ICOS-Ligand Triggering Impairs Osteoclast Differentiation and Function in Vitro and in Vivo

Total Page:16

File Type:pdf, Size:1020Kb

ICOS-Ligand Triggering Impairs Osteoclast Differentiation and Function in Vitro and in Vivo ICOS-Ligand Triggering Impairs Osteoclast Differentiation and Function In Vitro and In Vivo This information is current as Casimiro L. Gigliotti, Elena Boggio, Nausicaa Clemente, of September 29, 2021. Yogesh Shivakumar, Erika Toth, Daniele Sblattero, Patrizia D'Amelio, Giovanni C. Isaia, Chiara Dianzani, Junji Yagi, Josè M. Rojo, Annalisa Chiocchetti, Renzo Boldorini, Michela Bosetti and Umberto Dianzani J Immunol 2016; 197:3905-3916; Prepublished online 19 Downloaded from October 2016; doi: 10.4049/jimmunol.1600424 http://www.jimmunol.org/content/197/10/3905 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/10/19/jimmunol.160042 Material 4.DCSupplemental References This article cites 49 articles, 10 of which you can access for free at: http://www.jimmunol.org/content/197/10/3905.full#ref-list-1 Why The JI? Submit online. by guest on September 29, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ICOS-Ligand Triggering Impairs Osteoclast Differentiation and Function In Vitro and In Vivo Casimiro L. Gigliotti,*,1 Elena Boggio,*,1 Nausicaa Clemente,* Yogesh Shivakumar,* Erika Toth,* Daniele Sblattero,* Patrizia D’Amelio,† Giovanni C. Isaia,† Chiara Dianzani,‡ Junji Yagi,x Jose` M. Rojo,{ Annalisa Chiocchetti,* Renzo Boldorini,* Michela Bosetti,‖ and Umberto Dianzani* Osteoblasts, osteocytes, and osteoclasts (OCs) are involved in the bone production and resorption, which are crucial in bone ho- meostasis. OC hyperactivation plays a role in the exaggerated bone resorption of diseases such as osteoporosis, rheumatoid arthritis, and osteolytic tumor metastases. This work stems from the finding that OCs can express B7h (ICOS-Ligand), which is the ligand of the ICOS T cell costimulatory molecule. Because recent reports have shown that, in endothelial, dendritic, and tumor cells, B7h Downloaded from triggering modulates several activities of these cells, we analyzed the effect of B7h triggering by recombinant ICOS-Fc on OC differentiation and function. The results showed that ICOS-Fc inhibits RANKL-mediated differentiation of human monocyte- derived OC-like cells (MDOCs) by inhibiting the acquirement of the OC morphology, the CD142 cathepsin K+ phenotype, and the expression of tartrate-resistant acid phosphatase, OSCAR, NFATc1, and DC-STAMP. Moreover, ICOS-Fc induces a reversible decrease in the sizes of cells and nuclei and cathepsin K expression in mature MDOCs. Finally, ICOS-Fc inhibits the osteolytic activities of MDOCs in vitro and the development of bone loss in ovariectomized or soluble RANKL-treated mice. These findings http://www.jimmunol.org/ open a novel field in the pharmacological use of agonists and antagonists of the ICOS–B7h system. The Journal of Immunology, 2016, 197: 3905–3916. he inducible costimulator ligand or B7h (CD275, also activated T cells, whereas B7h is expressed by a wide variety of known as ICOSL, B7H2, B7-RP1, GL50) belongs to the cell types, including B cells, macrophages, and dendritic cells T B7 family of surface receptors and binds ICOS (CD278), (DCs). However, B7h is also expressed by cells of nonhemopoietic which belongs to the CD28 family (1–5). ICOS is expressed by origin such as vascular endothelial cells (ECs), epithelial cells, and fibroblasts, and many tumor cells. The main known function of B7h is the triggering of ICOS, which acts as a costimulatory by guest on September 29, 2021 *Department of Health Sciences and Interdisciplinary Research Center of Autoimmune