J Anaesthesiol Clin Pharmacol. 2017 Jul-Sep; 33(3): 300–305. PMCID: PMC5672523 doi: 10.4103/joacp.JOACP_349_15: 10.4103/joacp.JOACP_349_15 PMID: 29109626 Action and resistance mechanisms of antibiotics: A guide for clinicians Garima Kapoor, Saurabh Saigal,1 and Ashok Elongavan2 Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India 1Department of Trauma and Emergency, AIIMS, Bhopal, Madhya Pradesh, India 2Department of Critical Care Medicine, Columbia Asia Hospital, Bengaluru, Karnataka, India Address for correspondence: Dr. Garima Kapoor, Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India. E-mail:
[email protected] Copyright : © 2017 Journal of Anaesthesiology Clinical Pharmacology This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. Abstract Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and “bypass” of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful.