacological monly are used as anxiolytics, anti- Serotonin psychotics increasingly are used as domains and 9 modes antidepressants, and so on.1,2 of action Vocabulary based on clinical indica- tions also leads to difficulty in classify- oping an alternative naming system that ing new agents, especially those with is increasingly being accepted by the novel mechanisms of action or clinical major experts and journals throughout uses. Therefore, there is a need to make the world, called Neuroscience-based 3-5 References the names of psychotropic drugs more Nomenclature (NbN). 1. Nutt DJ. Beyond psychoanaleptics - rational and scientifically based, rather can we improve antidepressant drug nomenclature? J Psychopharmacol. than indication-based. A task force of So, what is NbN? 2009;23(4):343-345. experts from major psychopharmacol- First and foremost, NbN renames the 2. Stahl SM. Classifying psychotropic drugs by mode of action not by target disorders. ogy societies around the world is devel- >100 known psychotropic drugs by CNS Spectr. 2013;18(3):113-117. 1 of the 11 principle pharmacologi- 3. Zohar J, Stahl S, Moller HJ, et al. Dr. Stahl is Adjunct Professor of Psychiatry, University A review of the current nomenclature for cal domains that include well-known psychotropic agents and an introduction of California San Diego, San Diego, California, and Chair, to the Neuroscience-based Nomenclature. Neuroscience Education Institute, Carlsbad, California, terms such as serotonin dopamine, ace- Eur Neuropsychopharmacol. 2015; and a Member of the CURRENT PSYCHIATRY Editorial Board. 25(12):2318-2325. tylcholine, and GABA (Table 1). Also Disclosure 4. Zohar J, Stahl S, Moller HJ, et al. Neuroscience based nomenclature. Members of the task force, including the author of this included in NbN are 9 familiar modes Cambridge, United Kingdom: Cambridge editorial, and their organizations have not received financial of action, such as agonist, antagonist, University Press; 2014:254. compensation for their contribution. Costs for publication of the reuptake inhibitor, and enzyme inhibi- 5. Neuroscience-based nomenclature. book and development/update of the app have been paid for http://nbnomenclature.org. Accessed by the European College of Neuropsychopharmacology. tors (Table 2, page 16).3-5 April 12, 2017. continued Current Psychiatry Vol. 16, No. 5 15 Guest Editorial Editorial Staff Table 2 paper. To make all new papers search- EDITOR Erica Vonderheid 9 Modes of action able by NbN terminology, the NbN of SENIOR EDITOR Patrice Weeks the drugs that the paper covers should ASSISTANT EDITOR Jason Orszt Enzyme inhibitor WEB ASSISTANTS be added to the keywords of the paper. Tyler Mundhenk, Kathryn Wighton Enzyme modulator Ion channel blocker The new keywords will include those Art & Production Staff Neurotransmitters releaser relevant 11 pharmacological domains CREATIVE DIRECTOR Mary Ellen Niatas and 9 modes of action of the drugs dis- ART DIRECTOR Pat Fopma Positive allosteric modulator DIRECTOR, JOURNAL MANUFACTURING Receptor agonist cussed in the paper, which will make Michael Wendt Receptor antagonist the process easier for authors and read- PRODUCTION MANAGER Donna Pituras Receptor partial agonist ers searching for drugs in our publica- Publishing Staff Reuptake inhibitor PUBLISHER Sharon J. Spector tions. To “translate” between old and DIGITAL ACCOUNT MANAGER new nomenclature, the easiest and rec- Reinaldo Valdivia SENIOR DIRECTOR OF SALES ommended way is to use the free NbN Tim LaPella NbN has 4 additional dimensions or app, which is available on the project’s CONFERENCE MARKETING MANAGER 3-5 Kathleen Wenzler layers : Web site (http://nbnomenclature.org), • The first layer enumerates the offi- as well as Google Play and iTunes. We Editor-in-Chief Emeritus James Randolph Hillard, MD cial indications as recognized by the reg- recommend that journal editors include Frontline Medical Communications ulatory agencies (ie, the FDA and other in their author instructions a link to the CHAIRMAN Stephen Stoneburn government organizations). glossary that illustrates NbN in practice PRESIDENT, DIGITAL & CFO Douglas E. Grose • The second layer states efficacy based (http://nbnomenclature.org/authors). PRESIDENT/CEO Alan J. Imhoff on randomized controlled trials or sub- PRESIDENT, CUSTOM SOLUTIONS JoAnn Wahl stantial, evidence-based clinical data, as What is the current status? SENIOR VICE PRESIDENT, FINANCE Steven Resnick well as side effects (not the exhaustive Two international organizations endorse VICE PRESIDENT, OPERATIONS Jim Chicca list provided in manufacturers’ package NbN, and the chief editors of nearly VICE PRESIDENT, AUDIENCE DEVELOPMENT Donna Sickles inserts, but only the most common ones). 3 dozen scientific journals, includ- VICE PRESIDENT, CUSTOM PROGRAMS • The third layer is comprised of ing Current Psychiatry, support the Carol Nathan VICE PRESIDENT, CUSTOM SOLUTIONS practical notes, highlighting potentially development of this classification sys- Wendy Raupers important drug interactions, metabolic tem for eventual implementation within VICE PRESIDENT, eBUSINESS DEVELOPMENT Lee Schweizer issues, and specific warnings. the scientific literature. Presentations VICE PRESIDENT, HUMAN RESOURCES • The fourth section summarizes the at symposia at international meetings & FACILITY OPERATIONS Carolyn Caccavelli VICE PRESIDENT, MARKETING & CUSTOMER neurobiological effects in laboratory ani- also have taken place or are ongoing, ADVOCACY Jim McDonough mals and humans. including a scientific session at the 2016 VICE PRESIDENT, SALES Mike Guire VICE PRESIDENT, SOCIETY PARTNERS Specific dosages and titration regi- American Psychiatric Association (APA) Mark Branca mens are not provided because they annual meeting and another planned CORPORATE DIRECTOR, RESEARCH & COMMUNICATIONS Lori Raskin can vary among different countries, and for the Presidential Symposium at 2017 EDITORIAL DIRECTOR Karen J. Clemments NbN is intended for nomenclature and APA annual meeting; other presenta- Subscription Services: (800) 480-4851 classification, not as a prescribing guide. tions are scheduled at the American In affiliation with Global Academy for Medical Education, LLC College of Neuropsychopharmacology VICE PRESIDENT, MEDICAL EDUCATION How does it work in practice? in December 2017 and the European & CONFERENCES Sylvia H. Reitman, MBA VICE PRESIDENT, EVENTS David J. Small, MBA Major journals in the field have begun College of Neuropsychopharmacology adapting NbN for their published in September 2017. papers and Current Psychiatry is Clinicians should start adopting the joining them. Specifically, journals NbN for the psychotropic drugs they 7 Century Drive, Suite 302 Parsippany, NJ 07054 adapting NbN will require authors to prescribe every day. It is more scientific Tel: (973) 206-3434 clarify the meaning of terms they use for and consistent with the mechanism Fax: (973) 206-9378 www.frontlinemedcom.com drugs by defining as “antipsychotic,” of action than with a specific disorder for example, along with the NbN term because many psychotropic medica- Published through an educational partnership (eg, dopamine D2 antagonist) where tions have been found to be useful in with Saint Louis University the drug name first appears in the >1 psychiatric disorder. Current Psychiatry 16 May 2017.
