NASA Technical Memorandum 4632 USAATCOM Technical Report 94-A-011

¢,

2-D and 3-D Oscillating Wing Aerodynamics for a Range of Angles of Attack Including Stall

R. A. Piziali

(NASA-T_-4632) 2-D ANt 3-0 N95-19119 OSCILLATING WING AEROOY_AMICS FOR A RANGE _F ANGLES GF ATTACK INCLUDING STALL (NASA. Apes Research Center) Unclas September 1994 570 p

H1/02 0037906 V National Aeronautics and US Army Space Administration Aviation and Troop Command

NASA Technical Memorandum 4632 USAATCOM Technical Report 94-A-011

2-D and 3-D Oscillating Wing Aerodynamics for a Range of Angles of Attack Including Stall

R. A. Piziali, Aeroflightdynamics Directorate, U.S. Army Aviation and Troop Command, Ames Research Center, Moffett Field, California

September 1994

National Aeronautics and US Army Space Administration Aviation and Troop Command Ames Research Center Aeroflightdynamics Directorate Moffett Field, CA 94035-1000 Moffett Field, CA 94035-1000

CONTENTS

Page

LIST OF TABLES ...... V

LIST OF FIGURES ...... vi

SUMMARY ......

INTRODUCTION ......

NOMENCLATURE ......

TEST DESCRIPTION ...... 2 Facility ...... 2 Model ...... 3 Wing ...... 3 Tip caps ...... 3 Boundary layer trip ...... 3 Location of the pressure taps ...... 3 Installation ...... 3 3-D configuration ...... 3 2-D configuration ...... 3 Oscillating drive mechanism ...... 4 Splitter plates (2-D and 3-D) ...... 4 Instrumentation ...... 4 Pressure transducers ...... 4 Angle of attack ...... 4 Oscillation frequency ...... 4 Wing temperature ...... 4 Wind tunnel operating parameters ...... 4 Data Acquisition ...... 4 Hardware ...... 4 Dynamic data acquired ...... 4 Static data acquired ...... 5 Data acquisition process ...... 5 Filtering ...... 5 Data storage ...... 5 Acquisition software ...... 5 Data Reduction ...... 5 Test Procedures ...... 6 Calibrations ...... 6 Zeros ...... 7 Pitch oscillation test ...... 7 Steady-state test ...... 7 Quasi-steady test ...... 7 2-D test ...... 7 Micro-tuft surface flow visualization ...... 7 Steady-boundary value measurements ...... 8 Dynamic pressure survey ...... 8 Steady-state wake measurements ...... 8

iii

PAGK BLANK NOT FILMFJ9 TestConditions...... 8 Primaryoperatingconditions...... 8 Pitchoscillationtest...... 8 Steady-statetest...... 8 Quasi-steadytest...... 8 Micro-tuftsurfaceflowvisualization...... 9 Steady-boundaryvaluemeasurements...... 9 Dynamicpressuresurvey...... 9 Steady-statewakemeasurements...... 9 DISCUSSION...... 9 ExperimentalAccuracy...... 9 Model...... 9 Pressuretransducers...... 9 Angleofattack...... 9 Frequency...... 9 Testconditions...... 9 Structuraldynamics...... 9 Differentialpressurescauseerrors...... 10 Sectionaerodynamiccoefficients...... 10 ObservationsandComments...... 10 10 Thechaoticnatureofstall...... 10 Nonclosureofcoefficientloops...... 10 Pitchingmomentvariationwithangleofattack...... Stalledsurfaceflowpattern...... 10 DATAPRESENTATION...... 11 BasicDataSet...... I1 11 Description...... 11 Organization...... 11 2-Dconfiguration...... 11 3-Dconfiguration...... 12 SecondaryData...... 12 SupportingData...... 12 Steady-boundaryvalues...... 12 Dynamicpressuresurvey...... 12 Micro-tuftsurfaceflowvisualization...... 13 Steady-statewakemeasurements...... REFERENCES...... 13 14 TABLES...... 19 FIGURES...... 551 APPENDIX...... 551 DataBase...... 551 Datastorage...... 551 Software...... 551 Examplesofdatadetail...... 551 LiftCoefficientfromLeadingEdgePressures...... 552 APPENDIXFIGURES......

iv LIST OF TABLES

Table Page

Test condition figure numbers ...... 14 Pressure transducers locations on wing ...... 15 Test matrix for pressure measurements ...... 17 Test matrix for micro-tuft surface flow visualization ...... 18 Residual wing twist due to manufacturing ...... 18 Pressure transducer specifications ...... 18 LIST OF FIGURES

Figure Page

19 1 Wing photos ...... 20 2 Upper surface leading edge BL-trip; installation photo ...... 20 3 Locations of pressure taps, wing supports, and splitter plates ...... 21 4 Installation photos of model in test section ...... 22 5 Photo of wire supports and wake rake installation ...... 6 Photos of wire support attachment to wing ...... 23 7 Stagnation point location versus lift coefficient ...... 24 24 8 Spanwise locations for boundary value measurements ...... 25 9 Static pressure plate for boundary value measurements ...... 26 10 Pitot-static rake for boundary value measurements ...... 27 I1 Error in C 1due to use of differential pressures ...... 12 Error in C m due to use of differential pressures ...... 27 28 13 Example of the chaotic nature of stall during pitch oscillation ...... 31 14 Example of the chaotic nature of stall at constant angle of attack ...... 32 15 Example of nonclosure of the aerodynamic coefficient loops ...... 32 16 Stall cell surface flow pattern; ot = 15 deg + 4 deg; oq = 17.6 deg 1"; v = 0.04 ...... 33 17 2-D quasi-steady data; BL-trip; 0 < ot < 20 deg ...... 36 18 2-D pitch oscillation data; BL-trip; ot = 4 + 2 deg ...... 40 19 2-D pitch oscillation data; BL-trip; cz = 9 + 2 deg ...... 44 20 2-D pitch oscillation data; BL-trip; oc= 11 __2deg ...... 48 21 2-D pitch oscillation data; BL-trip; _= 13 +_2deg ...... 52 22 2-D pitch oscillation data; BL-trip; or= 15 + 2 deg ...... 56 23 2-D pitch oscillation data; BL-trip; or= 17 +_2 deg ...... 60 24 2-D pitch oscillation data; BL-trip; cz = 4 + 4 deg ...... 63 25 2-D pitch oscillation data; BL-trip; cz=9+4deg ...... 66 26 2-D pitch oscillation data; BL-trip; _= 11 +4deg ...... 69 27 2-D pitch oscillation data; BL-trip; or= 13 +4 deg ...... 72 28 2-D pitch oscillation data; BL-trip; cz= 15 +_4 deg ...... 75 29 2-D pitch oscillation data; BL-trip; cz= 17 +4 deg ...... 78 30 2-D pitch oscillation data; BL-trip; cx= 13+5 deg ...... 8O 31 2-D pitch oscillation data; BL-trip; a = 17 + 5 deg ...... 82 32 3-D round tip quasi-steady data; BL-trip; 0 < ot < 20 deg ...... 9O 33 3-D round tip pitch oscillation data; BL-trip; ot = 4 + 2 deg ...... 100 34 3-D round tip pitch oscillation data; BL-trip; e_ = 9 +_2 deg ...... II0 35 3-D round tip pitch oscillation data; BL-trip; cz = 11 + 2 deg ...... 126 36 3-D round tip pitch oscillation data; BL-trip; _ = 13 + 2 deg ...... 136 37 3-D round tip pitch oscillation data; BL-trip; or= 15+ 2 deg ...... 144 38 3-D round tip pitch oscillation data; BL-trip; ot = 17 + 2 deg ...... 152 39 3-D round tip pitch oscillation data; BL-trip; ¢_= I +4deg ...... 158 40 3-D round tip pitch oscillation data; BL-trip; a=4+4deg ...... 164 41 3-D round tip pitch oscillation data; BL-trip; c_=9+4deg ...... 170 42 3-D round tip pitch oscillation data; BL-trip; or= 11 +4deg ...... 176 43 3-D round tip pitch oscillation data; BL-trip; or= 13 +4deg ...... 182 44 3-D round tip pitch oscillation data; BL-trip; or= 15 +4deg ...... 188 45 3-D round tip pitch oscillation data; BL-trip; o_=17+4deg ...... 194 46 3-D round tip pitch oscillation data; BL-trip; or= 13_+5 deg ...... 198 47 3-D round tip pitch oscillation data; BL-trip; ot = 17 + 5 deg ...... 202 48 3-D square tip quasi-steady data; BL-trip; 0 < cz < 20 deg ......

vi 49 3-Dsquaretippitchoscillationdata;BL-trip;_ =9+ 2 deg ...... 2O6 5O 51 3-D square tip pitch oscillation data; BL-trip; (z = 11 + 2 deg ...... 214 3-D square tip pitch oscillation data; BL-trip; _ = 13 + 2 deg ...... 222 52 3-D square tip pitch oscillation data; BL-trip; c( = 4 + 4 deg ...... 53 230 54 3-D square tip pitch oscillation data; BL-trip; o_= 9 + 4 deg ...... 236 3-D square tip pitch oscillation data; BL-trip; c¢= 11 + 4 deg ...... 242 55 2-D quasi-steady data; no BL-trip; 0 < _ < 20 deg ...... 56 248 2-D pitch oscillation data; no BL-trip; c_= 4 + 2 deg ...... 254 57 2-D pitch oscillation data; no BL-trip; _ = 9 + 2 deg ...... 58 258 2-D pitch oscillation data; no BL-trip; c( = 11 _+2 deg ...... 262 59 2-D pitch oscillation data; no BL-trip; _ = 13 + 2 deg ...... f0 266 2-D pitch oscillation data; no BL-trip; cz= 15 + 2 deg ...... 270 61 2-D pitch oscillation data; no BL-trip; _ = 17 + 2 deg ...... 62 274 2-D pitch oscillation data; no BL-trip; _ = 1 + 4 deg ...... 278 63 2-D pitch oscillation data; no BL-trip; _ = 4 + 4 deg ...... 281 64 2-D pitch oscillation data; no BL-trip; a = 9 + 4 deg ...... 284 65 2-D pitch oscillation data; no BL-trip; _ = 11 + 4 deg ...... 287 66 2-D pitch oscillation data; no BL-trip; a = 13 + 4 deg ...... 29O 67 2-D pitch oscillation data; no BL-trip; (z = 15 + 4 deg ...... 293 68 2-D pitch oscillation data; no BL-trip; o¢= 17 + 4 deg ...... 296 69 2-D pitch oscillation data; no BL-trip; c¢= 13 + 5 deg ...... 299 7O 2-D pitch oscillation data; no BL-trip; (z = 17 + 5 deg ...... 301 71 72 3-D round tip quasi-steady data; no BL-trip; 0 < o_< 20 deg ...... 304 3-D round tip pitch oscillation data; no BL-trip; _ = 4 + 2 deg ...... 310 73 74 3-D round tip pitch oscillation data; no BL-trip; ot = 9 + 2 deg ...... 318 3-D round tip pitch oscillation data; no BL-trip; o_= 11 + 2 deg ...... 326 75 3-D round tip pitch oscillation data; no BL-trip; a = 13 + 2 deg ...... 340 76 3-D round tip pitch oscillation data; no BL-trip; cz= 15 + 2 deg ...... 77 348 3-D round tip pitch oscillation data; no BL-trip; c¢ = 17 + 2 deg ...... 356 78 3-D round tip pitch oscillation data; no BL-trip; oc = 1 + 4 deg ...... 364 79 3-D round tip pitch oscillation data; no BL-trip; (x = 4 + 4 deg ...... 370 80 3-D round tip pitch oscillation data; no BL-trip; cz = 9 + 4 deg ...... 376 81 82 3-D round tip pitch oscillation data; no BL-trip; c¢= 11 + 4 deg ...... 388 3-D round tip pitch oscillation data; no BL-trip; c¢= 13 + 4 deg ...... 394 83 3-D round tip pitch oscillation data; no BL-trip; ot = 17 + 4 deg ...... 84 4O0 3-D round tip pitch oscillation data; no BL-trip; cz= 13 + 5 deg ...... 4O6 85 3-D round tip pitch oscillation data; no BL-trip; c_= 17 + 5 deg ...... 410 86 3-D square tip quasi-steady data; no BL-trip; 0 < o¢< 20 deg ...... 414 87 3-D square tip pitch oscillation data; no BL-trip; _ = 9 + 2 deg ...... 420 88 89 3-D square tip pitch oscillation data; no BL-trip; o_= 11 + 2 deg ...... 428 3-D square tip pitch oscillation data; no BL-trip; ot = 13 + 2 deg ...... 436 90 3-D square tip pitch oscillation data; no BL-trip; a = 4 + 4 deg ...... 91 444 3-D square tip pitch oscillation data; no BL-trip; o¢= 9 + 4 deg ...... 45O 92 3-D square tip pitch oscillation data; no BL-trip; o_= 11 + 4 deg ...... 456 93 Frequency sweep; no BL-trip; q = 117 psf ...... 462 94 Frequency sweep; no BL-trip; q = 60 psf ...... 478 95 Frequency sweep; with BL-trip; q = 60 psf ...... 486 96 3-D round tip quasi-steady data; with BL-trip; q = 60 ...... 97 498 3-D round tip quasi-steady data; no BL-trip; q = 60 ...... 5O2 98 2-D quasi-steady data; no BL-trip; q = 60 ...... 512 99 3-D lound tip pitch oscillation data for surface flow visualization at q = 30; BL-trip; o_= 15 + 4 deg ...... 516 100 Static pressure survey; 2-D configuration ...... 522 I01 Static pressure survey; 3-D configuration; y =0.075 ...... 524

vii 102 Staticpressuresurvey;3-Dconfiguration;y =0.479...... 526 103 Staticpressuresurvey;3-Dconfiguration;y =0.892...... 528 104 Staticpressuresurvey;3-Dconfiguration;y = 1.671...... 530 105 Staticpressuresurvey;3-Dconfiguration;_ = 1.800...... 532 106 Staticpressuresurvey;chordwisepressuredistributions...... 534 107 Stalledsurfaceflow;cycle-to-cyclevariationoftheflowpatterns; 538 a=15+4deg;v=0.04 ...... 108 Stalled ;urface flow; the instantaneous pressures corresponding to patterns c f 540 figuie 107(a); ct =15+4 deg;v --0.04 ...... 544 109 Stalled surface flow; cycle-average pattems; tz = 15 + 4 deg; v = 0.04 ...... 546 110 Stalled surface flow; cycle-average pattems; a = 15 + 4 deg; v -- 0.20 ...... 548 111 Wake survey data; a= 13 deg; X = 1.5 ...... 549 112 Wake survey data; or= 13 deg; X = 3.0 ......

552 A-1 Data view; aerodynamic coefficients versus a; cycle average ...... 553 A-2 Data view; all section pressures over cycle ...... A-3 Data view; individual chordwise pressure; any phase angle ...... 554 A-4 Dala view; all chordwise pressures;any phase angle ...... 555 556 A-5 Data v|ew; individual pressure; statistical view ...... 557 A-6 Data view; individual pressure; all cycles concatenated ...... 558 A-7 Data view; individual pressure; single cycle ...... 559 A-8 Data view; aerodynamic coefficients versus a; single cycle ......

viii 2-D AND 3-D OSCILLATING WING AERODYNAMICS FOR A RANGE OF ANGLES OF ATTACK INCLUDING STALL

R. A. Piziali* Ames Research Center

SUMMARY usually made on the basis of the local section aerody- namic coefficients over the above range of rotor blade A comprehensive experimental investigation of the operating conditions. The source of any resulting discrep- pressure distribution over a semispan wing undergoing ancies, and thus direction for improvement of the models, pitching motions representative of a helicopter rotor blade cannot be determined without the availability of the was conducted. Testing the wing in the nonrotating condi- underlying pressure distributions and time histories. tion isolates the three-dimensional (3-D) blade aerody- While there have been experimental investigations of namic and dynamic stall characteristics from the dynamic stall (e.g., refs. 1-3), most have not been of suf- complications of the rotor blade environment. The test has ficient underlying detail and scope, particularly within one generated a very complete, detailed, and accurate body of consistent data set, to validate and provide direction for data. These data include static and dynamic pressure dis- development and improvement of the aerodynamic tributions, surface flow visualizations, two-dimensional models. The test objective was to produce a data base (2-D) airfoil data from the same model and installation, adequate to satisfy this requirement over a major portion and important supporting blockage and wall pressure dis- of the multiparameter operating environment. tributions. This body of data is sufficiently comprehensive For this test, a rectangular semispan wing and a 2-D and accurate that it can be used for the validation of rotor configuration of the same installed model were used to blade aerodynamic models over a broad range of the obtain both static and dynamic pressure distributions, sur- important parameters including 3-D dynamic stall. This face flow visualizations, and supporting blockage and data report presents all the cycle-averaged lift, drag, and wall static pressure distributions. To encompass the range pitching moment coefficient data versus angle of attack of flow states encountered by rotor blades, a moderately obtained from the instantaneous pressure data for the 3-D high aspect ratio of 10 (full span) was selected for the wing and the 2-D airfoil. Also presented are examples of wing. Using this aspect ratio allowed data to be obtained the following: cycle-to-cycle variations occurring for in relatively 2-D flow of the inboard regions and in the incipient or lightly stalled conditions; 3-D surface flow highly 3-D flow existing over the outer portions and near visualizations; supporting blockage and wall pressure the tip. The same model and installation obtained the 2-D distributions; and underlying detailed pressure results. data by adding an outboard splitter plate to the semispan wing installation, assuring consistency between 2-D data and 3-D data. The 2-D data, useful in developing aerody- INTRODUCTION namic computational models, are also required to calibrate some of the semiempirical models. Dynamic stall produces a significant limitation on the These data were taken with and without an upper sur- operation and performance of rotorcraft at high speed. face leading edge boundary layer trip (BL-trip) installed. Current helicopter rotor computational simulations do not The pressures were measured at 100 locations distributed accurately predict the resulting vibratory loads of the rotor over 9 span stations. The dynamic data were taken for a blades. The aerodynamic models used in these simulations reduced frequency (v) range from 0.04 to 0.20 for several to represent rotor blades must accurately predict the sec- amplitudes of pitch oscillation (Ate) about the quarter tion aerodynamic forces and moments over a wide range chord and over the full mean angle of attack (_) range of reduced frequencies, angles of attack including deep including both the incipient and deep stall conditions. The stall, flow conditions from nearly two-dimensional (2-D) steady data presented were obtained in a quasi-steady to the highly three-dimensional (3-D) flow near the tip, manner (i.e., by very slowly changing the angle of attack) and Mach numbers from low subsonic to those approach- to obtain a very fine angle of attack resolution (256 points ing sonic. Validations of these aerodynamic models are over the full mean angle range). Steady-state data were also taken to confirm negligible unsteady effects in the *Aeroflightdynamics Directorate, U.S. Army Aviation and quasi-steady data and to document the chaotic nature of Troop Command. stall. Ratherthanattempttoapplyblockageandwindtun- detail accessible via interactive software. This data base nelwallcorrectionstotheaerodynamicdata,localstatic satisfies the objectives of this effort: first, to produce a pressuremeasurementsweremadeaboutthewingas comprehensive, consistent, accurate set of 2-D and 3-D describedin theTestProceduressection,Steady- static and dynamic data accessible in its underlying detail; BoundaryValueMeasurements.Hence,datausershave second, to provide the overall integrated results for use in theoptionofapplyingthisinformationtomakethecor- validating aerodynamic computational models while giv- rectionsoftheirchoice.Furthermore,thoseusersdevelop- ing direction for their improvement. The scope of this test ingtheoriestopredicttheaerodynamicsandemploying effort encompasses a significant portion of the multi- thesedataforcorrelationcouldusethesemeasurementsas parameter operating environment of helicopter rotor boundaryconditionsforthecomputations. blades; however, the important higher Mach number por- Theverticaldisplacement,crosssectionalshape,and tion is not included and needs to be documented in a simi- velocitydefectofthenearwingwakeweremeasuredfor lar manner. severalanglesofattacktoprovidethepotentialforvali- datingthewakeaspectsofthoseaerodynamicmodelsuti- lizingafreewake. NOMENCLATURE Theinstantaneousstalleduppersurfaceflowpatterns wereobtained,alongwiththecorrespondinginstanta- c wing chord length, feet neouspressuredistributions,atequallyspacedpitchcycle Cd drag coefficient, section drag/cq phaseanglesbytheuseof micro-tuftsforafewoperating C! lift coefficient, section lift/cq conditions.Cycle-averaged flow patterns were also taken Cm moment coefficient, section moment/cq at the same phase angles. These results are useful in Cp pressure coefficient, pressure/q Mn Mach number establishing the extent of the separated region and its free stream dynamic pressure, variation through the pitch cycle. They also document the q chaotic variations of the separated surface flow about the lpv2, psf underlying cycle-averaged pattern and can be used to 2 Re Reynolds number validate those higher ordered models yielding similar V test section freestream velocity, fps patterns and variations. distance from leading edge, chord This report presents a description of the test, observa- lengths tions and comments concerning the data, and a com- X distance aft from wing trailing edge, pendium of all the reduced test results presented as lift chord lengths (C |), drag (C d) and pitching moment (Cm) coefficients distance outward from wing root, span versus angle of attack. The list of figures and table 1 serve Y as an index of these results as described in the Data Pre- lengths sentation section of the report. Symbols The Test Description section of this report contains a very detailed documentation of the test to aid in answering (x wing mean angle of attack, deg any questions arising about the data and their reliability. Acx The Observations and Comments section presents exam- pitch oscillation amplitude, deg wing instantaneous angle of attack, deg ples of the cycle-to-cycle variations observed to occur for P air density, slugs/ft 3 incipient or lightly stalled conditions. These demonstrate O3 pitch oscillation frequency, radians/sec the chaotic nature of the separated flow (analogous to V reduced frequency, _c/2V fixed wing stall buffeting) over a partially stalled wing or airfoil for both the steady-state and dynamic pitch condi- tions. This section also discusses some apparent anoma- TEST DESCRIPTION lies observed in the data. Presented in the Basic Data Set are the cycle-averaged lift; drag, and pitching moment Facility coefficient data versus angle of attack obtained for each span station of the 3-D wing and for the 2-D airfoil. The test was conducted in the U.S. Army Aeroflight- The appendix describes the archived data base from dynamics Directorate 7- by 10-Foot Subsonic Wind Tun- which the reduced results presented in this report were nel at the NASA Ames Research Center. obtained. It also contains examples of the underlying data Model locations where the absolute pressures were of less impor- tance. Thus, 10 differential pressure transducers were Wing- The model is a 60.0 in. semispan wing with a used at the inboard 25% span station and at the intermedi- 12.0 in. chord (c), a NACA 0015 airfoil section, and zero ate 80% and 90% span stations. Twenty absolute pressure twist. This wing served as the model for both the 2-D and transducers were used at the midspan 47.5% station that 3-D testing as described in the installation subsection also served as the 2-D data station. The remaining below. A single piece, machined out of aluminum, and an 50 absolute pressure transducers were distributed over the upper surface access cover plate (fig. 1) comprise the 5 equally spaced span stations in the tip region (34 located wing and shaft. The wing was designed to have its lowest on the upper surface and 16 on the lower surface) to natural frequency well above the highest test frequency of define the pressure field in this highly 3-D flow region. 20 Hz, assuring that the structural dynamic response On the upper surface of this tip region, 30 of these trans- would be negligible. To attain this objective, a 15% thick ducers were positioned to provide spanwise slices of this airfoil for increased torsional stiffness and outboard wire pressure field at 6 chordwise positions, thereby revealing supports for increased bending stiffness were used. The the chordwise development of the tip vortex spanwise measured fundamental natural frequency of the wing pressure field. The remaining 4 upper surface transducers installed in the test section is 58.1 Hz for a torsion vibra- were distributed at the 98.6% span station to fill in the tion mode with some bending. definition of the chordwise pressure distribution at that tip Tip caps- The wing was tested with a round tip cap span location. A similar strategy was used for the and with a square tip cap. Each of these tip caps extend 16 lower surface transducers in this region. The locations beyond the 60.0 in. semispan of the wing. The round tip of all the pressure transducers are presented in table 2, and cap is 1/2 of a body of revolution formed by rotating the these locations are shown on the wing outline in figure 3. airfoil section profile about its chordline so that in a front elevation view this tip cap has a semicircular profile. The square tip cap is a simple spanwise extension (by 0.62 in.) Installation of the wing airfoil; its projected planform area is equal to that of the round tip cap (i.e., 7.40 in. 2) and its front eleva- The installation of the model for the 2-D and 3-D tion view has a rectangular profile. testing is shown in the photos of figures 4-6 and Boundary layer trip (BL-trip)- The wing was described in the following sections. tested with and without a leading edge upper surface 3-D configuration- The wing was mounted horizon- BL-trip to document the effect of a higher effective tally in the test section by cantilevering it from the combi- Reynolds number. The BL-trip consisted of a spanwise nation of test section wall and wall boundary layer splitter row of triangular shaped pieces of tape, 0.003 in. thick- plate, shown in figure 4(a). Use of the splitter plate ness. The triangular pieces, each side approximately eliminates the wind tunnel wall boundary layer. To 3/32 in. long, were spaced at equal intervals of about increase the installed bending frequency of the wing, an !/8 in. and located 3/16 in. (measured along the upper additional wing support was used consisting of a crossed surface) above the leading edge (i.e., at about 0.5% of the pair of floor to ceiling streamlined aircraft flying wires, chord) as shown in figure 2. This trip was experimentally shown in figures 4(a) and 5. These wire supports were determined by surface oil flow studies to be the minimum attached to the wing quarter chord at the 70% span station disturbance required to assure consistent laminar to turbu- via a pitch bearing inside the wing, shown in figure 6. The lent transition of the boundary layer and elimination of the supports were installed at 20 deg from the vertical and had laminar leading edge bubble over the angle of attack an elliptical cross section measuring 0.087 in. thick and range of the test. 0.348 in. long. The support wire attachment to the wing Location of the pressure taps- The wing was was sealed to prevent leakage between the upper and instrumented with 100 pressure transducers located at lower surfaces and had a sliding fairing flush with the nine spanwise locations selected to measure (a) the wing surface. The cross section of the streamlined wires spanwise load distribution, (b) the pressure distribution caused the only disturbance to the flow. Surface oil flow about the highly 3-D tip region, and (c) the pressure dis- observations provided verification. A pressure seal con- tribution of the relatively 2-D inboard region of the 3-D sisting of a 22 in. circular disc attached to the wing root wing. The locations of the pressure transducers also and centered on the quarter chord with a sliding seal allowed the wing model to be used to obtain 2-D airfoil between the disc and the splitter plate prevented leakage data. at the junction between the wing and the splitter plate. To maximize the amount of pressure information col- 2-D configuration- A splitter plate and wing seal lected within a limited number of available data channels, identical to the wall splitter plate were added to the 3-D differential pressure transducers were used at three span installation at the wing 95% span location to obtain the 2-Dconfiguration(fig.4(b)).Thisadditionallowedthe shaft encoder installed on the motor/flywheel shaft of the 20absolutepressuretransducerslocatedatthe47.5% pitch drive system. spanstationinthe3-Dconfiguration,nowlocatedatthe Wing temperature- Thermocouples were used to 50%spanstationin the2-Dconfiguration,tofunctionas measure the temperature of the wing at span locations theprimary2-Ddatastation. 0.25 and 0.70. Oscillatingdrive mechanism- The pitch drive sys- Wind tunnel operating parameters- Test section tem provides sinusoidal pitching motion about the quarter static and total pressures were obtained from a pitot-static chord with less than 1.0% kinematic distortion at the sec- probe located 34 in. ahead of the wing leading edge, 36 in. ond harmonic. The pitch oscillation of the wing was gen- outboard of the wing tip, and 28 in. above the wing quar- erated by a crank mechanism consisting of a variable ter chord. Wind tunnel "standard" pressure sensing system (its speed feedback-controlled DC motor driving a flywheel and crank pin (with an adjustable offset for setting the calibration traceable to the National Bureau of Standards) oscillating amplitude), a connecting rod, and a pitch arm measured the test section static pressure. The vibrating attached to the wing shaft at the quarter chord. Thus, the quartz crystal absolute pressure transducer system with frequency, the amplitude of oscillation, and the mean digital output and a built-in microprocessor converts the angle were all infinitely adjustable within their design frequency of vibration to units of pressure. Digital output ranges. The amplitude of oscillation was adjustable from was converted to analog by a D/A converter, enabling the 0.0 to 10.0 deg and mean angle adjustable to accommo- static pressure to be recorded as instantaneous dynamic date instantaneous angles (txi) over a 39 deg range from data. -12 deg to +27 deg. The test section dynamic pressure was determined from the difference between the static and total pressures Splitter plates (2-D and 3-D)-- The wall splitter plate was installed 1 foot from the test section wall. It was using a capacitive type differential pressure transducer. 0.5 in. thick, with a NACA 0012 leading edge, and The test section total temperature was obtained with a extended from the floor to the ceiling. The splitter plate thermocouple located in the wind tunnel settling chamber. extended from 3 chords downstream of the wing trailing edge to 1-!/2 chords upstream of the wing leading edge. Identical to the wall splitter plate and installed at the wing Data Acquisition 95% span location, the outboard splitter plate was used to Hardware- The automated data acquisition system convert the 3-D configuration to the 2-D configuration. had 64 channels for analog dynamic data and 6 channels for static data. Each dynamic channel consisted of signal Instrumentation conditioning, a sample and hold amplifier, and an analog to digital converter, all under the control of a large main- Pressure transducers- State-of-the-art miniature frame digital computer. A 1 and 256 pulse/rev shaft strain gage temperature-compensated differential pressure encoder, mounted on the motor/flywheel shaft of the wing transducers with a pressure range of +10 psid were used. pitch drive system, supplied the timing and rate for the For the absolute pressure measurements, the reference acquisition of the dynamic data. Each of the static data side of these differential pressure transducers were con- channels utilized an off-the-shelf individual transducer-to- nected to the wind tunnel static pressure. The design natu- computer interface module that applied the appropriate calibration factor and supplied a digital output. The test ral frequency of the installed pressure transducers, with wing orifice diameters of 0.020 in., was 15 kHz. engineer controlled this data acquisition system with Three of the transducers failed during the test and menu-driven software via a computer terminal. have been deleted from the data results. Two of the failed Dynamic data acquired- The dynamic data, consist- transducers were at span location 0.475 and one was at ing of the 100 pressure transducers on the wing, had to be span location 0.966. These are noted by an asterisk in acquired in 2 groups (A and B as described under Data table 2. Acquisition Process) of 50 channels plus 2 duplicate pres- sure channels. In addition to these 52 channels of wing Angle of attack- The wing angle of attack was mea- sured at the wing root by a custom designed mechanism dynamic pressure data, each group also contained the fol- utilizing a "fast linear displacement transducer" installed lowing dynamic data: in the splitter plate behind the wing root pressure seal Test section static pressure disc. Test section dynamic pressure Oscillation frequency- Frequency of oscillation was Angle of attack obtained from the pulse rate output of the data acquisition Torsion strain gage at wing root Torsion strain gage on wing pitch shaft Astraingageoneachofthefoursupportwires Quasi-steady test: These data points are actually Staticdata acquired- The static data consisted of pitch oscillation test data where the oscillation frequency the following data: is set very low, at 1 cycle per minute, and generally only Shaft encoder pulse rate for frequency evaluation I cycle of data is acquired. A few quasi-steady data points Test section total temperature were acquired for 2 cycles to access repeatability. This Temperature of the wing at 25% span allows the acquisition of instantaneous pressure data at Temperature of the wing at 70% span 256 closely spaced angles of attack over the range from 0 48 scani-valve static pressures from wake or walls to 20 deg. Group A/B data switch position Filtering- All the dynamic data passed through low Data acquisition process- Each data run, consisting pass filters set at 500 Hz for the pitch oscillation test data of a number of data points, is preceded and followed by and 10 Hz for the quasi-steady test and steady-state test the acquisition of wind-off "zeros" for all channels. data. A data point consists of a number of repeated data Data storage- The raw data acquired for each data acquisition sequences allowing for evaluation of average point were stored on optical disks as a collection of indi- results. Each individual data acquisition sequence begins vidual unformatted files. These raw data are the archived with the static data, follows with the dynamic data, and data base (described in the appendix) from which the concludes with the static data again. Thus, a data point reduced data presented in the report were derived. The with 20 repeats (or 20 cycles, in the case of pitching data) reduced data of this report and the cycle-averaged pres- has 20 sets of dynamic data and 21 sets of static data. sures from which they were obtained are also archived Because there were more data channels to acquire with the raw data. than the 64 available data acquisition channels, the Acquisition software- The menu-driven data acqui- dynamic data for each data acquisition sequence were sition software controlled the data acquisition process, the acquired in 2 sequential groups, A and B. The group-A calibration of the pressure transducers, and the recording data consist of all 50 pressure transducers at the spanwise of zeros and gain calibrations. This software also allowed locations of 0.25, 0.475, 0.80, and 0.90. In addition, the the test engineer to reduce and plot online the results of duplication of 2 transducers from the group-B data serves the current data point at any level of detail desired prior to as a check of consistency between these 2 groups of data. accepting it or to view any prior data point in a similar The B-group data consist of the remaining 50 pressure manner. For example, it is possible to plot anything from transducers located in the tip region (outboard from span one of the single repeat cycles of an individual data chan- location 0.957). The duplication of 2 transducers from the nel to the average, over all cycles, of the integrated aero- group-A data serves as an additional consistency check dynamic coefficients at each spanwise location. between the groups of data. Thus, 4 duplicate channels exist, 2 in each group, to check the consistency of the 2 data groups, for a total of 52 wing dynamic pressure Data Reduction channels in each group. Three types of tests were conducted with the 2-D and The zero drift with temperature for some of the pres- 3-D configurations of the model, the pitch oscillation test, sure transducers exceeded the transducer specifications. the quasi-steady test, and the steady-state test. The data Therefore, a linear interpolation is utilized to apply a acquisition process for each is as follows. temperature correction to all the transducer zeros by using Pitch oscillation test: For these data points, 20 cycles the model temperature at each data point, the beginning (i.e., 20 repeated data sequences) were acquired. Each of and end zeros, and the model temperature at each zero. these repeats is I cycle of 256 samples of dynamic data. This procedure minimizes the zero drift problem. The Because the dynamic data are acquired in 2 groups as instantaneous pressure coefficients, Cp, are then evaluated described above, the cycles of data are not contiguous, but using the instantaneous value of the dynamic pressure, q, rather a collection of individual cycles automatically prior to computing their mean value and standard acquired from the continuous stream of data. The sam- deviation at each phase angle. pling rate is proportional to the frequency of oscillation A few data points evidenced noise spikes and/or for the pitch oscillation test data because the number of 60 Hz noise in the chordwise integrated results. For those samples per cycle is constant (i.e., 256). data points with noise spikes, the instantaneous Cp time Steady-state test: These data points consist of history data were scanned and stripped of these spurious 3 repeated data sequences of 12 sec duration per spikes by a procedure developed to discriminate these sequence. Each sequence contains 256 samples, resulting spikes from the actual data. A discrete digital filter in 36 seconds of data and a sampling rate of about scanned and stripped the Cp time history data of those 21 samples per sec. data points with 60 Hz noise. This noise processing is a datareductionoptional procedure that does not alter the reduction. The procedures specific to each type of calibra- raw pressure data in the data base files. tion are described below. A specially developed interpolation integrates the Data channel gains: The data channel gains were chordwise distribution of Cp. This procedure is carried out calibrated by shorting the inputs to all channels and in an airfoil surface coordinate system divided into three applying a precisely measured voltage to all the inputs. regions: the leading edge region, and a region for each Performed periodically, this calibration provided the first surface aft of the leading edge (i.e., the upper and lower step in the wing pressure transducer calibration procedure. surfaces). The gains calibration used a tolerance of 1% change. For the leading edge region, the interpolation utilizes Wing pressure transducers: A gains calibration two basis functions which