A20 Regulates the Therapeutic Effect of Anti-PD-1 Immunotherapy In

Total Page:16

File Type:pdf, Size:1020Kb

A20 Regulates the Therapeutic Effect of Anti-PD-1 Immunotherapy In Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-001866 on 9 December 2020. Downloaded from A20 regulates the therapeutic effect of anti- PD-1 immunotherapy in melanoma Weinan Guo,1 Jinyuan Ma,1 Sen Guo,1 Huina Wang,1 Sijia Wang,1,2 Qiong Shi,1 Lin Liu,1 Tao Zhao,1 Fengfan Yang,3 Shuyang Chen,4 Jianru Chen,1 Jianhong Zhao,1 Chen Yu,1 Xiuli Yi,1 Yuqi Yang,1 Jingjing Ma,1 Qingrong Ni,1 Guannan Zhu,1 1 1 Tianwen Gao, Chunying Li To cite: Guo W, Ma J, Guo S, ABSTRACT (PD-1)/programmed death ligand 1 (PD-L1) et al. A20 regulates the Background The therapeutic effect of immune have been demonstrated as a pair of major therapeutic effect of anti- PD-1 checkpoint blockers, especially the neutralizing immunotherapy in melanoma. immune checkpoint molecules and valuable antibodies of programmed cell death (PD-1) and its ligand 1 Journal for ImmunoTherapy therapeutic targets for melanoma treatment. programmed death ligand 1 (PD-L1), has been well verified of Cancer 2020;8:e001866. For instance, the binding of membrane doi:10.1136/jitc-2020-001866 in melanoma. Nevertheless, the dissatisfactory response rate and the occurrence of resistance significantly hinder PD- L1 on tumor cells to PD-1 on T cells the treatment effect. Inflammation- related molecules like evokes an immunosuppressive signal that ► Additional material is results in the dysfunction and even the apop- published online only. To view A20 are greatly implicated in cancer immune response, please visit the journal online but the role of tumorous A20 in antitumor immunity and tosis of cytotoxic T cells, thereby impairing 2 (http:// dx. doi. org/ 10. 1136/ jitc- immunotherapy efficacy remains elusive. antitumor immunity. Therefore, PD-1/ 2020- 001866). Methods The association between tumorous A20 PD- L1 blockade is in a position to disrupt expression and the effect of anti-PD-1 immunotherapy the interaction between tumor cells and T WG, JM, SG, HW and SW was determined by immunoblotting, immunofluorescence contributed equally. cells, which restores tumor- specific immune staining and flow cytometry analysis of primary tumor response.3 For melanoma patients receiving specimens from melanoma patients. Preclinical mouse anti- PD-1 antibody monotherapy, the median Accepted 18 November 2020 model, in vitro coculture system, immunohistochemical staining and flow cytometry analysis were employed to overall survival could be up to 32.7 months 4 investigate the role of A20 in regulating the effect of anti- after almost 5 years of follow-up. However, a PD-1 immunotherapy. Bioinformatics, mass spectrum proportion of 40%–60% of patients does not analysis and a set of biochemical analyzes were used to achieve any significant therapeutic response, figure out the underlying mechanism. © Author(s) (or their and some patients even show complete resis- Results We first discovered that upregulated A20 was 5 tance to PD-1/PD- L1 blockade. Accumula- http://jitc.bmj.com/ employer(s)) 2020. Re- use + permitted under CC BY- NC. No associated with impaired antitumor capacity of CD8 T tive evidence has revealed multiple primary commercial re- use. See rights cells and poor response to anti- PD-1 immunotherapy and acquired alterations leading to treatment and permissions. Published by in melanoma patients. Subsequent functional studies in resistance of immunotherapy, including low BMJ. preclinical mouse model and in vitro coculture system 1Department of Dermatology, proved that targeting tumorous A20 prominently improved mutational burden, defective antigenicity Xijing Hospital, Fourth Military the effect of immunotherapy through the invigoration and antigen presentation of tumor cell + Medical University, Xi'an, of infiltrating CD8 T cells via the regulation of PD- L1. and genomic dysregulation of interferon-γ on September 27, 2021 by guest. Protected copyright. Shaanxi, China 6–9 2 Mechanistically, A20 facilitated the ubiquitination and (IFN-γ) signaling pathway. These reports Department of Dermatology, degradation of prohibitin to potentiate STAT3 activation have prompted potential molecular profile Nanfang Hospital, Southern and PD- L1 expression. Moreover, tumorous