Recommended publications
  • Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
    Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications,
    [Show full text]
  • DESCRIPTION CLINICAL PHARMACOLOGY Mechanism Of
    NDA 20-844/ Topamav Sprinkle Capsules Approved Labeling Text Version: 10/26/98 DESCRIPTION Topiramate is a sulfamate-substituted monosaccharide that is intended for use as an antiepileptic drug. TOPAMAX@ (topiramate capsules) Sprinkle Capsules are available as I5 mg, 25 mg and 50mg sprinkle capsules for oral administration as whole capsules or for opening and sprinkling onto soft food. Topiramate is a white crystalline powder with a bitter taste. Topiramate is most soluble in alkaline solutions containing sodium hydroxide or sodium phosphate and hawng a pH of 9 to IO. It is freely soluble in acetone, chloroform, dimethylsulfoxide, and ethanol. The solubility in water is 9.8 mg/mL. Its saturated solution has a pH of 6.3. Topiramate has the molecular formula C,,H,,NO,S and a molecular weight of 339.37. Topiramate is designated chemically as 2,3:4,5-Di-O-isopropylidene-~- D-fructopyranose sulfamate and has the following structural formula: H3C CH3 TOPAMAX” (topiramate capsules) Sprinkle Capsules contain topiramate coated beads in a hard gelatin capsule. The inactive ingredients are: sugar spheres (sucrose and starch), povidone, cellulose acetate, gelatin, silicone dioxide, sodium lauryl sulfate, titanium dioxide, and black pharmaceutical ink. CLINICAL PHARMACOLOGY Mechanism of Action: The precise mechanism by which topiramate exerts its antiseizure effect is unknown; however, electrophysiological and biochemical studies of the effects of topiramate on cultured neurons have revealed three properties that may contribute to topiramate’s antiepileptic efficacy. First, action potentials elicited repetitively by a sustained depolarization of the neurons are blocked by topiramate in a time-dependent manner, suggestive of a state-dependent sodium channel blocking action.
    [Show full text]
  • Moving Beyond Single Gene-Drug Pairs in Clinical Pharmacogenomics Testing
    Moving Beyond Single Gene-Drug Pairs in Clinical Pharmacogenomics Testing Yuan Ji, PhD, DABCP, FACMG Gwendolyn McMillin, PhD, DABCC Learning Objectives • Describe the strengths and limitations of pharmacogenomic testing. • List examples of single gene-drug associations with the strongest levels of evidence for clinical implementation. • Discuss cautions when considering the use of multi-gene drug associations to inform drug therapy decisions. 2 Disclosure • None 3 Outline • Singe gene-drug based pharmacogenomics (PGx) testing – An introduction – Evidence and examples – Considerations for developing and evaluating clinical PGx laboratory developed tests (LDTs) • Multi-gene PGx panels – Evidence and examples – PROs and CONs for utilizing PGx panels – Considerations for successful PGx implementation 4 Single Gene-Drug Based PGx Testing Yuan Ji, PhD, DABCP, FACMG Medical Director of Genomics and Genetics; PGx, ARUP Laboratories Associate Professor (Clinical) of Pathology, University of Utah Medications: Myths and Facts • are~30% peoplenot take“one at least-size one medication fits all” within a 30-day period • Most medications cause adverse drug events (ADEs) • Some medications like antibiotics may do more harm than good • CDC statistics: – ~ 200,000 ADEs-related ER visits in pediatric population (17 years or younger) – ~ 450,000 ADEs-related ER visits in older adults (65 years or older) – Medications, e.g., anticoagulant warfarin • Many ADEs are preventable by closely supervising of dosing, blood tests (therapeutic drug monitoring, TDM),
    [Show full text]
  • Identification of Small Molecule Modulators of Diguanylate Cyclase
    bioRxiv preprint doi: https://doi.org/10.1101/402909; this version posted August 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Identification of Small Molecule Modulators of Diguanylate Cyclase by FRET-based High-Throughput-Screening Matthias Christen1, , Cassandra Kamischke2, Hemantha D. Kulasekara2, Kathleen C. Olivas3, Bridget R. Kulasekara4, Beat Christen1, Toni Kline5, and Samuel I. Miller2,4,6, 1Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland 2Department of Microbiology, University of Washington, Seattle, United States 3Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021 4Department of Genome Sciences, University of Washington, Seattle 5Sutro Biopharma, 310 Utah Avenue, South San Francisco, CA 94080 6Department of Medicine, University of Washington, Seattle The bacterial second messenger cyclic diguanosine monophos- parent role of c-di-GMP in the cell cycle and the presence of phate (c-di-GMP) is a key regulator of cellular motility, the cell many paralogous DGC enzymes controlling diverse cellular cycle, and biofilm formation with its resultant antibiotic tol- functions indicate that there is likely tight spatial and tem- erance, which may make chronic infections difficult to treat. poral regulation of c-di-GMP (10–12). Bacterial genomes Therefore, diguanylate cyclases, which regulate the spatiotem- encode multiple GGDEF domains in proteins with signal- poral production of c-di-GMP, may be attractive drug tar- sensing domains (13).
    [Show full text]
  • Immediately Dangerous to Life Or Health (IDLH) Value Profile: Butane
    Butane CAS® No. 106-97-8 DEPARTMENT OF HEALTH AND HUMAN SERVICES Center for Disease Control and Prevention National Institute of Occupational Safety and Health This page intentionally left blank. Immediately Dangerous to Life or Health (IDLH) Value Profile Butane [CAS® No. 106-97-8] H3C CH3 DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. Ordering Information To receive this document or information about other occupational safety and health topics, contact NIOSH: Telephone: 1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: [email protected] or visit the NIOSH ebsite at: www.cdc.gov/niosh For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews. Suggested Citation NIOSH [2016]. Immediately dangerous to life or health (IDLH) value profile: butane. By Dotson GS, Maier A, Parker A, Haber L. Cincinnati, OH: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupa- tional Safety and Health, DHHS (NIOSH) Publication 2016-174. DHHS (NIOSH) Publication No. 2016-174 September 2016 ii IDLH Value Profile for Butane Foreword Chemicals are a ubiquitous component of the modern workplace.
    [Show full text]
  • Multiple Drug Resistance: a Fast-Growing Threat
    Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.21.003572 Multiple Drug Resistance: A Fast-Growing Threat Eremwanarue Aibuedefe Osagie1,2* and Shittu Hakeem Olalekan1 1Department of Plant Biology and Biotechnology, University of Benin, Nigeria 2Lahor Research Laboratories and Diagnostics Centre, Nigeria *Corresponding author: Eremwanarue Aibuedefe Osagie, Department of Plant Biology and Biotechnology, University of Benin, Nigeria ARTICLE INFO Abstract Received: September 03, 2019 The spread of antibiotic resistant bacteria is a growing problem and a public health Published: September 10, 2019 issue. Over the years, various genetic mechanisms concerned with antibiotic resistance have been identified to be natural and acquired resistance. The natural resistance Citation: Eremwanarue Aibuedefe Osag- ie, Shittu Hakeem Olalekan. Multiple Geneticinvolved Elements mutation [MGEs] via target such modification,as plasmid, transposon reduced permeability, and integrons efflux genetic system elements and Drug Resistance: A Fast-Growing Threat. on the other hand, acquired resistance via horizontal gene tranfer include Moblie Biomed J Sci & Tech Res 21(2)-2019. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried BJSTR. MS.ID.003572. bythat Mobile can acquire, Genetic exchange, Elements and such express as plasmids, genes embeddedand transposons, within whichGene Cassettespromote [GC].their spread within bacterial communities and have been studied mainly in the clinical setting Keywords: Antibiotics; Multiple Drug for their involvement in antibiotic resistance, their role in the environment is now an Resistant Bacteria; Mobile Genetic increasing focus of attention. The aim of this review is to educate the populise about Element; Integrons Plasmid the mechanisms of multiple drug resistance bacteria isolates and the danger ahead if appropriate regulations are not put in place especially in developing country like Nigeria.
    [Show full text]
  • Addressing 360O of Biochemical Imbalances to Restore Balance and Relieve Symptoms
    Addressing 360o of biochemical imbalances to restore balance and relieve symptoms. Product Guide Effective June 2015 Product availability subject to change without notice. View the most current catalog electronically at www.neuroscienceinc.com/productcatalog Dr. Gottfried Kellermann and Mieke Kellermann Ushering in a New Age of Personalized Care As NeuroScience, Inc. enters its 15th year in business, we reflect on the driving force behind our services- providing you, the practitioner, with tools that allow you to more efficiently and effectively care for your patients. Together with our laboratory partner, Pharmasan Labs, Inc. we pioneered the Assess and Address™ approach for personalized patient care. New and Exciting Direction We recognize the evolving changes in patient care and patient expectation from their healthcare practitioners. More than ever, patients are taking control of their health and demanding care that allows them to get better faster and enjoy the healthy lifestyle they deserve. NeuroScience, along with Pharmasan Labs, has taken the lead in focusing on a model that not only identifies the imbalances behind many symptoms but how the network of those imbalances indicates deeper issues. This network approach points you in the direction of the root cause of patient symptoms, which when resolved can lead to improved, long-term health outcomes. Never satisfied with the status quo, we will continue to innovate to provide you with unparalleled support toward this end. A Provider of Personalized, Clinical Solutions…this is WHO WE ARE. Together, NeuroScience and Pharmasan are committed to providing you with the clinical assessments and tools you need to thrive in this rapidly changing healthcare market while better serving your patients.
