bioRxiv preprint doi: https://doi.org/10.1101/235598; this version posted December 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Molecular insights into Vibrio cholerae’s intra-amoebal 2 host-pathogen interactions 3 4 5 Charles Van der Henst1, Stéphanie Clerc2, Sandrine Stutzmann1, Candice Stoudmann1, 6 Tiziana Scrignari1, Catherine Maclachlan2, Graham Knott2 & Melanie Blokesch1* 7 1Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, 8 Station 19, EPFL-SV-UPBLO, Swiss Federal Institute of Technology Lausanne (Ecole 9 Polytechnique Fédérale de Lausanne; EPFL), CH-1015 Lausanne, Switzerland. 10 2Bioelectron Microscopy Core Facility (BioEM), School of Life Sciences, Station 19, EPFL- 11 SV-PTBIOEM, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 12 *Correspondence to:
[email protected] 13 14 Vibrio cholerae, which causes the diarrheal disease cholera, is a species of bacteria 15 commonly found in aquatic habitats. Within such environments, the bacterium must defend 16 itself against predatory protozoan grazers. Amoebae are prominent grazers, with 17 Acanthamoeba castellanii being one of the best-studied aquatic amoebae. We previously 18 showed that V. cholerae resists digestion by A. castellanii and establishes a replication niche 19 within the host’s osmoregulatory organelle. In this study, we deciphered the molecular 20 mechanisms involved in the maintenance of V. cholerae’s intra-amoebal replication niche 21 and its ultimate escape from the succumbed host.