naturally span the space of always preceded calibration of the wing pressure trans- solutions for the leading edge problem. They are derived ducers. The pressure transducers were calibrated in four from a second order airfoil theory (ref. 4) uniformly valid groups. One group consisted of all the absolute pressure at the stagnation point and the suction peak. This leading transducers calibrated by applying pressure to the mani- fold of the common reference side. The remaining three edge fit procedure implicitly locates the stagnation point and assures that the fit of Cp always passes through the groups consisted of three span stations with differential value of 1.0 at the stagnation point. Aft of the leading pressure transducers. All the differential transducers at edge region on each surface, this procedure utilizes a each span station were calibrated as a group. A fixture attached to the wing, enclosing all the pressure orifices at spline function with the constraint that it match the ampli- tude and slope of the leading edge fit at the splice points. that span station, applied the necessary pressure. These splice points are positioned relative to and aft of the Incrementally stepping the applied pressure through a stagnation point and pressure peak obtained from the lead- full cycle over the range of-6 psi to +6 psi provided ing edge fit. The leading edge fit procedure only uses the transducer calibration in each group. The pressure was upper and lower surface data points within 2.5% of the measured by the wind tunnel "standard" pressure trans- ducer used for the measurement of the test section static leading edge. At the trailing edge, the upper surface mea- sured pressures at the two most aft chord locations are pressure. The output of all the transducers in the group extrapolated to the trailing edge and used as the trailing was recorded and plotted versus the calibration pressure edge value for both the upper and lower surfaces. This along with the linear regression used to determine the calibration factors. The change tolerance used for these trailing edge procedure was used because the upper sur- face pressure transducers were located close to the trailing pressure calibrations was 1%. Wing angle of attack: The wing angle of attack was edge. As evidence of the consistency of the interpolation calibrated from -12 deg to +27 deg in incremental steps of procedure for the leading edge pressures, the resulting approximately 2 deg for both increasing and decreasing implicitly located stagnation point location versus the angle of attack. An inclinometer on an airfoil contoured fixture, mounted at wing 20% span location, measured the section CI is plotted in figure 7 along with a linear regres- sion to these results. These results are for the sequence of angle of attack at each step. Operators manually recorded 2-D steady data points obtained below stall over the angle the measured angle and the output voltage for each cali- of attack range from -11 deg to +13 deg. This interpola- bration step. To confirm the results, calibration was repeated once tion procedure yields a smooth linear variation of the stagnation with C 1- The stagnation point location is given prior to the test. Thereafter, a three point calibration check in the airfoil surface coordinate system of the fit was performed periodically at the positive and negative angle of attack limit stops and at +7.50 deg set by use of a procedure. stop-block inserted into the pitch drive mechanism. Test section static pressure: Static pressure, mea- Test Procedures sured by the wind tunnel "standard" with calibration traceable to the National Bureau of Standards, was not Calibrations-- The transducer calibrations were peri- calibrated per se. However, the calibration factor for this odically performed and checked via menu-driven soft- data acquisition channel resulted from a linear regression ware. The software compared the new results for all of the digital output of this "standard" transducer versus channels with previous results and flagged those data the digital output of the data channel for incremental steps channels whenever a change in the calibration factor of about 1 psi over the range of 0.0 to 15.0 psi. Through- out the test, a two point calibration check was performed exceeded a prescribed tolerance. Results could then be corrected or accepted. Upon acceptance, the new calibra- periodically by using the current atmospheric pressure and the transducer zero. tions were appended to a master file and recorded in the header of each subsequent data point file for use in data Testsectiondynamic pressure: Test section Quasi-steady test- The relatively long time required dynamic pressure calibrations spanned the range from 0.0 to cover the 20 deg angle of attack range during the to 1.0 psi in steps of about 0.1 psi. A linear regression of steady-state test created a concern about the potential for the digital output of the standard transducers versus the pressure transducer temperature drift. Therefore, the fol- digital output of the data channel provided the channel lowing procedure was tried and found to quickly acquire calibrations. This calibration was repeated once during the pseudo-steady-state data while minimizing the potential test. temperature drift effects. This test procedure also yields a Zeros- Prior to each data run, data channel beginning finer angle of attack resolution. It is similar to the pitch zeros were taken under computer control via the menu- oscillation test, except that it is conducted with a very low driven software. The software compared the new results frequency oscillation and an angle of attack range from 0 for all channels with the previous results and flagged to 20 deg (i.e., the angle of attack and the amplitude were those data channels where the change exceeded a pre- both set at I0 deg). Generally, only 1 cycle of data was scribed tolerance. Results could then be corrected or acquired for each data point, yielding data at 256 instanta- accepted. The new accepted zeros, appended to a master neous angles of attack (i.e., 128 each for increasing and file and recorded in the header of each subsequent data decreasing angles of attack). A few quasi-steady test data point file, were used for data reduction. A tolerance of 1% points, taken at a frequency of 1/2 cycle per minute, con- was used for the zeros. firmed that the frequency of I cycle per minute was low Temperature sensitivity of some of the pressure enough to reduce unsteady effects to an imperceptible transducers required stabilizing the model temperature level. prior to taking the zeros by running the wind tunnel at the 2-D test- The 2-D testing only involves a configura- test dynamic pressure and monitoring the temperature of tion change. Thus, the test procedures for each of the the model. When model temperature approached equilib- above three test types are unchanged. rium, the tunnel speed was quickly brought down to zero, Micro-tuft surface flow visualization- About the zeros taken, the speed resumed, and the data acquisi- 1500 micro-tufts (1/2 in. long) were installed on the entire tion commenced. upper surface of the wing using a rectangular grid spacing End zeros were recorded to enable the data reduction of 1/2 in. The tufts were of 0.0019 in. diameter monofila- correction for any possible zero drift occurring during the ment nylon treated to fluoresce under ultraviolet illumina- run. This required immediately taking zeros at the end of tion. Two high intensity (2,000 joule) studio xenon strobe a run and recording them via the file header of a dummy lamps, mounted above the wing outside the test section, data point taken at zero wind speed. illuminated the tufts. To photograph the model, a 70 mm Pitch oscillation test- Changing the mean angle of remotely operated camera using high speed black and attack and the oscillating amplitude required mechanical white film was mounted above the wing outside the test adjustments to the pitch drive mechanism. These were section. The strobe lamps were fitted with narrow-band- manually set with the wind off prior to a data run. Begin- pass filters to allow only ultraviolet wavelengths, L, of ning run zeros were then acquired, the wind tunnel about 360 nm. A low-pass camera filter blocked the brought up to test speed, and 20 cycles of data acquired reflected wavelengths below about 430 nm. In other via the menu-driven software for each frequency of oscil- words, _, = 360 nm illumination caused fluorescence in lation. The wind tunnel was shut down and run end zeros the visible range, and any illumination reflected from the recorded via a dummy data point. The mean angle of model and background below 3, = 430 nm was blocked. attack was changed and the above run process repeated Thus, with the test section dark, the strobe illuminated for each mean angle of the test matrix for the fixed oscil- tufts photographed white on a totally black background. lating amplitude. The strobe lamps, camera, and data acquisition sys- Steady-state test- These data were obtained using tem were synchronized and triggered by an electronic the 3-D configuration with the round tip and the 2-D con- controller circuit by the I and 256 per rev data acquisition figuration with and without the leading BL-trip. The shaft encoder pulses. With this system, the test engineer steady-state test did not employ the square tip 3-D config- set the desired phase angle (pulse number) within the uration. The fixed angles of attack were set using the pitch periodic pitching cycle and initiated the process via the oscillation mechanism to cover a 20 deg angle of attack controller start button. The controller opened the camera range for each run. An electrically operated brake on the shutter and, at the selected pulse number following the pitch oscillation mechanism held the pitch setting while next one-per-rev pulse, triggered the strobe units and data data were acquired. At each angle of attack, 36 sec of data acquisition system and closed the shutter. Thus, a photo- were acquired in three 12 sec repeats of 256 samples. graph recorded the upper surface tuft flow pattern, and the Beginning and end zeros were acquired for each run. data system acquired the corresponding instantaneous pressure distribution at the selected phase angle. A group of these visualization runs was made at the 10 in. from each splitter plate. These measurement end of the test after removing the data acquisition system. locations are all 9.5 in. ahead of the wing leading edge. For these runs there are no pressure data. To obtain a The dynamic pressure from the traverse probe, along with the test section dynamic pressure and the steady-state photo of the average tuft pattern rather than the instanta= neous pattern at each phase angle, another group of wing pressure distribution, were recorded as one sequence visualization runs was made where the exposure was of dynamic data consisting of 256 samples over a 12 sec reduced by a factor of 30 (by reducing the lens aperture) period. and then 30 repeat exposures were made on a single frame Steady-state wake measurements- This test used a wake rake with 14 total head probes and 3 static pressure of film for each phase angle. Steady-boundary value measurements- For static probes equally spaced vertically over about 2-1/4 in. (as angles of attack of 0.0 deg, 7.5 deg, 13 deg, and 15 deg, seen in fig. 5). This rake was mounted on a traverse mechanism downstream of the 3-D wing configuration. the static pressure distribution was measured around the The measurements were made for 3 static angles of attack 2-£) and 3-D wing configurations (with the BL-trip installed) on a rectangular boundary in vertical planes at 1.5 and 3.0 chord lengths aft of the wing trailing edge aligned with the flow. The test section dynamic pressure and at spanwise locations of 25%, 47%, and 80%. The was also measured on the fore and aft segments of this rake was centered vertically on the wake defect by boundary. These measurements, made at midspan for the observing the pressure pattern on a manometer board. 2-D configuration and at four spanwise locations for the These pressures were measured using the scani-valve 3-D configuration (fig. 8), used the static pressure plates system and recorded by the data acquisition system as static data at each scani-valve step, following a 1.5 sec (fig. 9) on the ceiling and floor for top and bottom of the measurement boundary and pitot-static rakes (fig. 10) for delay to allow for pressure equalization. the fore and aft segments of the boundaries. For the 3-D configuration, the static pressure was also measured along Test Conditions the wall centerline opposite the wing tip. This was accomplished by moving the ceiling static pressure plate to the wall, removing the front pitot-static rake, and leav- Primary operating conditions-- The primary operating condition for the test was a nominal Reynolds ing the rear rake and floor pressure plate in span position number of 2.0 x 106 yielding the following corresponding number four. Physical interference of the front pitot-static nominal values: rake assembly with the floor and ceiling static pressure Test section wind speed _ 313 fps plates required this assembly to be offset five inches to Dynamic pressure - 117 psf one side. These measurements were not made simultaneously Mach number _, 0.278 Pitch oscillation test- Data for this test were at all span stations. Rather, the above apparatus was acquired at the primary operating conditions with and moved spanwise from station to station and the computer without the leading edge BL-trip for the 2-D data acquisition process initiated after setting each of four configuration, and with the round and the square tip caps steady angles of attack. The steady-state wing pressure distribution was recorded as one sequence of dynamic for the 3-D wing configuration. This test covers a range of data consisting of 256 samples over a 12 sec period. The mean angles of attack up through stall and includes several amplitudes and frequencies of oscillation. Table 3 pressureson the measurement boundary were taken with summarizes the test matrix for these data. two scani-valve systems and recorded by the data Steady-state test- This test was conducted at the acquisition system as static data at each scani-valve step, primary operating conditions with and without the leading following a 1.5 sec delay to allow for pressure edge BL-trip for the 2-D configuration and the 3-D equalization. configuration (round tip cap). This test covers the angle of Dynamic pressure survey- This investigation attack range from -11 deg to +20 deg with 2 overlapping measured the dynamic pressure in front of the 2-D and runs. One run covered the range from -11 deg to +9 deg, 3-D configurations for static angles of attack using a pitot- and a second run, the range from 0 to +20 deg. The angle static probe installed on a traverse mechanism. Three measurement locations were 21 in. above the wing, of attack range was covered in 1 deg increments, except in the vicinity of stall (12 deg to 17 deg), where an midway between the wing and the ceiling, and 3 were 21 in. below the wing, midway between the wing and the increment of 1/2 deg was used. Quasi-steady test- Data for this test were acquired at floor. The spanwise probe locations were at midspan and 18.5 in. either side of the 3-1:) configuration midspan. For the primary operating conditions with and without the the 2-D configuration, the,se locations are midspen and leading edge BL-trip for the 2-D configuration, and with the round and the square tip caps for the 3-D wing configuration.Afewsecondaryquasi-steadytestdata was found to have a very small positive twist (leading pointsweretakenatareducednominalReynoldsnumber edge up), outboard of span station 0.30 (maximum of of 1.4× 106, yielding the following corresponding nomi- 0.065 deg at span station 0.51 and a distribution as shown nal values: in table 5). Test section wind speed ---230 fps Pressure transducers- Table 6 presents specifica- Dynamic pressure = 60 psf tions for the pressure transducers. As described under Test Mach number = 0.2 Procedures, the tolerance used for the transducer calibra- Oscillation frequency for the quasi-steady test was tions and zeros was 1%. However, the zero drift with 1 cycle per minute (reduced frequency, v = 0.00017). The temperature for some of the pressure transducers mean angle of attack and the amplitude were set at 10 deg exceeded specifications. As described in the Data Reduc- to acquire data over the angle of attack range from 0 to tion section, a correction procedure minimized this 20 deg. problem. Micro-tuft surface flow visualization- Visualiza- Angle of attack- The mechanism for measuring the tions were made for both the pitch oscillation test and angle of attack had a resolution of better than 0.04 deg steady-state test, but only with the 3-D round tip configu- over a 39 deg angle of attack range from -I 2 deg to ration. They covered a range of free stream speeds and +27 deg. The kinematics of this mechanism produced a reduced frequencies. Clear tuft patterns were difficult to slightly nonlinear output. The output had a maximum obtain at the primary test condition (q = 117 psf); thus, deviation of 0.26 deg from a linear regression to the cali- most visualizations were obtained at lower speeds. bration results over the 39 deg range. The deviation was Table 4 summarizes the conditions covered. corrected by applying a seventh order polynomial calibra- Steady-boundary value measurements- These tion curve fit to these results. This procedure reduced the measurements were made at the primary operating condi- maximum resulting deviation to 0.03 deg over this 39 deg tions with the 2-D configuration and the 3-D configura- operating range. tion (round tip cap). Both configurations were tested only Based on the above discussion, the angle of attack with the leading edge BL-trip. These measurements were measurement appears to have been taken to an accuracy made with the wing angle of attack set at 0.0 deg, 7.5 deg, of about 1.0 to 1.5%. However, CI does not always equal 13.0 deg, and 15.0 deg for each configuration. zero exactly at an angle of attack of zero as it should for a Dynamic pressure survey- This survey was made at symmetrical airfoil. In some cases, it deviates by as much the primary operating conditions with the 2-D configura- as 0.3 deg. Investigation of this problem led to the conclu- tion and the 3-D configuration (round tip cap). The 2-D sion that it is, in part, due to the unsteadiness of the flow configuration was tested with and without the leading in the wind tunnel. Thus, the instantaneous angle of attack edge BL-trip; the 3-D configuration was tested only with may have a deviation of as much as 0.3 deg. However, the trip. These measurements were made with the wing averaged values should be somewhat better. angle of attack set at 0.0 deg and 13.0 deg for each Frequency- Frequency of oscillation was obtained configuration. from the 256 per rev pulse output of the shaft encoder by Steady-state wake measurements- These measure- an off-the-shelf transducer-to-computer interface module ments were made at the primary operating conditions having a resolution of 0.01 Hz and an accuracy of using the 3-D round tip cap configuration without the _+0.01%. leading edge BL-trip. They were taken with the wing Test conditions- The wind tunnel "standard" pres- angle of attack set at 5.0, 10.0, and 13.0 deg. sure measuring system used to measure the test section static pressure has an accuracy of 0.015% full scale and a repeatability of 0.005% full scale with a calibration trace- DISCUSSION able to the Bureau of Standards. The capacitive type dif- ferential pressure transducer measured the test section Experimental Accuracy dynamic pressure. It was calibrated against the wind tun- nel standard pressure sensing system and has a linearity of Although unattainable, +1% accuracy in each of the 0.5% full scale and a repeatability of 0.01% full scale. measured quantities was sought. In so doing it was Structural dynamics- Investigation of the torsional believed that the attained accuracy would be the best dynamic response of the wing over the test frequency possible under the circumstances. Following is a brief dis- range used a state-of-the art video-based motion mea- cussion of equipment accuracy and an estimate of the surement system. The investigation confirmed that the accuracy of the resulting measurements. response was closely approximated by a undamped sec- Model- The machining tolerance for the airfoil sec- ond order system. The ratio of the tip motion to the root tion was _+0.002 in. The wing, designed to have zero twist, motion varies as the transmissibility, 1/(1 - 1_,2), where istheforcingfrequencyratio.If necessaryforany from the average when in the minority, i.e., non- application,thisinformationcanbeusedtoaccountfor representative. A computational procedure precisely thespanwisedistributionofthesmalldynamicresponse. modeling the stalling wing should, of course, also repro- Forexample,themeasuredfundamentalnaturalfrequency duce this variability as well as the mean. was58.1Hz.Thus,atthehighesttestfrequencyof20Hz, Examples of the chaotic nature of stall for the steady- wherethedynamicresponseisthemaximum(worstcase), state and the oscillating pitch conditions are selected from thetransmissibilityhasavalueof 1.13(i.e.,thetippitch- the Basic Data Set and the underlying detail data. ingamplitudewillbe13%greaterthantherootampli- Figure 13(a) shows the cycle-averaged section coefficient tude).Foranoscillatingpitchamplitudeof2deg,thetip results for the wing pitching about a mean angle of 13 deg amplitudewillbe2.26deg.Thespanwisedistributionof with an amplitude of 4 deg at a reduced frequency of 0.04. thisstructuraltorsionalresponsecanbecloselyapproxi- Viewing the pressure on the airfoil upper surface at chord matedbythefirstcantilevertorsionalmodeshapeofa station 0.275 (a concatenation of the individual repeat uniformbeam(i.e.,aquartersinewave). cycle time histories) reveals the cycle-to-cycle variations Differentialpressurescauseerrors-Useofdiffer- for this case (fig. 13(b)). A closer look at the pressure entialpressurestoobtainthesectionaerodynamiccoeffi- time histories for repeat cycles numbers 7 and 12 is pre- cientsintroducesanerrorin thelift (C1)andmoment(Cm) sented in figure 13(c). Comparing the section coefficient coefficients.Theabsenceofthechordwisecomponentof results for these two selected repeat cycles reveals thesurfacepressurescausesthiserror.Theerrorwas (fig. 13(d)) the relatively extreme variation concealed in investigatedbyevaluatingtheC!andCmusingtheabso- the cycle-averaged results. lutepressuremeasurementsobtainedwiththe2-Dconfig- The chaotic nature of the stalled flow about the wing urationwithandwithoutthechordwisecomponentofthe operating at a constant angle of attack is evident in pressuresincluded.TheresultanterrorinC1versuso_is figure 14 for the condition of incipient to moderate stall. presentedinfigure11,whereit reachesamaximumof Here the pressure time history on the airfoil upper surface about5%atanangleofattackof 16deg.ThecurveofCm at the 5% chord station is presented for 4 angles of attack versustx evaluated with and without the chordwise com- from 13.5 deg to 15.0 deg in 0.5 increments. The reduc- ponent of the pressures included is presented in figure 12. tion in upper surface leading edge suction associated with Here it is noted that neglecting the chordwise component the trailing edge type of stall occurs in a pseudo-random manner with increasing frequency as the angle of attack of the pressures has increased the slope, dC m/d_, by increases. about 50%. Section aerodynamic coefficients- Test and data Nonclosure of coefficient loops- For a few data reduction procedures were generally adequate to minimize points, the loop formed by the plot of the section coeffi- cients versus angle of attack does not close (e.g., fig. 15 the influence of pressure transducer zero drift on the for the wing oscillating at 10 Hz about a mean angle of integrated results. However, occasionally the influence on the pitching C m due to transducers near the trailing edge 15 deg with an amplitude of 2 deg). This nonclosure only results in a small shift of the curve of Cm versus occurs for the relatively deep stall operating conditions. It is the result of averaging over noncontiguous cycles. Due Except for this occasional shift in the Cm curve, the max- imum errors in the integrated coefficients are probably to the stall, the flow state does not necessarily repeat at _+0.01. the start and end points of the cycle, as it does for the non- stalled condition. Pitching moment variation with angle of attack- Observations and Comments The section pitching moments increase with angle of attack, implying that the aerodynamic center is ahead of The chaotic nature of stall- The fundamental nature the airfoil quarter chord, contrary to what might be of the flow about a stalling wing is one of chaos. There is expected for a symmetrical section. This result is evident in other measurements made on the NACA 0015 airfoil a general overall flow state with pseudo-random varia- tions about it varying with the depth of the stall. (On fixed section (e.g., see refs. 5 and 6). Increasing the trailing edge included angle of an airfoil section moves the aero- wing aircraft, this is the source of the buffeting associated with stall.) Thus, when using the data to validate computa- dynamic center ahead of the quarter chord (ref. 7). Data for the NACA 0010-34 and NACA 0010-35 airfoils dis- tional predictions, the chaotic aspect of the phenomenon should be considered. The results as presented in the play this effect (ref. 8). Evidently the trailing edge angle Basic Data Set are cycle-averaged. This may or may not of the NACA 0015 gives rise to this effect. Stalled surface flow pattern- When stall occurs, the be representative of the individual cycles. In many cases, the cycle-to-cycle variation can be significant. It may be upper surface flow tends to separate in spanwise cells as useful to look at individual cycles or delete a few cycles shown in figure 16, although it is not always as well