A20 expression Medical University, Guangzhou, for predicting the treatment response and was highly associated with the ratio of Ki-67 percentage in Guangdong, China + + effective synergized therapeutic strategy for 3Department of Clinical circulating PD-1 CD8 T cells to tumor burden. cancer immunotherapy. Notably, tumor cells Conclusions Together, our findings uncover a novel Immunology, Xijing Hospital, can adaptively increase the expression of Fourth Military Medical crosstalk between inflammatory molecules and antitumor University, Xi'an, Shaanxi, China immunity in melanoma, and highlight that A20 can be PD-L1 or other immune checkpoints under 4Department of Pharmacology exploited as a promising target to bring clinical benefit to the control of IFN-γ after the treatment with and Experimental Therapeutics, melanomas refractory to immune checkpoint blockade. anti- PD-1 antibody, rendering melanomas Boston University School refractory to immunotherapy.10–12 Hence, of Medicine, Boston, the molecular mechanism underlying aber- Massachusetts, USA INTRODUCTION rant tumorous PD-L1 expression associated Correspondence to Eradication of immune destruction is a hall- with the resistance to immunotherapy in Professor Chunying Li; mark of cancer, which is primarily due to melanoma is in urgent need to be clarified to lichying@ fmmu. edu. cn the abnormal activation of immune check- improve the therapeutic efficacy. Dr Weinan Guo; points and the termination of antitumor Inflammation is closely related to the guown@ fmmu. edu. cn immune response. Programmed cell death development of various cancers including Guo W, et al. J Immunother Cancer 2020;8:e001866. doi:10.1136/jitc-2020-001866 1 Open access J Immunother Cancer: first published as 10.1136/jitc-2020-001866 on 9 December 2020. Downloaded from melanoma, with its pivotal role in the regulation of METHODS cancer immune response demonstrated recently.13–15 A detailed description of the methods used in this study is To be specific, tumor necrosis factor-α (TNF-α) that is a available in online supplemental methods. common proinflammatory cytokine and its downstream pathway could induce tumor immune escape by elevating Statistical analysis the expressions of immune checkpoint molecules.13 16 All experiments were repeated at least three times unless On the other, TNF-α is also one of the major cytokines otherwise indicated. Error bars represent SE of the secreted by activated CD8+ T cells in tumor microenviron- mean. Student’s t- test was used to compare two groups ment that potentiates antitumor immune response.17 18 of independent samples. Liner regression was used to These reports highlight the vital impact of inflammatory confirm the correlation between two groups of depen- signaling on antitumor immunity, though the actual func- dent samples. P<0.05 was considered statistically signifi- tion remains controversial. A20 is a primary responsive cant. Kaplan- Meier analysis and log-rank (Mantel- Cox) gene of TNF-α and is documented as a crucial negative test were used to evaluate the statistical significance for mediator of inflammation as well as immune response in comparison of survival curves. All statistical analyzes were multiple immune cells.19 As a ubiquitin-editing enzyme, it performed with GraphPad Prism (GraphPad software is composed of an N- terminal OTU domain with deubiq- V.6.0, La Jolla, USA). uitinase activity and seven Cys2- Cys2 zinc finger C- ter- minal domains functioning as a ubiquitin ligase.20 The cooperative activity of these two ubiquitin-editing domains RESULTS mediates the negative regulatory role of A20 in NF-κB A20 expression is correlated with the clinical response to signaling,20 so that the genetic deficiency of TNFAIP3 anti-PD-1 antibody treatment in melanoma patients that encodes A20 protein can result in the onset and Previously, several transcriptomic and proteomic progression of multiple autoimmune diseases by ampli- researches have demonstrated that inflammation- related fying the pro-inflammator y NF-κB signaling.21 For cancer signals and molecules were highly correlated with the pathogenesis, previous investigations emphasized on A20 therapeutic effect of anti-PD-1 immunotherapy in mela- expressed in tumor- infiltrating immune cells to clarify its noma.26–29 Of note, in a cohort of 54 melanoma patients effect on antitumor immunity. In B16 mouse melanoma receiving anti- PD-1 antibody monotherapy, we noticed tumor model, silencing of A20 in dendritic cells (DCs) that a high fraction of non-responding patients had abun- enhanced NF-κB activity followed by elevated expres- dant expressions of immune gene markers like TNFAIP3 sion of interleukin 6 (IL-6), TNF-α and IL-12, leading to (encoding A20) and TLR3 in tumor, which was associated potentiated antitumor immune responses.22 In addition, with dampened immune response.29 A20 is a primary tumor- infiltrating CD8+ T with the deletion of A20 had responsive gene of TNF-α and is documented as a nega- stronger antitumor capacity by relieving the brake on tive mediator of inflammation. For cancer pathogenesis, NF-κB signaling pathway.23 Of note, A20 is also abun- previous investigations emphasized on A20 expressed in dantly expressed in tumor cells and can directly influence tumor- infiltrating immune cells and its effect on anti- http://jitc.bmj.com/ their biological behaviors.24
Recommended publications
  • An Ontogenetic Switch Drives the Positive and Negative Selection of B Cells
    An ontogenetic switch drives the positive and negative selection of B cells Xijin Xua, Mukta Deobagkar-Lelea, Katherine R. Bulla, Tanya L. Crockforda, Adam J. Meadb, Adam P. Cribbsc, David Simsc, Consuelo Anzilottia, and Richard J. Cornalla,1 aMedical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom; bMedical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom; and cMedical Research Council, Weatherall Institute of Molecular Medicine, Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom Edited by Michael Reth, University of Freiburg, Freiburg, Germany, and approved January 6, 2020 (received for review September 3, 2019) + Developing B cells can be positively or negatively selected by self- BM HSCs increased CD5 B-1a B cell development (15), while antigens, but the mechanisms that determine these outcomes are expression of let-7b in FL pro-B cells blocked the development of incompletely understood. Here, we show that a B cell intrinsic B-1 B cells (17). These findings support the notion of hard-wired switch between positive and negative selection during ontogeny differences during ontogeny, but possibly downstream of the HSC is determined by a change from Lin28b to let-7 gene expression. commitment stage. Ectopic expression of a Lin28b transgene in murine B cells restored Several lines of evidence also suggest that B-1 B cells can un- the positive selection of autoreactive B-1 B cells by self-antigen in dergo positive selection, which is linked to their B cell receptor adult bone marrow.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Human Neonatal B Cell Immunity Differs from the Adult Version by Conserved Ig Repertoires and Rapid, but Transient Response Dynamics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245985; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Human neonatal B cell immunity differs from the adult version by conserved Ig repertoires and rapid, but transient response dynamics Bettina Budeus,1,# Artur Kibler,1,# Martina Brauser,1,# Ekaterina Homp,1,# Kevin Bronischewski,1 J. Alexander Ross,1 Andre Görgens,2,3 Marc A. Weniger,1 Josefine Dunst,4,5 Taras Kreslavsky,4,5 Symone Vitoriano da Conceição Castro,2,6 Florian Murke,2 Christopher C. Oakes,7,8 Peter Rusch,9 Dimitrios Andrikos,9 Peter Kern,9 Angela Köninger,9 Monika Lindemann,2 Patricia Johansson,10 Wiebke Hansen,11 Anna-Carin Lundell,12 Anna Rudin,12 Jan Dürig,10 Bernd Giebel,2 Daniel Hoffmann,13 Ralf Küppers,1 Marc Seifert1* 1Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany. 2Institute for Transfusion Medicine, Medical Faculty, University of Duisburg-Essen, Essen 45147, Germany. 3Department of Laboratory Medicine, Karolinska Institute, Stockholm 17177, Sweden. 4Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm 17177, Sweden. 5Center for Molecular Medicine, Karolinska Institute, Stockholm 17177, Sweden 6CAPES Foundation, Ministry of Education of Brazil, Brasília 70610-908, Brazil. 7Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA. 8Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA. 9Department of Gynecology, Medical Faculty, University of Duisburg- Essen, Essen 45147, Germany.
    [Show full text]
  • Proseek Multiplex Oncology I V296×96
    Proseek Multiplex Oncology I v296×96 Adrenomedullin (AM) P35318 Fms-related tyrosine kinase 3 ligand (Flt3L) P49771 Amphiregulin (AR) P15514 Folate receptor alpha (FR-alpha) P15328 Angiopoietin-1 receptor (TIE2) Q02763 Follistatin (FS) P19883 B-cell activating factor (BAFF) Q9Y275 Furin (FUR) P09958 Cadherin-3 (CDH3) P22223 Growth hormone (GH) P01241 Carbonic anhydrase IX (CAIX) Q16790 Growth/differentiation factor 15 (GDF-15) Q99988 Carcinoembryonic antigen (CEA) P06731 Heparin-binding EGF-like growth factor (HB-EGF) Q99075 Caspase-3 (CASP-3) P42574 Hepatocyte growth factor (HGF) P14210 C-C motif chemokine 19 (CCL19) Q99731 ICOS ligand (ICOSLG) O75144 CD40 ligand (CD40-L) P29965 Immunoglobulin-like transcript 3 (ILT-3) Q8NHJ6 C-X-C motif chemokine 5 (CXCL5 ) P42830 Integrin alpha-1 (ITGA1) P56199 C-X-C motif chemokine 9 (CXCL9 ) Q07325 Interferon gamma (IFN-gamma) P01579 C-X-C motif chemokine 10 (CXCL10 ) P02778 Interleukin-1 receptor antagonist protein (IL-1ra) P18510 C-X-C motif chemokine 11 (CXCL11 ) O14625 Interleukin-2 (IL-2) P60568 C-X-C motif chemokine 13 (CXCL13 ) O43927 Interleukin-6 (IL-6) P05231 Cyclin-dependent kinase inhibitor 1 (CDKN1A) P38936 Interleukin-6 receptor subunit alpha (IL-6RA) P08887 Cystatin-B (CSTB) P04080 Interleukin-7 (IL-7) P13232 Early activation antigen CD69 (CD69 ) Q07108 Interleukin-8 (IL-8) P10145 Epidermal growth factor receptor (EGFR ) P00533 Interleukin-12 (IL-12) P29460; P29459 Epididymal secretory protein E4 (HE4 ) Q14508 Interleukin-17 receptor B (IL-17RB ) Q9NRM6 Epithelial cell adhesion molecule
    [Show full text]
  • Targeting Costimulatory Molecules in Autoimmune Disease
    Targeting costimulatory molecules in autoimmune disease Natalie M. Edner1, Gianluca Carlesso2, James S. Rush3 and Lucy S.K. Walker1 1Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK NW3 2PF 2Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, USA 3Autoimmunity, Transplantation and Inflammation Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland *Correspondence: Professor Lucy S.K. Walker. Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK NW3 2PF. Tel: +44 (0)20 7794 0500 ext 22468. Email: [email protected]. 1 Abstract Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, and efforts have focused in particular on the CD28 family members CTLA-4 and PD-1. In autoimmunity, these same pathways can be targeted to opposite effect, to curb the over- exuberant immune response. The CTLA-4 checkpoint serves as an exemplar, whereby CTLA-4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA-4 in autoimmunity. Here we review the targeting of costimulatory molecules in autoimmune disease, focusing in particular on the CD28 family and TNFR family members. We present the state-of-the-art in costimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field. 2 The risk of autoimmune disease is an inescapable consequence of the manner in which the adaptive immune system operates. To ensure effective immunity against a diverse array of unknown pathogens, antigen recognition systems based on random gene rearrangement and mutagenesis have evolved to anticipate the antigenic universe.
    [Show full text]
  • A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-To-Mesenchymal Transition
    Published OnlineFirst September 29, 2015; DOI: 10.1158/1078-0432.CCR-15-0876 Cancer Therapy: Preclinical Clinical Cancer Research A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition Milena P. Mak1,2, Pan Tong3, Lixia Diao3, Robert J. Cardnell1, Don L. Gibbons1,4, William N. William1, Ferdinandos Skoulidis1, Edwin R. Parra5, Jaime Rodriguez-Canales5, Ignacio I.Wistuba5, John V.Heymach1, John N.Weinstein3, Kevin R.Coombes6, Jing Wang3, and Lauren Averett Byers1 Abstract Purpose: We previously demonstrated the association between EMT markers across diverse tumor types and identifies differences epithelial-to-mesenchymal transition (EMT) and drug response in in drug sensitivity and global molecular alterations at the DNA, lung cancer using an EMT signature derived in cancer cell lines. RNA, and protein levels. Among those changes associated with Given the contribution of tumor microenvironments to EMT, we EMT, pathway analysis revealed a strong correlation between EMT extended our investigation of EMT to patient tumors from 11 and immune activation. Further supervised analysis demonstrat- cancer types to develop a pan-cancer EMT signature. ed high expression of immune checkpoints and other druggable Experimental Design: Using the pan-cancer EMT signature, we immune targets, such as PD1, PD-L1, CTLA4, OX40L, and PD-L2, conducted an integrated, global analysis of genomic and prote- in tumors with the most mesenchymal EMT scores. Elevated omic profiles associated with EMT across 1,934 tumors including PD-L1 protein expression in mesenchymal tumors was confirmed breast, lung, colon, ovarian, and bladder cancers. Differences in by IHC in an independent lung cancer cohort.
    [Show full text]
  • 1 Beyond Autoantibodies: Biological Roles of Human Autoreactive B Cells in Rheumatoid Arthritis Revealed by Whole Transcriptome
    bioRxiv preprint doi: https://doi.org/10.1101/144121; this version posted June 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Beyond autoantibodies: Biological roles of human autoreactive B cells in rheumatoid arthritis revealed by whole transcriptome profiling. Ankit Mahendra1, Xingyu Yang2, Shaza Abnouf1, Daechan Park3, Sanam Soomro4, Jay RT Adolacion1, Jason Roszik5, Cristian Coarfa6, Gabrielle Romain1, Keith Wanzeck7, S. Louis Bridges Jr.7, Amita Aggarwal8, Peng Qiu2, Sandeep Krishna Agarwal9, Chandra Mohan4, Navin Varadarajan1 Author affiliations 1. Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 2. Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 3. Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea 4. Department of Biomedical Engineering, University of Houston, Houston, TX 5. Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 6. Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 7. Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 8. Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India 9. Section of Immunology, Allergy and Immunology, Department of Medicine, Baylor College of Medicine, Houston, TX Address for correspondence: Dr. Navin Varadarajan ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/144121; this version posted June 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • KRAS Mutations Are Negatively Correlated with Immunity in Colon Cancer
