fphys-11-00644 June 29, 2020 Time: 12:36 # 1 ORIGINAL RESEARCH published: 29 June 2020 doi: 10.3389/fphys.2020.00644 Multinuclear MRS at 7T Uncovers Exercise Driven Differences in Skeletal Muscle Energy Metabolism Between Young and Seniors Patrik Krumpolec1,2†, Radka Klepochová1†, Ivica Just1, Marjeta Tušek Jelenc1, Ivan Frollo3, Jozef Ukropec2, Barbara Ukropcová2,4, Siegfried Trattnig1,5, 1,5,6 1,3,7 Edited by: Martin Krššák * and Ladislav Valkovicˇ Bruce M. Damon, 1 High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Vanderbilt University Medical Center, Austria, 2 Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, United States Slovakia, 3 Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Reviewed by: Slovakia, 4 Faculty of Medicine, Institute of Pathophysiology, Comenius University in Bratislava, Bratislava, Slovakia, David Bendahan, 5 Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria, 6 Division of Endocrinology UMR 7339 Centre de Résonance and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria, 7 Oxford Centre Magnétique Biologique et Médicale for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom (CRMBM), France Melissa Hooijmans, 1 VU University Medical Center, Purpose: Aging is associated with changes in muscle energy metabolism. Proton ( H) Netherlands and phosphorous (31P) magnetic resonance spectroscopy (MRS) has been successfully *Correspondence: applied for non-invasive investigation of skeletal muscle metabolism. The aim of this Martin Krššák
[email protected] study was to detect differences in adenosine triphosphate (ATP) production in the aging 31 †These authors have contributed muscle by P-MRS and to identify potential changes associated with buffer capacity of equally to this work muscle carnosine by 1H-MRS.