10 definedandsymmetricalasinthisexample.Thesecells (d) Sequential data point acquisition number becomeless prevalent as the Reynolds number is Four digits prefixed with the letter "D" for raw increased. In this example, oq = 17.7 deg and is increasing data file or "R" for reduced data file while operating at a Reynolds number of 1.06 × 106 and For example, RTPOTI.D0845 is the data point for oscillating with an amplitude of 4 deg about a mean angle the RT configuration obtained from the POT with the of 15 deg at v -- 0.04. The surface flow of each of these BL-trip installed and a data point number of 845. cells resembles that of a pair of counterrotating vortices, Below are the test parameters (cycle-average values) with the flow between them from the trailing edge to the listed on each plot characterizing the data point: leading edge, producing a mushroom-shaped surface pat- ot = pitch mean angle of attack + oscillation tern. This phenomenon has been investigated for 3-D amplitude wings at a constant angle of attack (refs. 9 and I0) where freq. = pitch frequency the number of spanwise cells was found to depend on the v = reduced frequency wing aspect ratio. However, the results reported herein are vel. = test section wind speed the first known observation of this phenomenon for Mn = Mach number dynamic stall of a wing. Re = Reynolds number

Organization- The Basic Data Set is organized and DATA PRESENTATION presented as follows. First, all the results obtained with the leading edge BL-trip installed are presented, followed In addition to the Basic Data Set, this report presents by all results obtained without the BL-trip. Each of these some secondary data, and the supporting data. The Basic two sets of data is divided into three configuration groups: Data Set is a compendium of all the results (i.e., for all first, the 2-D results; second, the round tip 3-D results; angles of attack, amplitudes, and frequencies--for each and third, the square tip results. Within each configuration model configuration) obtained from the pitch oscillation group, the results appear in four subgroups: first, the test and the quasi-steady test. It is presented as plots of quasi-steady test results, followed by the three groups of cycle-averaged aerodynamic section coefficients versus pitch oscillation test results in ascending order of pitch angle of attack. The secondary data consist of (1) a few amplitude (i.e., the 2 deg, 4 deg, and 5 deg results). data points taken to document the spanwise progression of Within each of the pitch oscillation test pitch amplitude stall, and (2) a few taken at lower Reynolds numbers. The subgroups, results are arranged in ascending order of the supporting data consist of the steady-boundary value mea- mean angle of attack. For each mean angle, the results are surements, the dynamic pressure survey, the surface flow arranged in increasing magnitude of the pitch oscillation visualization, and the steady-state wake measurements. frequency. The list of figures and table 1 provide a useful Each of these data sets is described below. guide to this body of data and its organization. Repeated data points are included as sub-figures (labeled as repeat) following the initial data point. Basic Data Set 2-D configuration- 2-D airfoil results are presented at the following four span stations: Description- The Basic Data Set is presented in figures 17-92. For each data point, the results are pre- = 0.263, 0.500, 0.842, and 0.947 sented as plots of cycle-averaged CI, Cd, and C m, versus _i at each span station with the data point ID and a list of The 2-D data are defined as those at the midspan, all the test parameters characterizing the data point. The 0.500, station having 20 absolute pressure transducers data point ID has the following four sequential parts: (also the 3-D span station 0.475). The additional 3 (a) Model configuration off-center span stations having 10 differential transducers 2-D = two-dimensional (the 3-D span stations at 0.250, 0.800, and 0.900) are RT = 3-D with round tip cap included to provide an assessment of the two- ST = 3-D with square tip cap dimensionality for each data point. Noteworthy is a small (b) Test type error inherent in the use of differential pressures for POT = pitch oscillation test calculating section lift and moment, as discussed in the QST =quasi-steady test prior Experimental Accuracy section. SST = steady-state test 3-D configuration- For 3-D wing configurations, (c) Boundary layer trip results are presented at the following seven span stations: 1 = trip was used N = no trip used = 0.250, 0.475, 0.800, 0.900, 0.986, 0.966, and 0.995

11 Thedataatspanstations0.957and0.976areomitted These results for the 2-D configuration are presented becausetheyconsistonlyofuppersurfacepressuresat in figure 100, followed by the 3-D configuration results sixchordlocations;thus,evaluationoftheaerodynamic presented in figures 101-105. For the 3-D configuration, coefficientsisnotpossible.Thesedataareintendedtobe these results are presented in groups based on span loca- usedtogetherwiththeuppersurfacepressuresatspansta- tion of the survey from wing root to tip. Within each tions0.986,0.966,and0.995todefinethehighly3-D group the results are presented in ascending order of angle uppersurfacetippressuredistributionasinfluencedbythe of attack. These results are presented as the relative static vortexformation. pressure deviation--i.e., the local static pressure differ- ence from the test section static pressure divided by the test section static pressure. Vertical distributions are SecondaryData plotted versus the distance from the floor; horizontal dis- tributions are plotted versus the distance from the wing Three additional sets of data were obtained in addi- quarter chord. These distances are non-dimensionalized tion to the Basic Data Set. The first set of data points doc- by chord length. Each plot contains three repeat uments the variation of the spanwise extent of the measurements. dynamic stall region with frequency. It was obtained with An anomaly occurs in the horizontal static pressure distributions on the floor and ceiling due to aerodynamic the 3-D round tip configuration by a frequency sweep interference from the strut of the front pitot static rake. over the range from 3.0 to 6.0 Hz for 13 deg mean angle of attack with an oscillating amplitude of 2 deg. This data The strut location is 5 in. off to the side from the static set, taken without the use of the BL-trip (figs. 93 and 94), pressure orifice located 1.67 chord lengths ahead of the was obtained at the primary test condition (Reynolds wing quarter chord. The source of this anomaly is con- number 2.0 x 106) and at the reduced nominal Reynolds firmed by the measurements presented in figure 105. With the front rake removed to make the wall static pressure number (1.4 x 106). A set of frequency sweep data was also taken at this reduced Reynolds number with the measurements and the floor static pressure plate left in span location 1.67, the anomaly disappeared from the BL-trip installed (fig. 95). The second additional set is quasi-steady test data floor static pressure distribution. taken at the above reduced Reynolds number. These data These local boundary value static pressure distribu- were obtained for the round tip configuration with and tions for each span location and the chordwise pressure without the BL-trip installed (figs. 96 and 97) and for the distributions over the wing were obtained simultaneously. 2-D configuration without the BL-trip installed (fig. 98). Except for small experimental variations, these steady- The third additional set of data, presented in state chordwise pressure distributions are the same for figure 99, was taken at the nominal operating conditions each span location. Thus, the wing chordwise pressure distributions obtained at each angle of attack for the matching those used for some of the stalled surface flow visualizations. This operating condition was at a lower boundary value static pressure survey at span loca- nominal Reynolds number of 1.06 x 106 corresponding to tion 0.479 (fig. 106) represent those obtained for the static the following nominal values: pressure survey at all span locations. Test section wind speed -- 162 fps Dynamic pressure survey- The maximum peak-to- Dynamic pressure ---30 psf peak variation observed in the dynamic pressure survey Mach number -- 0.15 was about 1% and that magnitude was aft of the wing for the high angle of attack measurements. Because of the relatively insignificant variations observed, plots of these results are omitted. Supporting Data Micro-tuft surface flow visualization- Examples of the instantaneous and cycle-averaged micro-tuft surface Steady-boundary values- Rather than attempt to flow visualizations are presented for the operating condi- apply blockage and wind tunnel wall corrections to the aerodynamic data, it was decided to make local static tion with a pitching amplitude of 4 deg about a mean pressure measurements at four steady state angles of angle of attack of 15 deg. The instantaneous visualizations of the stalled surface attack on a rectangular boundary surface about the wing flow pattern at 4 phase angles through the stall cycle were (described under Test Procedures). Thus, users of the selected from the set obtained at a reduced frequency of aerodynamic data have the option of applying this infor- mation to corrections of their choice. Those developing 0.04 and are presented in figure 107(a). A repeat set of these visualizations at the same phase angles (fig. 107(b)) theories to predict the aerodynamics and using the data for demonstrates the variations occurring in the stall sepa- correlation can apply these measurements as boundary rated surface flow from cycle to cycle. The instantaneous conditions for the computations.