    www.aging-us.com AGING 2021, Vol. 13, No. 1 Research Paper KRAS mutations are negatively correlated with immunity in colon cancer Xiaorui Fu1,2,*, Xinyi Wang1,2,*, Jinzhong Duanmu1, Taiyuan Li1, Qunguang Jiang1 1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China 2Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, People's Republic of China *Equal contribution Correspondence to: Qunguang Jiang; email: [email protected] Keywords: KRAS mutations, immunity, colon cancer, tumor-infiltrating immune cells, inflammation Received: March 27, 2020 Accepted: October 8, 2020 Published: November 26, 2020 Copyright: © 2020 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The heterogeneity of colon cancer tumors suggests that therapeutics targeting specific molecules may be effective in only a few patients. It is therefore necessary to explore gene mutations in colon cancer. In this study, we obtained colon cancer samples from The Cancer Genome Atlas, and the International Cancer Genome Consortium. We evaluated the landscape of somatic mutations in colon cancer and found that KRAS mutations, particularly rs121913529, were frequent and had prognostic value. Using ESTIMATE analysis, we observed that the KRAS-mutated group had higher tumor purity, lower immune score, and lower stromal score than the wild- type group. Through single-sample Gene Set Enrichment Analysis and Gene Set Enrichment Analysis, we found that KRAS mutations negatively correlated with enrichment levels of tumor infiltrating lymphocytes, inflammation, and cytolytic activities.
    [Show full text]
  • ICOSLG Recombinant Protein Cat
    ICOSLG Recombinant Protein Cat. No.: 96-047 ICOSLG Recombinant Protein Specifications SPECIES: Human SOURCE SPECIES: HEK293 cells SEQUENCE: Asp 19 - Ser 258 FUSION TAG: His Tag TESTED APPLICATIONS: WB APPLICATIONS: This recombinant protein can be used for WB. For research use only. PREDICTED MOLECULAR 27.5 kDa WEIGHT: Properties PURITY: >95% as determined by SDS-PAGE. PHYSICAL STATE: Lyophilized BUFFER: PBS, pH7.4 Lyophilized Protein should be stored at -20˚C or lower for long term storage. Upon STORAGE CONDITIONS: reconstitution, working aliquots should be stored at -20˚C or -70˚C. Avoid repeated freeze-thaw cycles. September 23, 2021 1 https://www.prosci-inc.com/icoslg-recombinant-protein-96-047.html Additional Info OFFICIAL SYMBOL: ICOSLG ALTERNATE NAMES: ICOSLG, B7-H2, B7H2, B7RP-1, B7RP1, CD275, GL50, ICOS-L, ICOSL, LICOS, ICOS ligand ACCESSION NO.: NP_056074 GENE ID: 23308 Background and References ICOS ligand (ICOSLG) is also known as B7 homolog 2 (B7-H2), B7-related protein 1 (B7RP-1) and CD antigen CD275, which belongs to the immunoglobulin superfamily and BTN/MOG family. ICOSLG contains one Ig-like C2-type (immunoglobulin-like) domain and one Ig-like V-type (immunoglobulin-like) domain. Isoform 1 is widely expressed, while isoform 2 is detected only in lymph nodes, leukocytes and spleen. B7-H2 is ligand for the BACKGROUND: T-cell-specific cell surface receptor ICOS. B7-H2 acts as a costimulatory signal for T-cell proliferation and cytokine secretion and induces also B-cell proliferation and differentiation into plasma cells. B7-H2 could play an important role in mediating local tissue responses to inflammatory conditions, as well as in modulating the secondary immune response by co-stimulating memory T-cell function.