molecule for activated T cells by modulating their cytokine se- † Diseases, University of Piemonte Orientale, 28100 Novara, Italy; Department of cretion and, particularly, increasing the secretion of IFN-g (in Medical Sciences, University of Torino, 10126 Torino, Italy; ‡Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; xDepartment of humans), IL-4 (in mice), IL-10, IL-17, and IL-21 (in both species) Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 108-8639, { (6–11). However, recent reports have shown that the B7h–ICOS Japan; Departamento de Medicina Celular y Molecular, Centro de Investigaciones interaction can trigger bidirectional signals able to modulate also Biologicas, Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and ‖Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 the response of the B7h-expressing cells. In mouse DCs, this B7h- Novara, Italy mediated reverse signaling induces partial maturation with 1C.L.G. and E.B. contributed equally to this work. prominent augmentation of IL-6 secretion (12). In human DCs, it ORCIDs: 0000-0002-3127-5686 (C.L.G.); 0000-0003-2700-3597 (E.B.); 0000-0002- modulates cytokine secretion, promotes the capacity to cross-present 9860-0148 (N.C.); 0000-0003-2669-6328 (E.T.); 0000-0003-4309-242X (D.S.); endocytosed Ags in class I MHC molecules, and inhibits adhe- 0000-0001-9032-0072 (J.M.R.); 0000-0002-3682-8702 (M.B.). siveness to ECs and migration (13, 14). B7h stimulation also Received for publication March 14, 2016. Accepted for publication September 20, 2016. inhibits the adhesiveness and migration of ECs and tumor cell lines in vitro and development of experimental lung metastases This work was supported by the Associazione Italiana Ricerca sul Cancro (Grant IG 14430; Milan), the Fondazione Amici di Jean (Torino), and the Fondazione Cassa di in vivo (15, 16). These effects are accompanied by decreased Risparmio di Cuneo (Cuneo). phosphorylation of ERK and p38 in ECs, decreased phosphor- U.D., G.C.I., and C.D. designed research; C.L.G., E.B., N.C., and Y.S. performed ylation of focal adhesion kinase, and downmodulation of b-Pix research; E.T. and D.S. contributed reagents and tools; P.D., A.C., R.B., and M.B. in ECs and tumor cells. Moreover, triggering of B7h potentiates analyzed data; and U.D., J.Y., and J.M.R. wrote the article. signaling via several pattern recognition receptors in human DCs Address correspondence and reprint requests to Dr. Umberto Dianzani, Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, through a signaling pathway involving the adaptor protein re- University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy. E-mail ceptor for activated C kinase 1 and the kinases protein kinase address: [email protected] C (PKC) and JNK (14). The online version of this article contains supplemental material. The aim of our research was to extend these analyses by in- Abbreviations used in this article: DC, dendritic cell; EC, endothelial cell; MA, vestigating the expression and function of B7h in osteoclasts (OCs), medullary area; MDOC, monocyte-derived OC-like cell; OB, osteoblast; OC, oste- oclast; OPG, osteoprotegerin; OVX, ovariectomy; PKC, protein kinase C; RA, rheu- which derive from the monocyte lineage, similarly to DCs. OCs are matoid arthritis; RANK, receptor activator of NF-kB; RANKL, RANK ligand; T, giant cells formed by the cell–cell fusion of monocyte-macrophage day; TA, total area of the bone; TRAP, tartrate-resistant acid phosphatase; Treg, precursors and are characterized by multiple nuclei, abundant regulatory T cell; TRITC, tetramethylrhodamine B isothiocyanate. vacuoles, and lysosomes; they play a key role in bone remodeling, Copyright Ó 2016 by The American Association of Immunologists, Inc. 0022-1767/16/$30.00 which also involves osteoblasts (OBs) and osteocytes. OCs differentiate www.jimmunol.org/cgi/doi/10.4049/jimmunol.1600424 3906 ICOSL FUNCTION IN OSTEOCLASTS from monocytes under the influence of M-CSF and the receptor human ICOS amino acid sequence. For analysis, MDOCs were detached activator of NF-kB (RANK) ligand (RANKL) (17–21). from the plates using the TrypLE express reagent (Life Technologies, The OC function is stimulated by the triggering of the RANK Carlsbad, CA) for 15 min before using a cell scraper (31). Cell viability detected by trypan blue exclusion assay was .98%. expressed on the membrane of OCs by RANKL. In healthy bone, RANKL is mainly expressed by OBs as a surface receptor in re- Immunofluorescence sponse to bone-resorbing factors, and it is cleaved into a soluble The OCs phenotype was assessed by immunofluorescence and flow molecule by metalloproteinases. Moreover, RANKL is also ex- cytometry (BD Biosciences, San Diego, CA) using the FITC-, PE-, and pressed by stromal cells, lymphocytes, and macrophages, which allophycocyanin-conjugated mAbs to CD14 (Immunotools, Friesoythe, can support OC function during inflammation. Osteoprotegerin Germany), cathepsin K (Bioss, Woburn, MA), and B7h (R&D Systems). Cathepsin K was evaluated after cell permeabilization using the FIX and (OPG) is a soluble decoy receptor of RANKL secreted by OBs and PERM kit (Invitrogen). stromal cells; OPG prevents RANK stimulation by inhibiting its Actin and B7h staining were performed on cells cultured on glass binding to RANKL and impairs osteoclastogenesis (22). The coverslips, fixed with 4% paraformaldehyde, and then permeabilized with binding of M-CSF to its CSF 1 receptor (c-fms) on OC progenitors 5% FBS, 1% BSA, and 0.1% Triton X-100. The cells were then stained with upregulates expression of RANK on these cells and is essential for anti-B7h rabbit polyclonal Abs (Bioss) or preimmune rabbit Ig followed by Texas Red–conjugated secondary anti-rabbit Ig (Invitrogen), or with tet- osteoclastogenesis (23).
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • LAG-3-Expressing Tumor-Infiltrating T Cells Are Associated with Reduced
    cancers Article LAG-3-Expressing Tumor-Infiltrating T Cells Are Associated with Reduced Disease-Free Survival in Pancreatic Cancer Lena Seifert 1,2,3,†, Ioana Plesca 4,†, Luise Müller 4, Ulrich Sommer 5, Max Heiduk 1,2, Janusz von Renesse 1, David Digomann 1, Jessica Glück 1, Anna Klimova 6,7, Jürgen Weitz 1,2,3, Marc Schmitz 2,3,4 and Adrian M. Seifert 1,2,3,* 1 Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; [email protected] (L.S.); [email protected] (M.H.); [email protected] (J.v.R.); [email protected] (D.D.); [email protected] (J.G.); [email protected] (J.W.) 2 National Center for Tumor Diseases (NCT), Partner Site Dresden, 69120 Heidelberg, Germany; [email protected] 3 German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany 4 Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, 01307 Dresden, Germany; [email protected] (I.P.); [email protected] (L.M.) 5 Faculty of Medicine Carl Gustav Carus, Institute of Pathology, TU Dresden, 01307 Dresden, Germany; [email protected] 6 Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry, TU Dresden, 01307 Dresden, Germany; [email protected] 7 National Center for Tumor Diseases (NCT), Core Unit for Data Management and Analytics (CDMA), Citation: Seifert, L.; Plesca, I.; Müller, 01307 Dresden, Germany L.; Sommer, U.; Heiduk, M.; von * Correspondence: [email protected] Renesse, J.; Digomann, D.; Glück, J.; † These authors have contributed equally to this work.
    [Show full text]
  • Effector CD4 T-Cell Transition to Memory Requires Late Cognate Interactions That Induce Autocrine IL-2
    ARTICLE Received 3 Jun 2014 | Accepted 24 Sep 2014 | Published 5 Nov 2014 DOI: 10.1038/ncomms6377 Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2 K. Kai McKinstry1,*, Tara M. Strutt1,*, Bianca Bautista1, Wenliang Zhang1, Yi Kuang1, Andrea M. Cooper2 & Susan L. Swain1 It is unclear how CD4 T-cell memory formation is regulated following pathogen challenge, and when critical mechanisms act to determine effector T-cell fate. Here, we report that following influenza infection most effectors require signals from major histocompatibility complex class II molecules and CD70 during a late window well after initial priming to become memory. During this timeframe, effector cells must produce IL-2 or be exposed to high levels of paracrine or exogenously added IL-2 to survive an otherwise rapid default contraction phase. Late IL-2 promotes survival through acute downregulation of apoptotic pathways in effector T cells and by permanently upregulating their IL-7 receptor expression, enabling IL-7 to sustain them as memory T cells. This new paradigm defines a late checkpoint during the effector phase at which cognate interactions direct CD4 T-cell memory generation. 1 Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA. 2 Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, New York 12983, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to K.K.M. (email: [email protected]). NATURE COMMUNICATIONS | 5:5377 | DOI: 10.1038/ncomms6377 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • An Ontogenetic Switch Drives the Positive and Negative Selection of B Cells
    An ontogenetic switch drives the positive and negative selection of B cells Xijin Xua, Mukta Deobagkar-Lelea, Katherine R. Bulla, Tanya L. Crockforda, Adam J. Meadb, Adam P. Cribbsc, David Simsc, Consuelo Anzilottia, and Richard J. Cornalla,1 aMedical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom; bMedical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom; and cMedical Research Council, Weatherall Institute of Molecular Medicine, Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom Edited by Michael Reth, University of Freiburg, Freiburg, Germany, and approved January 6, 2020 (received for review September 3, 2019) + Developing B cells can be positively or negatively selected by self- BM HSCs increased CD5 B-1a B cell development (15), while antigens, but the mechanisms that determine these outcomes are expression of let-7b in FL pro-B cells blocked the development of incompletely understood. Here, we show that a B cell intrinsic B-1 B cells (17). These findings support the notion of hard-wired switch between positive and negative selection during ontogeny differences during ontogeny, but possibly downstream of the HSC is determined by a change from Lin28b to let-7 gene expression. commitment stage. Ectopic expression of a Lin28b transgene in murine B cells restored Several lines of evidence also suggest that B-1 B cells can un- the positive selection of autoreactive B-1 B cells by self-antigen in dergo positive selection, which is linked to their B cell receptor adult bone marrow.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • A20 Regulates the Therapeutic Effect of Anti-PD-1 Immunotherapy In
    Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001866 on 9 December 2020. Downloaded from A20 regulates the therapeutic effect of anti- PD-1 immunotherapy in melanoma Weinan Guo,1 Jinyuan Ma,1 Sen Guo,1 Huina Wang,1 Sijia Wang,1,2 Qiong Shi,1 Lin Liu,1 Tao Zhao,1 Fengfan Yang,3 Shuyang Chen,4 Jianru Chen,1 Jianhong Zhao,1 Chen Yu,1 Xiuli Yi,1 Yuqi Yang,1 Jingjing Ma,1 Qingrong Ni,1 Guannan Zhu,1 1 1 Tianwen Gao, Chunying Li To cite: Guo W, Ma J, Guo S, ABSTRACT (PD-1)/programmed death ligand 1 (PD-L1) et al. A20 regulates the Background The therapeutic effect of immune have been demonstrated as a pair of major therapeutic effect of anti- PD-1 checkpoint blockers, especially the neutralizing immunotherapy in melanoma. immune checkpoint molecules and valuable antibodies of programmed cell death (PD-1) and its ligand 1 Journal for ImmunoTherapy therapeutic targets for melanoma treatment. programmed death ligand 1 (PD-L1), has been well verified of Cancer 2020;8:e001866. For instance, the binding of membrane doi:10.1136/jitc-2020-001866 in melanoma. Nevertheless, the dissatisfactory response rate and the occurrence of resistance significantly hinder PD- L1 on tumor cells to PD-1 on T cells the treatment effect. Inflammation- related molecules like evokes an immunosuppressive signal that ► Additional material is results in the dysfunction and even the apop- published online only. To view A20 are greatly implicated in cancer immune response, please visit the journal online but the role of tumorous A20 in antitumor immunity and tosis of cytotoxic T cells, thereby impairing 2 (http:// dx.
    [Show full text]
  • Human Neonatal B Cell Immunity Differs from the Adult Version by Conserved Ig Repertoires and Rapid, but Transient Response Dynamics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245985; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Human neonatal B cell immunity differs from the adult version by conserved Ig repertoires and rapid, but transient response dynamics Bettina Budeus,1,# Artur Kibler,1,# Martina Brauser,1,# Ekaterina Homp,1,# Kevin Bronischewski,1 J. Alexander Ross,1 Andre Görgens,2,3 Marc A. Weniger,1 Josefine Dunst,4,5 Taras Kreslavsky,4,5 Symone Vitoriano da Conceição Castro,2,6 Florian Murke,2 Christopher C. Oakes,7,8 Peter Rusch,9 Dimitrios Andrikos,9 Peter Kern,9 Angela Köninger,9 Monika Lindemann,2 Patricia Johansson,10 Wiebke Hansen,11 Anna-Carin Lundell,12 Anna Rudin,12 Jan Dürig,10 Bernd Giebel,2 Daniel Hoffmann,13 Ralf Küppers,1 Marc Seifert1* 1Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany. 2Institute for Transfusion Medicine, Medical Faculty, University of Duisburg-Essen, Essen 45147, Germany. 3Department of Laboratory Medicine, Karolinska Institute, Stockholm 17177, Sweden. 4Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm 17177, Sweden. 5Center for Molecular Medicine, Karolinska Institute, Stockholm 17177, Sweden 6CAPES Foundation, Ministry of Education of Brazil, Brasília 70610-908, Brazil. 7Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA. 8Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA. 9Department of Gynecology, Medical Faculty, University of Duisburg- Essen, Essen 45147, Germany.
    [Show full text]
  • Proseek Multiplex Oncology I V296×96
    Proseek Multiplex Oncology I v296×96 Adrenomedullin (AM) P35318 Fms-related tyrosine kinase 3 ligand (Flt3L) P49771 Amphiregulin (AR) P15514 Folate receptor alpha (FR-alpha) P15328 Angiopoietin-1 receptor (TIE2) Q02763 Follistatin (FS) P19883 B-cell activating factor (BAFF) Q9Y275 Furin (FUR) P09958 Cadherin-3 (CDH3) P22223 Growth hormone (GH) P01241 Carbonic anhydrase IX (CAIX) Q16790 Growth/differentiation factor 15 (GDF-15) Q99988 Carcinoembryonic antigen (CEA) P06731 Heparin-binding EGF-like growth factor (HB-EGF) Q99075 Caspase-3 (CASP-3) P42574 Hepatocyte growth factor (HGF) P14210 C-C motif chemokine 19 (CCL19) Q99731 ICOS ligand (ICOSLG) O75144 CD40 ligand (CD40-L) P29965 Immunoglobulin-like transcript 3 (ILT-3) Q8NHJ6 C-X-C motif chemokine 5 (CXCL5 ) P42830 Integrin alpha-1 (ITGA1) P56199 C-X-C motif chemokine 9 (CXCL9 ) Q07325 Interferon gamma (IFN-gamma) P01579 C-X-C motif chemokine 10 (CXCL10 ) P02778 Interleukin-1 receptor antagonist protein (IL-1ra) P18510 C-X-C motif chemokine 11 (CXCL11 ) O14625 Interleukin-2 (IL-2) P60568 C-X-C motif chemokine 13 (CXCL13 ) O43927 Interleukin-6 (IL-6) P05231 Cyclin-dependent kinase inhibitor 1 (CDKN1A) P38936 Interleukin-6 receptor subunit alpha (IL-6RA) P08887 Cystatin-B (CSTB) P04080 Interleukin-7 (IL-7) P13232 Early activation antigen CD69 (CD69 ) Q07108 Interleukin-8 (IL-8) P10145 Epidermal growth factor receptor (EGFR ) P00533 Interleukin-12 (IL-12) P29460; P29459 Epididymal secretory protein E4 (HE4 ) Q14508 Interleukin-17 receptor B (IL-17RB ) Q9NRM6 Epithelial cell adhesion molecule
    [Show full text]
  • Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature
    cells Article Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature 1, 2, 1, 1, Sónia Fonseca y, Vanessa Pereira y, Catarina Lau z, Maria dos Anjos Teixeira z, Marika Bini-Antunes 3 and Margarida Lima 1,* 1 Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), 4099-001 Porto Porto, Portugal; [email protected] (S.F.); [email protected] (C.L.); [email protected] (M.d.A.T.) 2 Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502 Vila Nova de Gaia, Portugal; [email protected] 3 Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), 4099-001Porto, Portugal; [email protected] * Correspondence: [email protected]; Tel.: + 351-22-20-77-500 These authors contributed equally to this work. y These authors contributed equally to this work. z Received: 10 February 2020; Accepted: 13 March 2020; Published: 16 March 2020 Abstract: Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1.
    [Show full text]
  • Targeting Costimulatory Molecules in Autoimmune Disease
    Targeting costimulatory molecules in autoimmune disease Natalie M. Edner1, Gianluca Carlesso2, James S. Rush3 and Lucy S.K. Walker1 1Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK NW3 2PF 2Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, USA 3Autoimmunity, Transplantation and Inflammation Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland *Correspondence: Professor Lucy S.K. Walker. Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK NW3 2PF. Tel: +44 (0)20 7794 0500 ext 22468. Email: [email protected]. 1 Abstract Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, and efforts have focused in particular on the CD28 family members CTLA-4 and PD-1. In autoimmunity, these same pathways can be targeted to opposite effect, to curb the over- exuberant immune response. The CTLA-4 checkpoint serves as an exemplar, whereby CTLA-4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA-4 in autoimmunity. Here we review the targeting of costimulatory molecules in autoimmune disease, focusing in particular on the CD28 family and TNFR family members. We present the state-of-the-art in costimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field. 2 The risk of autoimmune disease is an inescapable consequence of the manner in which the adaptive immune system operates. To ensure effective immunity against a diverse array of unknown pathogens, antigen recognition systems based on random gene rearrangement and mutagenesis have evolved to anticipate the antigenic universe.
    [Show full text]
  • Expression Il2 Differentiation by Promoting TNFR2 Impairs Th17
    Transmembrane TNF−TNFR2 Impairs Th17 Differentiation by Promoting Il2 Expression Patrick G. Miller, Michael B. Bonn and Susan C. McKarns This information is current as J Immunol 2015; 195:2633-2647; Prepublished online 12 of October 3, 2021. August 2015; doi: 10.4049/jimmunol.1500286 http://www.jimmunol.org/content/195/6/2633 Downloaded from References This article cites 76 articles, 37 of which you can access for free at: http://www.jimmunol.org/content/195/6/2633.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 3, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transmembrane TNF–TNFR2 Impairs Th17 Differentiation by Promoting Il2 Expression Patrick G. Miller,* Michael B. Bonn,* and Susan C. McKarns*,† The double-edged sword nature by which IL-2 regulates autoimmunity and the unpredictable outcomes of anti-TNF therapy in autoimmunity highlight the importance for understanding how TNF regulates IL-2.
    [Show full text]