12 pressuresonthewing,takensimultaneouslywiththepho- 3. Wagner, Wolfgang J.: Comparative Measurement of tosoftheinstantaneoussurfaceflowpatternsof the Unsteady Pressures and the Tip-Vortex figure107(a),arepresentedin figure108. Parameters on Four Oscillating Wing Tip Thecycle-averagedvisualizationsatasequenceof Models. Paper No. 9. Tenth European Rotorcraft eightphaseanglesthroughthestallcyclearepresentedin Forum, The Hague, The Netherlands, Aug. 28- figure109forareducedfrequencyof0.04andin 31, 1984. figure110forareducedfrequencyof0.20.Theseillus- 4. Roshko, Anatol: Pressure Distribution at the Nose of tratethechangeinthestalledsurfaceflowpatternwith a Thin Airfoil. Douglas Aircraft Co. Report reducedfrequency. No. SM-23368, 1958. Steady-statewakemeasurements-Thesemeasure- 5. McAlister, K. W.; and Takahashi, R. K.: NACA 0015 mentsdeterminetheapproximatedisplacementandcross Wing Pressure and Trailing Vortex sectionalshape(i.e.,verticallocationofthewakeatsev- Measurements. NASA TP-3151, 1991. eralspanstations)ofthenearwingwakeanditsvelocity ° Pope, A.: The Forces and Moments Over an defect.Figures111and112presentanexampleofthese NACA 0015 Airfoil. Aero Digest, vol. 58, no. 4, resultsobtainedat1.5and3.0chordsaftofthewing 1949, pp. 76, 78, and 100. trailingedgeforthewingoperatingatanangleofattack . Seckel, E.: Stability and Control of Airplanes and of 13deg. Helicopters. Academic Press, 1964, p. 8. 8. Abbott, I. H.; and Von Doenhoff, A. E.: Theory of Wing Sections - Including a Summary of Airfoil REFERENCES Data. Dover Publications, 1949, pp. 456--459. . Winkelmann, A. E.; and Barlow, J. B.: Flowfield I. Lorber, P. F.; Carta, F. O.; and Covino, A. F., Jr.: Model for a Rectangular Planform Wing Beyond An Oscillating Three-Dimensional Wing Stall. AIAA J., vol. 18, no. 8, 1980, Experiment: Compressibility, Sweep, Rate, pp. 1006-1008. Waveform, and Geometry Effects on Unsteady 10. Winkelman, A. E.: An Experimental Study of Separation and Dynamic Stall. UTRC Mushroom Shaped Stall Cells. AIAA/ASME Report R92-958325-6, 1992. Third Joint Thermophysics, Fluids, Plasma, and 2. Costes, J. J.: Unsteady Three-dimensional Stall on a Heat Transfer Conference, St. Louis, Mo., AIAA Rectangular Wing. Paper No. 30. Twelfth Preprint No. 82-0942, 1982. European Rotorcraft Forum, Garmisch- Partenkirchen, West Germany, 1986.

13 Table1.Testconditionfigurenumbers

a.Pitchoscillationdata

3-D 3-D config. 2-D Round tip Square tip

.10 .14 .20 .04 .10 .14 .20 a AN_V .04 .10 .14 .20 .04

4 2 _56_ _56

9 2 _57 _57 _57

GX

4 4 2_63 _63 _63

9 4 _/_ _'_ _/'_

I1 4 _65 _65 _65

13 4 _66 _

//////

b. Quasi-static data

2-D Round3-D tip Square3-D tip

10 10 J 86

Legend

Trip

No trip

14 Table2.Pressuretransducerslocationsonwing.(a)Spanwise locations:_"=0.25,y= 0.80,y =0.90differentialpressure transducers

Positionno. 1 0.010 2 0.025 3 0.050 4 0.125 5 0.225 6 0.325 7 0.450 8 0.600 9 0.750 10 0.900

Table2.Continued.(b)Spanwiselocation:_=0.475absolute pressuretransducers

Upperpositionno. _ Lowerpositionno. _ Leading edge 0.0O0 1 0.010 1 0.010 2 0.025 2 0.025 3 0.050* 3 0.050 4 0.150 4 0.100 5 0.300 5 0.175 6 0.500 6 0.275 7 0.700 7 0.400 8 0.900 8 0.550 9 0.700* 10 O.85O I 1 O.975 *Failed during test and deleted from results.

Table 2. Continued. (c) Spanwise locations: _ = 0.957, = 0.976 absolute pressure transducers

Upper position no. _ 1 0.010 2 0.100 3 0.400 4 0.600 5 0.80O 6 0.975

15 Table2.Continued.(d)Spanwiselocation:y =0.986absolute pressuretransducers

Upperpositionno. _ Lowerpositionno. Leadingedge 0.000 1 0.010 1 0.010 2 0.025 2 0.025 3 0.050 3 0.050 4 0.150 4 0.100 5 0.300 5 0.250 6 0.500 6 0.400 7 0.700 7 0.600 8 0.900 8 0.800 9 0.975

Table 2. Concluded. (e) Spanwise locations: y = 0.966, = 0.995 absolute pressure transducers

Upper position no. _ Lower position no. Leading edge 0.000 1 0.050 1 0.010 2 0.300 2 0.010 3 0.700 3 0.400 4 0.900 4 0.600 5 0.800 6 0.975* *Failed at span 0.966 during test and deleted from results.

16 Table3.Test matrix for pressure measurements

_,deg Aot, Frequency, Hz q, Round Square 2-D de_ psf tip tip 4 2 4,10,14,20 117 ,/ / 9 2 4,10,14,20 !17 / / ,/ 11 2 4,10,14,20 117 ,/ ,/ ,/ 13 2 4,10,14,20 117 ,/ ,/' ¢" 15 2 4,10,14,20 117 / ,/ 17 2 4,10,14,20 117 ¢" ,/

1 4 4,10,14 117 J /* 4 4 4,10,14 117 / / / 9 4 4,10,14 117 / / / 11 4 4,10,14 117 / / / 13 4 4,10,14 117 / / / 15 4 4,10,14 117 /* / 17 4 4,10,14 !17 / /

13 5 4,10 117 / / 17 5 4,10 117 / /

13 2 Sweep; 3-6 117 ,/' ! 3 2 Sweep; 3-6 60 ¢"

10 10 0.0167 117 ,/ ¢" ,/ 10 10 0.0167 60 ¢" ,/ *There is no data for the round tip no BL-trip case at _ = 15 deg or for the 2-D with BL-trip case at _ = 1 deg. The figure numbers for these cases are summarized in table 1.

17 Table4.Testmatrixformicro-tuftsurfaceflowvisualization

oc/Aot,deg q,psf Frequency,Hz Reduced B/L-trip Average/ Pressuredata frequency Y orN instantaneous YorN AorI

13/4 117 4 0.04 Y I Y 13/4 117 10 0.10 Y I Y 13/4 117 14 0.14 Y I Y 15/4 30 2 0.04 Y I Y 15/4 30 5 0.10 Y I Y 15/4 30 10 0.20 Y I Y 15/4 30 2 0.04 Y I Y 15/4 30 2 0.04 N I Y 13/4 60 4 0.056 N I Y 11< tx<15 30 SST 0 N I N 11 < o_<20 30 SST 0 N A N 11 < or< 19 117 SST 0 N I N 12

Table 5. Residual wing twist due to manufacturing

Span, y Twist, de_ 0.33 +0.012 0.51 +0.065 0.67 +0.030 0.83 +0.060 1.00 +0.024

Table 6. Pressure transducer specifications

Sensitivity 5 mv/psi Nonlinearity and hysteresis <0.5% FS Repeatability < 0.1% FS Compensated temperature range 60 - 120 deg F Zero change with temperature < 0.5% FS/100 deg F Sensitivity change with temperature < 1% FS/100 deg F Resonant frequency 150 K Hz Acceleration sensitivity 0.0005% FS/G

18 (a) Structural components

(b) Instrumented wing with bearing

Figure 1. Wing photos.

19 Figure 2. Upper surface leading edge BL-trip; installation photo.

Q. m

C ._ o G) .=- " "-5 "10 m 0 0 0 0 • - j_ v- ¢'4

0

Pitch axis ooooq

ooooOI

OOOOq

I ..o._

9 I 1.0 .3 .4 .5 .6 .8 0 .2 .2 I I Y Wire support 2-D outer Wall splitter plate splitter plate

Figure 3. Locations of pressure taps, wing supports, and splitter plates.

2O C_ c_ c_ _j q_

J_ C_L

c_ c_ c_

2J Figure 5. Photo of wire supports and wake rake installation.

22 (a) Front view

(b) Topside view

Figure 6. Photos of wire support attachment to wing.

23 .05 r'""..

g "02-

.01 - "%,,

_) -.02 - _''",,,,_.,,

-.03 - ",,_), , ,

-.04 "t_,,,,,,,

_.05 I I I I I I I I I I I "4 -1.50 -1.25 -1.00 -.75 -.50 -.25 0 .25 .50 .7S 1.00 1.25 1._0 Lift coefficient

Figure 7. Stagnation point location versus lift coefficient.

Wall "_ -'Inboard splitter plate

I I I I I I I I I I I I I I I

I I I I I I I I I I I l Wind I I I 1.671 1.800 0.075 0.479 0.892 Y

Figure 8. Spanwise locations for boundary value measurements.

24 • • • • • • • •

--93" .! Planform

I_ 2" ..I I- r I

.30"

Leading edge detail

Figure 9. Static pressure plate for boundary value measurements.

25 m

83"

"-'_q

12" spacing L,

5.5" f

5"

1/4" diameter 3.5" "i commercial probes

1 "

24" _l

Figure 10. Pitot-static rake for boundary value measurements.

26 0

-2

p. -4

P -6 a.

-8

...... 2nd order least square fit (_ Stall

I I I I I I I I -10 I I •• I 0 2 4 6 8 10 12 14 16 18 20 Angle of attack -- deg

Figure 11.Error in C/ due to use of differentia/pressures.

.05 _- Without chordwise pressure component

I ,_ _',L_ _-" _ _=Jd_ I _ ..- - --,_-._'_ ___._c_¢>"_ v_ 0 '*

C m --= o'ws re urco onent

-.05

-,10 "r-, I I I I I 0 4 8 12 16 20 Angle of attack -- deg

Figure 12. Error in C m due to use of differentia/pressures.

27 Cd, ard Cm _,s ALpha _ERN VcLues of SecLLon CL,

TESTID:RTPOTI.D0332

O, 05 - 0.45 I .BO

0.40 1.62 rj. O0 - -0.05 O. 35 - 1,44 -0. I0 0.30

-0.15 O. 25 1.08 -0.20 - 1.26 - O. 20 - O. 90 (J J 0.15- rJ_ 9.72- -0.25 1

0.10- 0.54 - -0.30 1

0.05 " 0.36 - -0-35 1

O. O0 - 0,|8- -0-40 1 -0.45-_ , , , _ -0.05 I I $ I "'q 8.0 I0.0 12.0 14.0 16.0 |8.0 0.00 _ , _ ' 8.0 lO,O 12.0 14.0 16.0 18.0 8.0 10.0 12.0 14.0 15.0 18.0 oc Oi

SPAN STATION - 0.475 Freq. - 4.01 cps - O.03B - 12,9B± 4.07[)e_.

(a) Cycle-average section coefficient loops

Repeot No. 1 2 3 4 5 6 7 8 91011 12 13 1_i 15 1617 18 1920 0.00 -4

CDn -0.75

-I .50 SPAN STATION : O._75flBS,UPPER CHORD STflTION = 0.275 TESTIO:RTPOTI.D0332

(b) Cycle-to-cycle airfoil section pressure variations

Figure 13. Example of the chaotic nature of stall during pitch oscillation.

28 SPAN STATION - O._75flBS,UPPER CHORD STATION i 0.275 TESTID:RTPOTl.D0332 0.00 ...... I ...... I ...... I ...... t 3.0 90.0 ]80.0 270.0 360.0 -0.15

-0.30 Repeat No. 7

-0.45

-0.60

C__ -0.75

-0.90

-I .05

-] .20

-] .35

-I .50

' ' ' I ...... I 0"00 }0.' 0 ...... 90.0i ...... ]80.0i ..... 270.0 360.0 -0.15] E_

-0.3oJ Repeat No. 12 -0 45 --

-0.60

-0.90

-1.05 -0.75 -] .20

-] .35

-I .50

(c) Airfoil pressure time histories for cycle numbers 7 and 12

Figure 13. Continued.

29 Sect.con CL, Cd, ond Cm vs RLpho; For ONE c_IcLe

TEST iD :RTPOT 1. D0332 CycLe REPEAT No. - 7

O. 05 1.80 - 0.45 -

0.00 X .62 0.40 -

-0.05 1.44 0.35 -

-0.10 1.26 O. 30 -

-0.15- 1.08 - 0.25

-0.20 • 0.90 - 0.20

J (-J -0.25 - d 0.72 - 0.15

-0.30 - 0.54 -

-0.35 0.36 - 0.I0-0.05 "

-0.40 0.18- 0.00 -

-0.45 O. 00 -0.05 , , , , , 8.0 10.0I 12.0I 14.0I 1_ ,0 18.0I 6.0 10.0 12.0 14.0 16.0 18.0 8.0 10.01 12.0I 14.0I 16.0I 18.0I Oc O_ Oc

SPAN STATION - 0.475 Freq. - 4.81 cps Moch No. - 0.288 - 0.038 Rn - 1.9773_]0 _ a " 12.98± 4.07 De£. RLr Speed - 328.3 Fps

TESTID: RTPOTI .D@332 CgcLe REPERT No. - 12

0.05 - 1.80 - 0.45 -

0.40 0.00 - 1.62 - -0.05- 1,44 - 0.35

-0.10 - 1.26 - 0.30

-0.15- I. 08 - 0.25 "

-0.20 - 0.90 0.20 -

J 0.15- -0.25 d 0.72

0.]0- -0.30 0.54 -

0.05 -0.35" 0.36 -

-0.40 - O.t8 0.00

-0.45 -0.05 i i i i i I I I ! I O.OO I I I I ; 8.0 10.0 12.0 14.0 16.0 18.0 8.0 10,0 12.0 14.0 16.0 18.0 8.0 I0.0 12.0 14.0 16.0 18.0 @ Oi oc

(d) Section coefficient loops for cycle numbers 7and 12

Figure 13. Concluded.

3O -2.0-_

-2.5

-3.0

-3.5

-4.0 G= 13.4 deg

-2.0

Q_ -2.5

-3.0

-3.5

-4.0 - G = 13.9 deg

-] .5

-2.0

U_. o -2.5

-3.0

-3.5

-4.0 G= 14.4 deg

-i .5

-2.0

U_ o -2.5

-3.0

-3.5 SPRN STfiTION - O. 4/_,"-,E fiBS,LIPPER G= 14.9 deg -4.0 CHORD STFtTION - 0.050

Figure 14. Example of the chaotic nature of staff at constant angle of attack.

31 TESTID:rtpotl.D0268

0.05 - 1.80 - 0.45 -

0.00 - [ .62 - 0.40 -

0.35 -0.05 - t .44 -

0.30 -0.10 1.26 -

-0.15 1.08 - 0.25

0.20 -0.20 O. 90 - E

J 0.15 -0.25 J 0.72

0. I0 -0.30 0.54

0.05 -0.35 0.36

-0.40 - 0.18 0.00 -

-0.45 ! 0.00 12 15 12 15 18 12 15 18 ci Cx O_

SPAN STATION - 0.475 Freq. - ]0.25 cps Moch No. - 0.287 - 0.099 Rn - 2.0149"I0 e a - ]4.93± 2.040e9. ALr Speed = 325.3 Fps

Figure 15. Example of nonc/osure of the aerodynamic coefficient loops.

Figure 16. Stall cell surface flow pattern; cl = 15 deg _+4 deg; a i = 17.6 deg'_ ; v = 0.04.

32 I.O1.2 _/Y - 0.2_ "

0.6-

0,'t-

0.2-o._-/ '_,j 0"85 l °'°°I_. 0.0

-0.2

-I 1 3 ] 7 _ ]1 13 15 L7 _9 7._ 0

t.4- 3/y. 0.500

1.0-

0,8- o-2s7 d 0.6- 0.20 -a ]W

0.4 1.2- 0.2 o.,4 ,/'

0.0- o.,o1 .,?, , oool-----_,_ _ °°_1 --J' _ °"7 +"" -0.2 -_I ' + " _' 5 :z +' (1 6 (S I'7 i£ 211 o.o0!_- .... -o.,o_,.... _'

c_ o

1"2t _/Y- 0_,_ 0.8 " ,

OocoPoLnL{O: 2dqsL_.r0885 :o+t0 o._A/ 0.05 o°l/ a- :0.27= 10.15 Ooc. F'-eo. - O.CO cos +!-o..;s '_,_,,,,,_ '> - O.OCO 0 10

c_ VeL. - 334 6 Fos c_

:+,-+- 0.291 _._ EY - O.LzE7,._._ ,_e- I._%-:C_.'O+

c._.- .y

0.4, fh ¢

0,2 / 0.0 _' _oc+1 _,_

-I 1 3 S 7 3 i', )'3 IS 17 18 2: o 'off

r) -I i 3 5 7 _ I1 13 15 i7 19 21

(a) Repeat no. 1

Figure 17. 2-D quasi-steady data; BL-trip; 0 _

33 1.2- y/'L - 0.26_

l.O f I$1 Iltlr

0.6 d 0.4- °'°

0.2" °-°°l--J- UA,

0.0- J -o.o1 -0.I01 I , , ' ' ' ' ' ' -0.2 1 i 3, s, 7, 9, /11'31'5/_1'. ]1 -l I 3 5 7 9 11 13 15 17 9 2_I Oi

1.4 y/T - 0.500

t,0-

0.8-1.2

0.20 -

O. 15 - 0,05 0.4- J 0.00 0.2 f o.,o- J -o.o5 ,_ d o.G-0.0 0.250.05 -- _ I1 __'__" I

-0.2 i -, _ 3 5 _ o ,', 1'3l'_ L'71'92'1 0"00_ l { _ ' 2'1 -1 1 3 5 7 9 11 13 15 17 19 21

o

1.0-1._ ylf - 0._.