    [Show full text]
  • View Datasheet
    Cat No: Pr00136 Recombinant Human CTLA-4 Fc-Fusion Protein (Abatacept) Product Datasheet Sales Enquires: [email protected] Support Queries: [email protected] Tel: +44 (0) 1865 920810 Fax: +44 (0) 1865 920811 absoluteantibody.com Recombinant Human CTLA-4 Fc-Fusion Protein (Abatacept) Cat No: Pr00136 Product Summary Description: Recombinant human CTLA-4 Fc-Fusion Protein manufactured using AbAb’s Recombinant Platform Protein: Human CTLA-4 Fc domain: Human IgG1 Structure / Form: Disulfide•linked homodimer Species: Human Construct Design Note(s): The extracellular domain of CTLA-4 has been fused to the Fc domain of human IgG1. Host: HEK293 UniProt Accession Number: P16410 Alternative Description: Cytotoxic T-lymphocyte protein 4, Cytotoxic T-lymphocyte-associated antigen 4, CTLA-4, CD152; CTLA-4-Ig; CTLA-4-Fc chimera; CTLA-4 (Fc tag) Published Application(s): Tested Applications(s): Activity: Inhibitory receptor acting as a major negative regulator of T-cell responses. The affinity of CTLA4 for its natural B7 family ligands, CD80 and CD86, is considerably stronger than the affinity of their cognate stimulatory coreceptor CD28. The therapeutic antibody Ipilimumab competes for the binding site of the endogenous ligands CD80/B7-1, CD86/B7-2 and ICOSLG [Uniprot]. Product Form Purification: IMAC purified Supplied in: 0.1 mg size: PBS with preservative (0.02% Proclin 300), 1 mg size: PBS only Shipping: The product is shipped on blue ice. Upon receipt, store it immediately at the temperature recommended. Storage recommendation: Recommended storage at 4°C for up to 1 month. For longer term storage store at -20°C or -80oC in appropriately sized aliquots.
    [Show full text]
  • Table S1. List of All Proteins Included in the Proseek® Multiplex Oncology I V2 96X96 Cancer Panel
    Table S1. List of all proteins included in the Proseek® Multiplex Oncology I v2 96x96 Cancer Panel. Adrenomedullin (AM) Ezrin (EZR) Latency-associated peptide transforming growth factor beta-1 (LAP TGF-beta-1) Amphiregulin (AR) Fas antigen ligand (FasL) Angiopoietin-1 receptor (TIE2) FAS-associated death domain protein (FADD) Lipopolysaccharide-induced tumor necrosis factor- alpha factor (LITAF) B-cell activating factor (BAFF) Fms-related tyrosine kinase 3 ligand (Flt3L) Cadherin-3 (CDH3) Folate receptor alpha (FR-alpha) Macrophage colony-stimulating factor 1 (CSF-1) Carbonic anhydrase IX (CAIX) Follistatin (FS) Matrix metalloproteinase-1 (MMP-1) Carcinoembryonic antigen (CEA) Furin (FUR) Melanoma-derived growth regulatory protein (MIA) Caspase-3 (CASP-3) Growth hormone (GH) MHC class I polypeptide-related sequence A (MIC-A) C-C motif chemokine 19 (CCL19) Growth/differentiation factor 15 (GDF-15) Midkine (MK) CD40 ligand (CD40-L) Heparin-binding EGF-like growth factor (HB-EGF) Monocyte chemotactic protein 1 (MCP-1) C-X-C motif chemokine 5 (CXCL5) Hepatocyte growth factor (HGF) Myeloid differentiation primary response protein MyD88 (MYD88) C-X-C motif chemokine 9 (CXCL9) ICOS ligand (ICOSLG) C-X-C motif chemokine 10 (CXCL10) Immunoglobulin-like transcript 3 (ILT-3) NF-kappa-B essential modulator (NEMO) C-X-C motif chemokine 11 (CXCL11) Integrin alpha-1 (ITGA1) NT-3 growth factor receptor (NTRK3) C-X-C motif chemokine 13 (CXCL13) Interferon gamma (IFN-gamma) Ovarian cancer-related tumor marker CA 125 (CA-125) Cyclin-dependent kinase inhibitor
    [Show full text]