    [Show full text]
  • Action and Resistance Mechanisms of Antibiotics: a Guide for Clinicians
    J Anaesthesiol Clin Pharmacol. 2017 Jul-Sep; 33(3): 300–305. PMCID: PMC5672523 doi: 10.4103/joacp.JOACP_349_15: 10.4103/joacp.JOACP_349_15 PMID: 29109626 Action and resistance mechanisms of antibiotics: A guide for clinicians Garima Kapoor, Saurabh Saigal,1 and Ashok Elongavan2 Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India 1Department of Trauma and Emergency, AIIMS, Bhopal, Madhya Pradesh, India 2Department of Critical Care Medicine, Columbia Asia Hospital, Bengaluru, Karnataka, India Address for correspondence: Dr. Garima Kapoor, Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India. E-mail: [email protected] Copyright : © 2017 Journal of Anaesthesiology Clinical Pharmacology This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. Abstract Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and “bypass” of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful.
    [Show full text]
  • Molecular Targets of Pepper As Bioavailability Enhancer
    OPEM www.opem.org Oriental Pharmacy and Experimental Medicine 2009 9(4), 269-276 DOI 10.3742/OPEM.2009.9.4.269 Molecular targets of pepper as bioavailability enhancer Priyanshee Gohil and Anita Mehta* Department of Pharmacology, LM College of Pharmacy, Navrangpura, Ahmedabad–380009, Gujarat, India Received for publication January 21, 2008; accepted March 20, 2009 SUMMARY Black pepper (family Piperaceae), is called king of spices because it is one of the oldest spice and alone accounts for about 35% of the world’s total spice trade. The pepper is used in Ayurvedic medicine for the treatment of various ailments particularly neurological, broncho-pulmonary and gastrointestinal disorders. Pepper has also been reported to have various pharmacological actions but recently, it is highlighted as a bioavailability enhancer. This results in higher plasma concentration of drugs, nutrients, ions and other xenobiotics, rendering them more bioavailable for physiological as well as pharmacological actions in the body. Numerous scientific studies reported that piperine; a main bioactive compound of pepper, is responsible for its bioavailability enhancing property. It’s a well known fact that pepper enhances bioavailability by inhibition of microsomal enzyme system but other mechanisms are also responsible to acts as a bioavailability enhancer. The brief overview of the mechanism of action of pepper as well as its applications as bioavailability enhancer is given in the present article. Key words: Piperine; Bioavailability enhancer INTRODUCTION and 3 - 5% (on dry weight basis) in P. nigrum Linn (black pepper) and P. longum Linn (long pepper) Pepper species present as one of the key component respectively. It is isolated from fruits and it is in many preparations and formulations in traditional absent in the leaves and stem of plants.
    [Show full text]
  • Mechanism of Action Pharmacokinetics
    NDA 21-748/S-002 Page 3 Glumetza ™, 500 mg (metformin hydrochloride extended release tablets) tablet, film coated, extended release DESCRIPTION GLUMETZA (metformin hydrochloride) extended release tablet is an oral antihyperglycemic drug used in the management of type 2 diabetes. Metformin hydrochloride (N,N- dimethylimidodicarbonimidic diamide hydrochloride) is not chemically or pharmacologically related to any other classes of oral antihyperglycemic agents. The structural formula of metformin hydrochloride (metformin HCl) is as shown: Metformin HCl is a white to off-white crystalline compound with a molecular formula of C4H11N5•HCl and a molecular weight of 165.63. Metformin HCl is freely soluble in water and is practically insoluble in acetone, ether, and chloroform. The pKa of metformin is 12.4. The pH of a 1% aqueous solution of metformin hydrochloride is 6.68. GLUMETZA tablets are modified release dosage forms that contain 500 mg or 1000 mg of metformin HCl. Each 500 mg tablet contains coloring, hypromellose, magnesium stearate, microcrystalline cellulose and polyethylene oxide. Each 1000 mg tablet contains crospovidone, dibutyl sebacate, ethylcellulose, glyceryl behenate, polyvinyl alcohol, polyvinylpyrrolidone, and silicon dioxide. GLUMETZA 500 and 1000 mg tablets both utilize polymer- based, oral drug delivery systems, which allow delivery of metformin HCl to the upper gastrointestinal (GI) tract. CLINICAL PHARMACOLOGY Mechanism of Action Metformin is an antihyperglycemic agent, which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Its pharmacologic mechanisms of action are different from other classes of oral antihyperglycemic agents. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization.