0.6 OataPoLnt[O: 2005TI.ROB86 d 0.4 0.05 7 °" / - 10.17_ 10.11 De 9. 0.2

0.0" Freq. - 0.03 cps 0.2 - i 3, _ _, 9, 1'i_'_,'5/71'9-_ u - 0.000 -I l 3 5 7 9 11 13 15 [7 19 21 0 Vet. - 333,t rps

Mn - 0.289 _.2 y/y - 0.947_-_ Re " 1.9370_10'

0.8

0.6-

d 0.05 7 0.41-

0.00_ 0.2-

0.0- -0.I01 , , ; , , , _ , -0.2 , , _ -I 1 3 5 7 9 II 13 15 17 9 211 -I 1 "_ 5 _ 9 1'1 113 1'5 1'7 1'9 _1

01

(b) Repeat no. 2

Figure lZ Continued.

34 1.0-1.2- t;i/y - 0._

0.6- d 0.41- 0.05 7 '_ 0.20. @- %_ i/ 0.00 _ 0.0- _o.o i -0.2 _ _ , , _1 ! 3 ; 7 9 1'1 1; 15 It7 1'9 2tl -0.I0 / ; I t , I l , ; , I l -1 1 3 5 7 9 11 13 15 17 19 21 0

1.4- ,y/T - 0.500

t.0-

0.8- 0.25 -

J 0.6 0.20 -

0.'t 0.15- 1.2- J 0.2 0.10- 0.0- 0.05 20.051t -0.2 - 0.00 -I 1 3 ; 7 9 I'I I; I; I? I'9 2'! , , l i ; i , I , I -0.10 _ l i T , I , I I , , I -1 I 3 5 7 9 11 13 15 17 19 21 -1 ! 3 5 7 9 11 13 15 17 19 21 o o

1.2-

1.0 y/f - 0.8_

0.8

0.6- OotoPotntIO: 200STI.ROB87 0.4-

0.2 • o - 10.37_ lO.OB Oe9 . 0.0 Freq. - 0.04 cps I 0.2 u - 0.000 -1 Ig 21 o;o, , _ ; _ _ , ,,3,5,7,,g2,, VeL. - 333.0 fps a Mn - 0.289

1. l) - Re - 1.9350-i0' 3/Y - O_ 0.0-

0.6

0.4

0.2 0-05 1 0.00 -I_. 0.0-

c3E _0.05 t _/ _,,_ -0.2 I I I _ I I -I 3 5 7 _ I,,;,5,Y,;jI -0. I0| , , , , , , , , , , - 1 3 5 7 9 11 13 15 17 19 21 fl 0

(c) Repeat no. 3

Figure 17. Concluded.

35 0.8- y/y - 0.263

0.05 - 0.6- i z

d //f 0.00- 0.4

-0.05 0.2

0.0- y/Y - 0.500

0.05 - 0.6 i F 0.05-

- 0.00 0.4 / r_ _ 0.00 li# _/

0.2 i l •-_ -0.05 3 5 7 3 5 3 5

0,0- ,_q/'_ - 0.842

0.05 - 0.6- //

//i OataPoLntID: 20POTl.R0760 J E ///i C.3 0.00 - 0.4- - 4.07± 1.98 De9.

Freq. - 3.99 cp8

-0.05 ! i 0.2 i i i - 0.038 ½ 5 7 3 5 7 Vet. - 334.5 fps Mn - 0.293 0.0- yly - 0.947 Re - 1.9830_I0 B

0.05- 0.6-

d /

// 0. O0 - 0.4 // -0.05 0.2 1

(a)v=O.04

Figure 18. 2-D pitch oscillation data; BL-trip; _ = 4 +_2 deg.

36 O.B y/X- 0.263

0.6 0.05 U // //

0.4 J 0.00 J/ 0.2 i i 5 -0.05

0.8- y/Y - 0.500

0.6 // O. 05 0.05 - d .>>",'/ 0.4- ,V" j o.oo. O _ O. O0 nY

0.2 I 1 I i 3 5 -0.05 s s o_

0.8 sIY- 0.042

0,6 ¸ i 0.05 - // J / OotoPoLntlD: 2DPOT1.R0761 / 0.4- .v" a - 4.07_ 2.05 De 9. E 0. O0 -

Fveq, - 10.00 cps

0.2 i i 3 s - 0.093 -0.05

oc VeL. - 336.9 £ps

0.8- S/Y - 0.947 Mn - 0.294 Re - 1.9920_I0'

0.6 O. 05 d /

0.4 ,-/ ,,/ c3 E O. O0 Y // 0.2 i i -0.05 3 5 i i 3 s c_

(b) v =0.10

Figure 18. Continued.

3? 0.@9 y/Y - 0.263

0.05 - 0,6- ..5/ J

r_ e 0.00 0.4-

-0.05 I i 0.2 i ! s _ 7 3 5

0.8- _/T - 0.500

0.05 - 0.6- # 0.05

# /

.Y 0.00 r_ e 0.00 - 0.4 ¸- J - -y / , -0.05 0.2 7

0.8

0.05 0.6 DotoPotnt[D: 20POT[.R0762 d

Cb_ 0. O0 0.4 - 4.07_ 2.13 Oe9.

Freq. - 14.02 cps

-0.05 i i 0.2 - 0.131 3 5 7 @ VeL. - 336.3 Fps

Mn - 0.294 0.0- Re - 1.9860_10'

0.05 - 0.6-

d

0.00 - 0.4

-0.05 0.2

O(

(c) v=0.14

Figure 18. Continued.

38 O.B- 9/Y - 0.263

0.6 0.05 d

0.4 fZ J E O. O0 0.2 -0.05 3 5 i i I 3 5 7 ol

0.0 9/Y - 0.50O

0.8- 0.05 - 0.05 - d

0.4- J 0.00 - ly ___)E 0. O0 -

0.2 -0.05 - -0.05

c_ oc

O.B - H/T - 0.842

0.6 0.05

// / d DataPoLntID: 2DPOT1.R0763

0.4 / /" - 4.06± 2.30 De 9. r_ = 0.00

Freq. - 20.07 cp8

0.2 i v - 0.188 -0.05 3i 5I

Vet. - 335.4 £ps c_

0.8 Mn - 0.293 9/Y - 0.947 Re - 1.9780_10'

0.6 0.05 //,4 d

/ 0.4 f_)E 0.00 J /,-- 0.2 -0.05

@

(d) v =0.20

Figure 18. Concluded.

39 1.2 9/Y - 0.263

/ / 0. I0- l.g I/" J

C_ _ 0.05" 0.8 "

0.00 0.6 _ 6 8 I; l_ 6 8 l'O 1'2

1.2

0.05 [.0

J 0.05 1

0.00 0.0 J

c-:J_ 0"00 1 -o.o5! 0.66 _ ,'o i'2 ll2 6 1'0 3'2

1.2 y/T - 0.842

0.05 - t / 1.0 t / OotaPoLnt ID: 2OPOTt .R0765 U

c._)E O. O0 - 0.84 - 8.97± 1.97 Oeg.

Freq. - 4.03 cps

0.6 "_ - O. 038

VeL. - 333.5 £ps

Hn- 0.291 1.2 _I/Y - 0.947 Re- 1.9660.I0'

0.05 1.0

/ / d

J O. O0 0.0-

0,6 • "l -o.o5_ _ ,_ ?2 o ; ,'o l_ @

(a) v = O.04

Figure 19. 2-D pitch oscillation data; BL-trip; c_= 9 +- 2 deg.

4O 1.2- ylT - 0.263

1,0 / 0.10- //

J /

0.8 Y o _ 0.05

0.6 O. O0 i i 8 10

[.2 y/Y - 0.500 / I.O- 0.05

//

0'05 1 O.B- J O. DO

C.]E O. O0 1

06 I -0.05 6 i -0.05 / ]2 6 0 ]0 ] oc

1.2- _/Y - 0.842

|.0- f 0.05

/ / DotoPoLntID: 2DPOT1.R0766

0.8- o - 8.97_ 2.04 Oe 9. r__E O. O0.

Fneq. - 10.03 cps

0.6- _ 1'o 1'_ - 0.094 -0.05 i'o i'2 Vet. - 335.7 Fps

[.2 Mn - 0.293 _/T - 0.947 .< Re - 1,9710M10 e |.0 0.05 - d

0.8- y- E 0.00 -

0.8 i i l -0.05 8 10 12 C_ lO 12

(b) v =0.10

Figure 19. Continued.

41 1.2 y/I - 0.263

/ 0.05- 1.0 ,'j/ d .Y • 0.00 - 0.@- Y

-0.05 f I 8 IvO 12 0.6 i ,b i'2 ol

|.27 y/y - 0.500

0.05 - /i / O. 05 - [.O- /// J

J 0.00 0.8 r__ 0.00-

0.6 I -0.05 I'13 112 12

|.2- s/Y - 0.842

t.O OoLaPoLntID: 20POTl.R0767 d 0.05 ]

0.0 - 8.96_ 2.12 De 9,

Freq, - 14.07 cp8 c) e 0.00 1

u - 0.132 -0.05/ 06 _ , ;o ,'2 6 o( VeL. - 335.7 £ps

Mn - 0.292 [.2- y/Y - 0.947 Re - 1.9640_I0 B

0.05- // [o0-

d ,,S c_ E O. O0 - 0.8- J

-0.056 G i'o ;2 6 @ 1_0 12 o( o_

(c) v=014 Figure 19 Continued

42 1,2- _j/Y - 0.263

l.o- 0.05 - d

O.B r.3 e 0.00

0.6 -0.05 8' lO' ]'2 ; ,b ,'2 ot (_

1.2- 9/Y - 0.500

[.O- 0.05 0,05 - d

0.8- / 0.00 (je O. O0 -

0.6 i i 6 i i , 0 lO ]12 =O,OS -0.05 8 I0 12 o_ O(

1,2-

I.O- 0.05 - cs' OotoPoLntIO: 20POT1.R0768

0.0- a - 8,95± 2.28 Dog. J 0.00

Freq. - 20,11 cp8

0,0"" 6 - 0.188 -0.05 ,'o ,'_ c_ VeL. - 335.3 fp9

[,2- 9/Y - 0.947 Mn - 0.292

Re - 1.9600_10'

|.O- 0.05 -

J //

0.8 O. 00

0.6 I -0.05 1

(d) v =0.20

Figure 19. Concluded.

43 1.2 y/Y - 0.263

o E d L.O

0.00t 0.8 8 ,'0 ,'_ ?4 I'0 1'2 I'4 OL @

0.10 - 0.05 - [.._-

r j e 0.00- d 1.0 0.05 -

0.00 0.8 I'4

0.I0- 1,2 -¸ y/Y = 0.8d2

DotoPotntID: 20POTI.R0749 r__E 0.05 1.0

o - 10.98± 1.97 De9.

0.00 0.@ Froq. - 4.00 cps 1_ I'2 I'4

- 0.038

Vet. " 332,5 £ps

Mn - 0.289

i.z- ylY. 0.947 Re - ].9250_10'

(_3E O. 05 d I.U 0"I0 1

o.ooI 0.8 8 1'o ,'a ?4 0 I_0 12 114 O_ cc

(a) v = O.04

Figure 20. 2-D pitch oscillation data; BL-tfip; c_= 11 +_2 deg.

44 1.2 0.10

C___ 1.0 F_I: 0.05 •

0.8 0.00 8 10 1 ]4 ] 13 12i 14! Oc Ot

1.4 sly - 0.500

1.2 0.I0- O. 05 d

1.0 0.05 - 0 c_3e 0.00

0.8 I I 1 0.00 -0.05 10 12 14 I B 14

1.2- O.lO-

1.0 OataPoLntlD: 2DPOT1.R0750 J 0.05

= 10.99± 2.04 Oeg. 0.8- 0.00 Freq. - 10,01 cps i I'0 12 /4 - 0.095

VeL. - 332.0 £ps

1.2 Mn - 0.288 ylY - 0.947 0.]0- Re - 1.9180-I0'

d 1.0 rj e 0.05

0._ 8 0.00 B ll4

c_

(b) v =0.10

Figure 20. Continued.

45 0.I0- 1.2 y/T - 0.263 . S J 0.05 -

0.00 I 1o 12 14 0.8 e I_ _ I'4 @

1.4 y/Y - 0.500

1.2

/J / / d 0.05 ]

1.0 ¸

J °'°° 1 -0.05 0.8 0.00/ 14 8 ,'o ,_ ;4 8 I'13 {2 114 8 I'o i'2 c_

0.I0 - 1.2- y/T - 0.842 /

OotoPoLnt[D: 20POT1.R0751 c.__e 0.05 d 1.0 a - 10.98_ 2.12 De9.

0.00 Fnoq, - ]4,03 cps 8 I'0 I'2 I_4 0.8 @ I'o I'2 I'4

u - 0.133

Vet. - 332.4 Fps

Mn - 0.288 0.I0 t.2 ylT - 0.947 Re - 1.9160"10m

f/J r_ _ 0.05 d 1.0 /- 0.00 I'4 8 I'0 112

(C) v=0.14 Figure 20. Continued.

46 1.2 _/Y = 0.263 0o10

E 0.05-

0.8 0.00 T B ,'o ,'2 ,4

1.4 ylY - 0.500

1.2 0.10 - // 0.05 - J

I.[} _ 0.05 _ O. 00 -

0.8- I 0.00 - 1 -0.05 I4 14 8

o_

1.2 91Y - 0.842 0.30

//

cJ' 1.0. DotoPotntlD: 20POTI.RO752 O. 05-

e = 10.97± 2.28 Dog. 0.8 Freq. - 20.05 cps 0.00 8 c_ iS l_ 1't u - 0.190 ol

VeL. - 332.0 £ps

Mn - 0.288 O. lO Re - 1.9120_10"

d 1.0 2 E O. 05 - 0,8 0.00 1 8 ,_ . ol ,b

(d) v = 0.20

Figure 20. Concluded.

4? 1.4 9/y - 0.263

O.05 - 1.2

d \ i C.O= 0.00- [.0-

-0.05 10 ]'2 1'4 116 0. @ 10 1'2 1'4 116

0.15

_/y - _, / I 0.I0 |.2- j / ! -J d J 0.05 1 ,i / /

0.05 - 1.0- y

1'6 IO ,'2 1'_ ,'6 0.8 I O 1'2 1'4 1_6 0.00 I O 1'2 1'4 @

1.4- _/Y - 0.842

0.05 t.2 OatoPoLntID: 20POTI.R0770 d

C3 E 0. O0 1.0 " 13.07± [.97 ge 9.

Freq. - 4.02 cp8 i

-0.05 I - 0.038 16 lo 12 114 0.0 16 10 112 III

@ Vet. - 329.4 £ps

Mn - 0.288 1.1 _/y - 0.947 Re - 1.9380MI0 a

0.05 - 1.2 I d _r O.O0 |.0-

-0.05 IO I'2 I_4 16 0.0 I I O 1i2 litl 15

(a) v =0.04

Figure 21.2-Dpitch oscillation data; BL-tnp; a= 13+_2 deg.

48 1.6 U/Y - 0.263

1.4 0.]0

d

1.2 c_) O. 05

1.0 i 0.00 - -- I0 12 1r4 10 12 II4

1.6- D/Y - 0.500

t.4 J J ..r

0.05] \ r 1.2 0"I01

'_ _ _"_ _ 0"05 I

1.0

]0 1'2 1'_ i'o o.oo/ llO -0.05 / 10 10 i'2 h ,; cw C_

1.4 y/Y - 0.842

// 1.2

/// OotoPoLntID: 20POTI.R0771

0"05 1 v 1.0 • ! o - 13.07_ 2.05 Oeg. \\ /

Freq, - 10.07 cp8 r._) e 0.00 1

0.8 u - 0,095 IO -0.05 / 10 o VeL. - 332.0 £ps

1.4 9/Y - 0.947 Mn - 0.290

Re - 1.9480_106 i j

1.2 i/ 0.05 -

cJ' l/l/

J 1.0- k / C.)E 0.00 -

O.B -0.05 I0 I IO 1T2 lit 16 o( c_

(b)v =0.10

Figure 21. Continued.

49 1.6- y/Y - 0.263

0. I0 1.1

d /i

r c_ e 0.05 1.2 f

0.00 I0 12 1'4 16

o_

[.0 o y/Y - 0.500

0.05 [.4- 0.I0 j/ J if" [.2" J O. 05 0.00 -

-0.05 [.0 0.00 lo 12 1'4 ['_ I0 I12 I'4 1'B I0 I'2 I'4 I'6 o( O{

1.4- ylY - 0.842

0.10- 1.2- DotoPoLntID: 20POTL.R0772 d

1.0 - 13.08± 2.13 Dog. 0.05

Freq. - 14.10 cps u - 0.133 0.0 IO 12 I'4 ll6 o.oo[o i'2 1'4 1'_ Cl VeL. - 333.8 fps

Mn - 0.291 1.4 9/Y - 0.947 Re - 1.9530MI0' /t O.lO- 1.2

J 0.05 - 1.0-

O. O0 i o.o,o ,'_ A ['_ I0 16 o{

(c) v=0.14

Figure 21. Continued.

5O 1.6 y/Y - 0.263

1.4-

d

t.2 cn w O. 05 /_/zt /f/ 0"I0 I

_/I // l.O IO ,'2 i'4 ,'6 0.00 ) i I0 ,'2 ,'_ ,6 c_

|.6- y/Y - 0.500

1.47 0.10- 0.05 -

0

t.2 0.05 - J C__E O. O0 -

jl f

t.O ] 0 I'2 I)4

t,4 _/y - 0.842

/ // 1.2 O.IO J DotoPoLnt[D: 2DPOTI .R0773 1 [.0-

Freq.= 13.07+- 20.132.30cps0o 9. J o-o5 1 0.8 ) 10 v - 0.189 o.oo / lO 1'2 1'_ ,'6 VeL. - 335.4 Fps o(

1,4 Pln- 0.292

Re- ].9580_108 9/Y - 1.2 // .< d i

0"101 1.0-

_ 0.05 I 0.0 0.00 1 10 f I0

(d) v =0.20

Figure 21. Concluded.

51 O. 05 - |.4" _/Y - 0.263

0.00 - |.2"

,7 r_3 s

-0.05 - 1.0- k\

o._,2 1'4 i'6 i'8 o.2o- -o.lo 12 1'_ 1'6 :8 O_

0.05 1.4 0.15- 9/Y - 0.500 I I

O. O0 1.2 cj_ 0.10

d J

:j>. -0.05 - 1.0" 0.05

o.0 i_B 0.00 12 :4 1.6 _0r -0.10 ,2 1'4 1'6 i'8

O. 05 -

_''x \| I 0,00 [.2

e

OotoPoLntlD: 2DPOTI.R0775 -0.05 ¢5 ) 1.0

- 15.03± 1.95 De 9.

0.8 Freq. - 4.04 cps -0"1012 |'4 |.6 |'_ li4 I'6 |'_ 12 u - 0,038

Vet. - 335.9 fps |.4- 9/¥ - 0.947 Hn - 0.293

Re - 1.8760_I06 o.05- 1.2-

d

cn E 0.00 - I.O \ ( ./

-0.05 0.8 12 114 I'6 IB 12 1'4 1; l'B

(a) v = O 04

Figure 22. 2-D pitch oscillation data; BL-trip; (x = 15 +_2 deg.

52 I. 4 - 9/Y - 0.263 0.05 -

1.2 0.00

C5' 1.0 E -0.05

0.8 -0.10-

U.6 12 -0.15 0.20 - 12 oq

[.4- 9/Y - 0.500 o.15- ij 0.05- 1.2 / 0.00- U j °"°_o.o5 E [.0- -0.05 -

0.8

12 -0.10 12

c_

_/Y - 0.0'12 0.05-

1.2

0.00 \.

U 1.0- DataPoLnt ID: 2DPOT1 .R0776 E -0.05 -

0.8 x / - ]5.04_ 2.01 De9. -O.lO- Fneq. - 10.08 cps

0.6 v - 0.095 12 -0.15 12 1'4 1'_ c_ VeL. - 333.7 Fps ,'8 o_

1.4 Nn - 0.291 91Y - 0.947 Re - 1.9620_10'

1.2

0.05

d' l. 0 0.00 NOTE: J 0.8- Y-ScaLe Reduced b_ 20X

-0.05-

0.6

12 -0.10

o 12 4 ,_ ,B' c_ (b) v=0.10

Figure22. Continued.

53 0.05 o 1.4 y/y - 0.263

0.00 1.2 /

/J -0.05 - d I.o

-0.10 0.8 k r_ /

-o.1512 1'4 1'_ ,',, 0.o12 114 1'_ ,'8

0.25 y/I - 0.500

0.05 - 0.20 ii [.2-

0.00 J 0.15- 1.0 //11 / / J i/ -0.05 O.lO- 0.0

i

0.05 -0.I0 1_8 0.6 I'4 I'6 1'8 12 1_4 ]6 18 12 12 I'4 16

0.05 - 1.4- _/T - 0.842

\ 0.00 - [.2- \ jl \ k \ I DotoPoLntID: 2DPOTI.R0777 ov -0.05 ", + 1.0 X I

o - 15.04± 2.11 Oe 9. \ ? I Ilfl I -0. I0 \,+ 0.8 Freq. - 14.12 cps

- 0.133 0.6 -0.15 12 l 'm` 1'6 1_8 12 1'4 16 18 VeL. - 332.6 fps o_

Mn - 0.290 1.4 y/y - 0.947 Re - 1.9520"108

0.05 - t.2 i /

\ 0.00 - \ \ \ J < NOTE : \\ # T-ScaLe Reduced by 20Z -0.05 -

0.6 "l -o.lo 12 G 1'6 1'8 12 1_4 16 18

(C) v=0.14

Figure 22. Continued.

54 1.4 y/Y - 0.26.3 /)

1.2 ¸ 0.05 -

1.0- 0.00 - \ C__E \

0.8- \ I -0.05 - \ \ I

0.6 12 -0. I 0 12 _'_ 1'6 1'8 o( o_ 1.6 ylY = 0.500

1.4 0.05

! r I / I 1" 0.20 j 0.25 I I 0.00 d /

I.O /_ // c__ 0.15- / _ -0.05. / / / \ I 0.10- \ I \ -O.lO -

0.6 i 12 14 I6 1@ 0.05 12 12 ?_ ,'6 ,'8

Cl 1.4 ylY - 0.842 O. 05 -

/

\ /I 0.00. \ \ /ii \ x I c3_ 1.0- DataPotntID: 2DPOTI.R0778 C..)e -0.05 \ I \ I

"_"\ I I \ 0.8 o - 15,03± 2.28 De9. \ / -0.10 Freq. - 20.16 cps

0.6 ¸ i u - 0.190 12 14 16 ,'8 -0.15 ]2 /4 1_ 78 c_ VeL. - 333.2 rps [.4- 911' - 0.947 ._) Mn - 0.290 // Re - 1.9550_I0' 1,2 0.05 /I

//1 c3J 1.0 O. 00 - \ I J NOTC: \\ i/ 0.8- Y-ScaLe Reduced b_ 20% -0.05 -

0.6 I -0. ]0 12 I 12 ?, ,'6 ,8

oi

(d)v =0.20

Figure 22. Concluded.

55 0.05 -

0.00 - y/T - 0.263 J

-0.05 c__ 1.o-

0.8 A -o 1o,4 ,'6 i'8 2'o 14 1'6 1;

0_

0.25 - ylT - 0.500

0.20- |.0-

d J

0.15- 0.8 0.00 1 t t_ J -o.o5 ]

0.I0 -o.m/ 0.6 I 2'0 ]4 ;6 l'e A ,4 ,'6 ,'8 20 14 16 I'8 o_ o¢

1.2-- 31Y - 0.842

0.00 - 1.0- OatoPotntIO: 20POTl.R0780

o - 17.09± 1.97 De9. -0.05

Freq. - 4.03 cps

- 0.038 0.6 -o.1o14 1'6 l'e 2'o 14 ,'6 ,'e 1o

c_ Vet. - 333.1 £ps

Mn - 0.290 1.2- y/I - 0.947 Re - 1.9570x10'

0.00 - 1.0

d

£_ O. 05 0.8

-0.I0 i 0.6,_ i'_ i'8 _o

(a) v = O.04

Figure 23. 2-D pitch oscillation data; BL-trip; c_= 17 +_2 deg.

56 1.2 9/Y = 0.253

1.0 0.00 -

c:

0.0 - _ j C3 E -0.05

0.6 0.25 - r -0. I0 14 ]T6 18 14 o_ oc 1.2 0.20 -- 0.00 - y/Y - 0.500 ill z,, r

fly /

l.O cj _ 0.15- 0.05 -

d f.D _ :

U.6 ]4 ,_ i'_ _'o 0.051,, 1'6 ,'8 2'O -0.15 14

0.05 -

1.2- ,j/Y = 0.842 0.00-

l.O- C..3E -0.05

d DotoPoLntlO: 20POTI.R0781

O.B o - 17.09± 2.04 De 9. -0.I0.

Freq. - ID.IO cps

O.G. i i u - 0.095 -0.15 14 16 18 2'O 14 i_ ,'8 2'O oc VeL. - 333.0 fps 1.2- ,y/T - 0.9't7 Nn - 0.290

Re - 1.9530_I0'

1.0

\ d

0"00 1 /\\ 0.0

\ \ I J -o.osI 0.5 -0. i0 l 14 16 18 2 14 0{ 01

(b) v = 0.10

Figure 23. Continued.

57 0.00- 1.2- y/y - 0.26

-0.05 1.0 J d -O.tO 0.8

1 -0.15 1'6 i'0 2O 0.6 " --1 14 20 14 0.30 8¢

0.25 t.4 9/Y - 0.500

0.00 0.20 - 1.2 J

-0.05 0.15 d 1.0 1 J

-0. I0 0.10 / 0.8-

2'o -°'1514 i'6 1'o 2'o o, ,4 1'0 1'0 _o o.o514 1'6 ;8

0.05 -

0.00

J -0.05" |,0" OataPoLntlD: 20POTL.R0782 J -O. 10 - 0.8 o - 17.09± 2.09 De 9.

Freq. - 14.14 cps -0.15 0.6 i 14 1'6 I'B 2'0 14 1; 1; 20 u - 0.133

VeL, - 332.9 fp8 0.05 1.4- y/y - 0.947 Mn - 0.290

Re - 1.9500M10 ' 0.00 - 1.2

-0.05 rj _ I..0

NOTE: -0.10 % 0.8- Y-ScaLe Reduced by 20Z \ I /

-0.15 "'1 14 0.6 I j6 IB 20 _0 14

(c) v=0.14 Figure 23. Continued.

58 0.05 -

1.4 ylY - 0.263 O.O0 -

1.2 -0.05 E 1.0 -0.10

0.8 -0.15-

0.6- I -0.20 , 14 16 10 i 14 16 IO 2O 0.35 - @

0.30 -

1.4- O. 25 - _/Y - 0.500 11 0.00 -

1.2- 0.20 - 11 I -0.05 -

1.0- 0.15 r..s,_ -0.10-

0.8- D. lO -0.15

0.0 i 14 16 10 1 -0.20 2_0 0.05 14 1 20 14 @

0.05 -

1.4 ylY = 0.842 0.00

1.2 -0.05 d I.o DotoPoLntlD: 2DPOTI.R0783 -0.10-

O.B- o - 17.09± 2.26 Do9. -0.15- 0.6 14 Freq. - 20.22 cps -0.20 14

v - 0.191 ot

VeL. - 332.2 £ps Nn - 0.289 0.05

1.4 Re - 1.9460_I0' 0.00

1.2. -0.05

1.0- -0.10-

O.B- NOTE: -0.15- Y-ScoLe Reduced by 36Z O.B 14 I115 18I 20I -0.20 14 ct 16' 18' 2'o

(d) v = 0.20

Figure 23. Concluded.

59 0°_- 9/¥ - 0.263

0.6- /

0.4" J

0.2- 1 I / 0.05 1 0.0 J o.oo1 -o.o5H -0.2 i _ ! i i -! 3i 5i 7i -t 1 3 5 7 9

oc

0.8-

0.6-

_' 0.4-

O. O0 0.2- oot

0.0- -0.05 | i i i -0.05 - -I _ 5 7 9 -I 0¢ 0¢ oc

0.8- y/Y - 0.842

0.6- Ii r

0.4 9 DotaPoLntlD: 2DPOTI.R0789 J 0.2 I / J o - 3.99_ 4.04 De 9. 0.05 l 0.0- Freq. - 4.02 cpe J ooo]

-0.05 t , _ ' -0.2 i v t i I - 0.038 -I i 3 5 7 -I 1 3 5 7 9 O_ Vet. - 331.8 fps

Mn - 0.290

0.8 Re - 1.9580_[0'

0.6

t).4 " J

0.2- J 000 0.0- 0.05 t

-0.05 1 , -0.2 I I i i I -I t 3 5 7 9 O_ Oc

(a)v = O.04

Figure 24. 2-D pitch oscillation data; BL-trip; a = 4 +_ 4 deg.

6O 0.8 ylT - 0.263

0.8- .>J

0.4- U / 0.2- 0.0- i;iit -0.2 1 i -o.o5 I /

O.m-

0.6-

_' 0.4

- " 0.05 1 0"05 1 0.2 J °-°°1 0,0 I , _ -0.05 1 -I T -0.05 /

0.8- y/T - 0.842

0.6-

d 0.4 DotoPotntIO: 2DPOTI.R0790 0.05 3

0.2 e - 4.03± 4.I8 De9. J 0.oo | _- ...... :__

0.0 Freq. - 10.05 cps 1--- 1 3i 5i 7i ; -0.05/ - 0.095 -I i 3i 5i 7i

Vet. - 331.9 £ps Mn - 0.290 0.8 Re - ].9550MI0' 0.6 _/T - 0.947 _ /7 i/ 0.'@

0"05 1 0.2- c_)E 0.001 "---"--__-

0.0 ! -o. o5! -I -i i

(b) v =0.10

Figure 24 Continued.

61 0.8 9/Y - 0.263 _/// 0.6 / # f/

d ot .Y 0.05 1 0.2

0.0 -o.o5_I,; _ ; -I 3 5 7

0.B-

0.6-

U o.4- j_ 0.05 7 0.2-

0"00 1 -0.051 , , , 0.0 i t i -o.os/ 9 -1 i 3 5 7 -1 1 3 5 7 ol 0¢

0.8

9/Y - 0.842 ./ 0.6

OotoPoLntlO: 20POTI.R0791 r__ 0.4 oo,] 0.2 - 4.02_ 4.32 De9. c_ E O, 00 ] ,y Freq. - 14.09 cp_ 0.0 -0.05/ j , , , -[ l 3 5 7 -I 3 5 7 - 0.133 O(

VeL. - 332.7 Fps

Mn - 0.290

0.8 - Re - 1.9560MI0 _ y/Y - 0.947 ../ 0.6 - .;/

_" 0.4 -

/# t#/ 0.2- Y 0.0 -o.o5I I _ _ !

(c) v=0.14

Figure 24. Concluded.

62 |.2- y/Y = 0.263 1.0 - ?// 0.8 °'o51 0.6 / // J °-°o 1 0.4 4 -0.05 | _ j ; ; 4 6 B lO 12 ]l4

1,2

1.0 y/y - 0"i00_

f ) O.O

/ 0.05] ...... O.G /

(._)E D.00 1 _ - - 0.4 I i B 8 lid 1_2 1'4 -o.o5 !', _, _, 1'o 1'; 1'4 O_

1.2- ylY - 0.842

I.O

d o.B OotoPoLnt[O: 2DPOT1.R0793 / /

0.6 f - 8.66± 4.05 De9.

0.4 Freq. - 4.04 cps 1_4 -0.05 t u - 0.038 c_ o_ VeL. - 334.7 Cps

Mn - 0.292 1,2- ylY - 0.947 Re - 1.9670_10 _ y1 1.0-

d o.e

O.B

0,4- -0.05 ! l 4

O(

(a)v = O.04

Figure 25. 2-D pitch oscillation data; BL-trip; c_= 9 +_4 deg.

63 1.2- y/y - 0.263

l.O-

d 0.8-

i I j 0.05 ..... 0,6 f 0. I0! o.oo _ G ,'o 1'2 1'4 0.4 i l 6 8 I'0 I'2 I'4

of

_.4- y/y- 0.500

[.0 .,-_ "/

/f t oot .2 _. o

0.6 _ 0"00 I _ 0"00 1

0.4 , , -0.05| , , -0.05| 4 6 8 t'O 1'2 I'4 4 6 8 1'0 tv2 I'4 4

t,2 y/Y - 0.842 .

t.O

DataPoLntIg: 20POTI.R0794

0.8- i /w 0.05 ] _ - e - 8.89± 4.20 0e9. 0.6

c3 E O.O01 Freq. - 10.09 cps -0.05 , , 0.4 4 6 8 I'O t_2 1'0 I'4 4 8 1'2 u - 0.097

Vet. - 328.1 £ps

Mn - 0.286

1.2" y/y - 0,947 Re - ].9260ML0"

1.0- f

0.8- / /f7 0.05 ]

0.6- f J o.oo] -o.ost 0.4 4 8 110 I'2 I14

(b)v =0.10

Figure 25. Continued.