    [Show full text]
  • Neuropsychopharmacology - Mirjam A.F.M
    PHARMACOLOGY – Vol. I - Neuropsychopharmacology - Mirjam A.F.M. Gerrits and Jan M. van Ree NEUROPSYCHOPHARMACOLOGY Mirjam A.F.M. Gerrits and Jan M. van Ree Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands Keywords: psychopharmacology, neuropharmacology, central nervous system, antipsychotics, schizophrenia, antidepressants, mood stabilizers, anxiolytics, benzodiazepines Contents 1. Introduction 2. Chemical synaptic transmission in the central nervous system 3. Psychopharmacology and psychotropic drugs 4. Antipsychotics 4.1. Schizophrenia 4.2. Etiology and Pathogenesis of Schizophrenia 4.3. Antipsychotic Drugs 4.3.1. Mechanism of Action 4.3.2. Side Effects of Antipsychotics 4.3.3. Novel Targets for Antipsychotic Drug Action 5. Antidepressants and mood stabilizers 5.1. Etiology and Pathogenesis of Affective Disorders 5.2. Antidepressive Drugs and Mood-stabilizers 5.2.1. Monoamine Oxidase Inhibitors 5.2.2. Tricyclic Antidepressants 5.2.3. Selective 5-HT Uptake Inhibitors 5.2.4. Newer, ‘Atypical’ Antidepressant Drugs 5.2.5. Mood-stabilizers 6. Anxiolytics 6.1. Benzodiazepines 6.1.1. Mechanism of Action 6.1.2. Therapeutic and Side Effects 6.1.3. Pharmacokinetic Aspects Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Neuropsychopharmacology is a broad and growing field that is related to several disciplines, including neuropharmacology, psychopharmacology and fundamental neuroscience. It comprises research on the action of psychoactive drugs on different levels. This ranges from molecular and biochemical characterization, to behavioral effects in experimental animals, and finally to clinical application. Over the years, the developments in the neuropsychopharmacological field have led to advances in our ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol.
    [Show full text]
  • Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults
    Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults Audrey E. Fischer, Emily P. English, Julia B. Patrone, Kathlyn Santos, Jody B. G. Proescher, Rachel S. Quizon, Kelly A. Van Houten, Robert S. Pilato, Eric J. Van Gieson, and Lucy M. Carruth e performed a pilot study to characterize the molecular, cellular, and whole-organism response to nonlethal chemical agent exposure in the central nervous system. Multiple methodologies were applied to measure in vitro enzyme inhibition, neuronal cell pathway signaling, and in vivo zebrafish neural development in response to challenge with two different classes of chemical compounds. While all compounds tested exhibited expected enzyme inhibitory activity against acetylcholinesterase (AChE), a well-characterized target of chemical agents, distinct differences between chemical exposures were detected in cellular toxicity and pathway target responses and were tested in a zebrafish model. Some of these differences have not been detected using conventional chemical toxicity screening methods. Taken together, the data demonstrate the potential value of an integrated, multimethodological approach for improved target and pathway identification for subsequent diagnostic and therapeutic biomarker development. INTRODUCTION To build capability and leverage new and growing cell models to complete living organisms. Regardless of biology and chemistry expertise at APL, a collabora- the model selected, challenges exist in sample collection, tive, cross-departmental effort was established through a dose determination, and biases inherent in each assay/ series of related independent research and development technology. Therefore, multiple experimental methodol- (IR&D) projects. The focus of this effort was on mitiga- ogies brought to bear on a particular biological question tion of chemical and biological threat agents.
    [Show full text]