64 1.2- _IY - 0.263

I.O-

O.B

0.6

0.4 4 _ I'o i'2 1'4 -o.o5 ! 4 8 I'o I'2 114

C_

[.4- _/T - 0.500

1.2-

1.0

0.8

// 0.6. o.o_l_ o.o_1 _ o.oo1 ...... _.o.ool< 0.4- i'4 -o.o5!4 _ _ l'o ;2 1'4 -o.o51t

oc c_

1,2

1.0

r_ _ O. 8 - OotoPoLnt[D: 2DPOTI.R0795

0.6- e - 8.88± 4.34 De 9. <__

0.4 ffreq. - ]4.1] cps 6' 8' t 'o 12' -0.05 / - 0.133 4 _, _ ,'o I_ 1',, of c_ VeL. - 333.3 fps

Mn - 0.290 1,2- Re - 1.9510_10 _ 1.0

(_ O.O 0.6- i;iit 0.4 -o.o5H 114 o_

(c) v=0.14

Figure 25. Concluded.

65 1,4- 9/Y - 0.263

1.2

I 1 1.8

0.8 E o0.00 x ,..t i 0.6 -o.o56 ; /o /_ ,'_ 16 1'0 1_2 1'4 1'6

1.2"

cj _ 1.0 -

0.8-

0.6 1'0 1'2 I_ 116 6

1.4 ylY - 0.842

1.2

c_3 _ 1.0 o.os] DotoPoLntIO:- 10.88± 2DPOTI.R07974.07 De 9. J 0,8- O.OO I _ I Freq. - 4.04 cps -0.05 ! 0.6 6 @ I'0 1'2 1'4 ,'6 1'o 1'2 1'_ 1_ _ - O. 038 oc

VeL. - 333.9 fps

Nn - 0.291

[.4 - y/Y - 0.947 Re - 1.9560MI0 _

1.2

(_ 1.0

0.8 0.00 / 0"05 1 _---- - _- _x -o.os/ 0.6 s @ ['o 1'2 t'4 llO II2 tl4 I'6

(a) v = O.04

Figure 26. 2-D pitch oscillation data; BL-trip; a = 11 +_4 deg.

66 1.4 y/T = 0.263

L.2

_Y 1.o-

0.B-

0.6

1.4- _/Y - 0.500

1.2 /z

(_' t.o

0.10] 0.05 ] 0,8

0.6 IB 0. O0 # , 6 6 8 llO 1'2. 1'4 16 -0.05 # ,

@ @

1.4-

_/T m 0 I 8_ 2

m.2-

/ / OaLaPobntID; 20POTl.R0798

0.0 - 10.88± 4.22 De 9.

0.6 Freq, - lO.tO cpe i i -o.o5! 6 . 1'o _'2 ,'4 ,. = 0.095 6 ; ImO Im2 114 ,'6 0 VeL. - 333.9 £ps

Nn - 0.291 1.4 )/T = 0.947 Re - 1.9530M10'

1.2

j l.o 0.8- 1 0.6 6 o.oo/ 6

(b) v=0.10

Figure 26. Continued.

67 1.4- y/Y - 0.263

1.2-

_ 1.0 0"10 1 J 0.8 0"05 1 _ _ _ - o.oo! 0.6 6 8 l'O 112 ;.14 ]'6 O_ o_

[.4-

1.2

C__ 1.0 0.05 j

0.8 - J 0"10't0.05 _= 0.00 1

O. O0 0.6 1', -o.o_ _ _'o [2 ,4 116 1'0 1'2 1'4 _'s s 1=0 1_2 LI4 c(

[.4- y/y - 0.842

1.2 // OotoPotntID: 20POT1.R0799 c..)' 1.0

o - 10.92_ 4.36 De 9. E 0.05 0.8

Freq. - 14.12 cps 0,0! 0.6 O. O0 @ t'O lJ2 t'4 1'6 1'0 ['2 ['4 1'6 u - 0.133 CM o VeL. - 334.2 fps

Mn - 0.291

U/Y - 0.947 Re - 1.9530MI0 a

1.2

J O. 05 0.8 °

r 0.00 0.6 8 [0 12 14 I'0 1_2 1'4 oc o{

(C) v=0.14

Figure 26. Concluded.

68 1.4- y/Y = 0.263 0.05 -

1.2 0.00 - 1.o (.3 E -0.05

0.0 0.J0-

O.G i 0.15 18 i i 10 1_2 tit 16

0.25 -

O. 20 -

0.15 O.O0 - J rl I 1.2 0.10 d cj = -0.050.D5 - v _j_ 1.0- /fJJ 0.05 - 1"41 Y/Y - 0"50_Z -0. I 0

0.8 0.00 - 8 1_3 t'2 I'4 16 8" 1'0 12 I'4 t6 118 -0.15

o

1.4 y/T - 0.842 0.05 -

1.2 0.00 -

1.0- OatoPoLnt[O: 20POTI.R080] C_)E -0.05 -

0.8- - 13.06_ 4.04 De 9. -0.10-

0.6 i i Freq. - 4.04 cps 8 ,o _'2 ,', _6 ;o -0.15 - 0.038 ;o ,'2 ,'4 ,'6 ,'8 Oc

VeL. - 332.1 £ps

Nn - 0.290 5.4 91T - 0,947 Re - 1,9530_t0 _

5.2

0.05] _ _ _ _ _ (j_ 1.0-

1J.8

0.6 .iolt 8 -o.lo

(a) v = O.04

Figure 27. 2-D pitch oscillation data; BL-trip; a = 13 +_4 deg.

69 0.05 - 1.4- _/Y - 0.26_ O.O0 - \ I 1.2- \ t \

-0.05 t cj-_ 1.0 k t // ///lIlt 0.10 0.8

-0.15 I'8 0.6 ,'O ,'2 ,'_ 1.6 I'8 I'0 1'2 1'4 16

0.25 - m_ 1.6- ylT - 0.500 ! I "y / 0.05 1.4

/Y O. 15 - t I 0.00 1.2 O. 20 - \ ( J // J k ! 1.0 ,, /_J _ -0.05 tf_ / / o.1o P 0.8- _ . / 0.05 -0.I0

0.0 I'0 I'2 1'4 L'G 118 -0.15 0 I'O 1'2 /_ l% 1.6 B ,'o /2 1'4 1'6 l'a o.oo @

0.05 1.4 ylY - 0.842 / O. O0 1.2

\ ) DotoPoLntlO: 2DPOTI.RO802 _: -0.05 - \ l.O- I /I \ /

- 13.07± 4.20 De 9. -0. I0 - Ij O.B- r • /

Freq. - 10.11 cps -O. 15 118 O.B @ 1'o 1'2 t',! ,'. 8 I_ 1'2 1'_ & ,.6 - 0.096

VeL. - 331.8 fps

Mn - 0.289

L.4- Re - 1.9480M10" y/Y - 0.9_ 1,2 o.o5]

c_ _ 1.0 0"00 1 \ I _ _ _ // /I I/III

0.8- -0-05 1 _,_ J

-o. io_ 0.6 @ 110 112 I14 1'6 B

(b) v =0.10 Figure 27. Continued.

?0 1.4-

!.2-

1.0 0.05 J

0.8 0.00 \ I \ / E \ I CD 0.6 -0.05 k / k / \ / 0.4 -0. I0 ,; 5 :4 l; ,'8

1.6 9/Y_ = 0.500

1.4

/

1.2 0.15 J /) 0.20 - /: _\ 0.05

1,S / , _ o.,o \ / // \ 0.00] O.B / \ / / / , 0.05 • /

0.6 1 R 1'o _'_ (4 1; ]'8 00o _'o 1'2 1'4 1'6 1'8 -o.lo/8 I'o 5 1'i I; o

1.4 j/Y = 0.842

1.2

l.O d f /// , DotoPotntID: 20POT1.R0803

U.8- / 0-05 1 ,* __,, / ( / , o - 13.07± 4.35 De 9. C.DE 0"00 1 \\\ ii 0,6- -0.05 _ \ / Freq. - 14.14 cps \ / 0.4 / 1 - 0.134 8 ,'o /2 :I _'_ 1o -o. lo 1 8 lrO 12 l'dl 1; o VoL. - 331,7 £ps

Mn - 0.289

Re - 1.9470x10 a

1.2 ,_/Y. - d _.o 0.05_- : - _ _

0.8- ////// / cjE 0.001 _ _

0.6 i 1 8 I_0 [12 1't 16 10 -0.05 / 8 1'0 t'2 t't t'6

(c) v=0.14

Figure 27. Concluded.

?1 0.05 - 1.4-

0,00 1.2-

_J O. 05 (_) ! .0

-0.10 0.8

-0.15 0.6 10 I'2 1'4 1'6 t'@ I0 l'2 l)4 ['6 1'8 210 0.30 ot

O. 25

0.05 - 0.20 -

0.00 -

rj E -0.05 1

U -0.I0

- _ _ - - _ 0.00 2'0 1'2 1'4 t'6 lr8 210 0.15 I0 1'2 t'4 *'o t'8 10 12 [4 [6 18 20 10 c_

0.05

0.00 1.4

-0.05 1.2 C_)= OotoPotntlO: 20POTI.RO805 -0. I0- 1.0-

a - 15.04± 4.04 Oe9. -0.15 - 0.8-

Fneq. - 4.05 cps -0.20 0.6 tO ¢2 1'4 1'6 l'@ 2'0 10 v - 0.038 @ o( Vet. - 333.8 £ps

Mn - 0,291 0.05 ]..47 Re - 1.9670xi0 e 0.00 1.2-

rj_ -0.05 - o_ 1.o-

-0.10 - 0.0-

-0.15 0.6 lO 1'2 I'4 I'6 I'8 I0 I'2 1'4 1'6 1'8 2'0 o

(a) v =0.04 Figure 28. 2-D pitch oscillation data; BL-trip; _ = 15 +__4 deg.

72 0,05 -

1.6 • _IY - 0.263 O. O0 -

1.4 -0.05 \ I 1.2 p e -0. I0 - 1 J

1.0 I / I, -0.15 /

0.8 \ /1 -0.20 \ / 0.40-

0.64 -- I -0.25 I0 _'_ 1'_ 1'_ I'O 20 0.35 10 i'_ I'_ I'6 lib 2'0

O. 30 0.05 -

1.6 y/Y - 0.500 J1 0.25 0.00

I 1.4 / C 0.20- -0.05 /I

// 1.2 0.15- I / C3 e -0.10 U I

1.0 f , 0.10- -0.15 - x / n.R- 0.05 \ / -0.20 -

0.6 2_ 0.00 10 1 lO ,'_ 1'4 ?_ ,IB li2 114 I)6 lib 2_3 -0.25 10 2O Or

0.05 -

1.6- ylY - 0.842 O. O0 -

1.4- -0.05 -

1.2- Cj e -0.10 - U OotoPoLntID: 20POTI.R0806

1.0 -0.15 ( / 1)1 - 15.04± 4.16 0o 9 . 0.8 -0.20 " // Freq. - ]0.|4 cps

0.6 - 0.096 -0.25 I0 1'2 1'4 l'6 ,_ 2'o I0 12 I'4 1'6 I'o _'o (_ VeL. - 332.4 Fps I.G ylY - 0.947 0.05 - Hn - 0.290

1.4 Re - 1.95]0_10 e 0.00 \x \ 1.2 0.05 J z / c_3 1.0 -0. I0. / / , / \ x xk__x 0.8- -0.15 -

0.6 -0.20 10 ]1;2 114 116 lib 2; 10 o

(b) v = 0.10

Figure 28. Continued.

73 0.05 - 1.6- 9/T - 0.263 i 0.00 - t.4

\ -0.05 1.2 \

r_.)e -0.10 I d 1.0 iIII_ -0.15 0.8

-0.20 0.6

45 - 0.25 0.,1 O. t 1'6 1'8 20 t'2 10 I0 t'4 1'6 I'8 O. 40 I I

I 0.05 - 0.35 I I 0.30- l 0.00 - 1.6- y/y_ 0.500

0.25 -0.05 - J / -0. I0 - 1.4- 0.20-

/// -0.]5- ___ 1.6-1.2 t 0.15 t f -0.20 - I I 1.0 0.10- / I t

-0.25 - 0°8- /( _ _ _ _ _ j II 0.05 -

0.00 -0.30 ! 0.6 I 118 20 I0 10 ll2 1'4 116 118 20 I0 1t2 114 116 118

0.05

0.00 1.6- \ 9/Y - 0.842 j \ -0.05 - \ L.4- I \ \ -0.10- 1.2- J I OatoPotntID: 20POTl.ROB07 -0.15- (_ 1.0

-0.20 - 0.8- - 15.03± 4.32 De 9.

-0.25 - 0.6- Freq. = ]4.]9 cp8

-0.30 0.4 - 0.134 10 112 lJ4 16 L8 I0 1'2 1"1 1'6 I'8 20

VeL. - 332.7 fps

|.@- Nn - 0.290 tj/Y - 0.9q7 ( 0.05 - - 1.6- Re - 1.9460.I0'

0.00 1.4 % \ t.2 /I -0,05 \ d _ -0.10 1.0 \x l NOTE: I -0.15 0.8- T-ScaLe Reduced b 9 20Z x

-0.20 0.6 J

0.1 -0.25 I0 I_2 1_4 1'6 t'8 2'0 10 I'2 ;4 1'6 1'8 2'o

(c) v=0.14

Figure 28. Concluded.

74 [,4 - ylT = 0.263

1.2-

0.00

0.0 -0.051 _ _

-0.]o! 12 It4 |16 lIB 20 22

0.25

[.I- 0.20 0.05 -

1.2 0.15 i f O.O0- J

1.0- 0.I0 c__e -0.05

0.8- 0.05 -0.10-

0.6 0.00 12 12 22 -0.15 12 ,'4 ,'6 ,'_ 2_ 2_

1.4- y/T - 0.842 0.05-

1.2 O. O0 -

d 1.o OotoPotnt[D: 20POTI.RO809 -0.05

0.8 - 17.05± 4.03 De 9. -O.IO

0.6 Freq. - 4.08 cps -0.15 12 G ;6 1_ 2b 2_ = 0.038 12 1'4 I_ 1'8 2b 2'2

VeL. - 333.8 fps

Mn - 0.291

y/Y = 0.947 Re - ].9540_10 B

1.2-

c T' l.O x 0.8 , \ <_i:ill'

O.G -o.1o / 12 12 14 16 18 20 c_

(a) v = O.04

Figure 29. 2-D pitch oscillation data; BL-trip; c_= 17_+ 4 deg.

75 0.05

1.6 0.00

1,4 -0.05

1.2 r..jE -0. I 0 d / 1.0 / 0.'15 - -0.15 I / 0.8 0.'10 - -0.20 \ I

- 0.25 0.6 0.35 - 2'2 12 1'4 1i6 1'8 2VO 2'2 12 ;4 I'8 ;0 2_

Oq 0.30 0.05 -

/ O. 00 - 1.6- 0,25 I

\\ 1.4- 0.20 -0,05 -

/ 1.2" 0.15 (_E -0.10 / c/ •_ = . J 0.I0 / -0.15 t.O-

-0.20 - 0.0 \ ' 0.05

0.6 O. 00 2_2 -0.25 12 _2 12 1'4 ]'6 |18 2_] 212 12 1'4 1'6 1_8 2'0 & cl 0_ 0.05 -

0.00 - 1.6- ylY = 0.842 x,\\

- 1.4- -O.OS

1.2- J -0. I0 - d DotoPotntlD: 20POT1.R0810 -0.15 - 1.0- o - 17.04± 4.14 Oe 9.

- 0.8- -0.20 l) t% / / Freq. - 10.t7 cps

-0.25 0.6 I - 0.096 12 1'4 1'6 i'8 70 2'2 12 i'_ l'6 t'B 2'0 22 Vet. - 332.3 fps cI 1.0- Mn - 0.289

1.4- 0.05 - Re - 1.9380_10 B

1.2- O. O0 - 91T - d t.0 -0.05 -

C_3E

-0. i0 - 0.8 I /

0.6 -0.15

-0.20 0.4 12 L2 I'4 1'6 1'8 2'0 2'2 ;4 I'6 i'8 2'0 2'2

@ QI

(b) v =0.10

Figure 29. Continued.

76 1.8 O. 05

1.6 O. O0

I.'I- -0.05 -

1.2- -0.10- cJ' (_ff t.O -0.15 - i / ¢ 0.60 - i 0.8 -0.20 - 0.55 0.6- -0.25 0.50 0.4- -0.30 12 i i'4 ?5 G 26 2_2 O. 45 - 12 G l'6 l'o 26 22 o 0.40 - 0.05

1.8 y/Y - 0.500 0.35 - 0.00 J 1.6 c__ 0.30 - -0.05 \ i / \ \ 1.4 / 0.25 - -0.10 ii I 1.2 /K 0.20 - (c, e -0.15 J 1.0 0.15- -0.20

/ 0.0 0.I0 - / h f ¢ 0.25 \ f 0.6 O. 05 -0.30 -

0.4 0.00 -0.35 i 12 It4 II6 116 26 212 12 ?4 1_ 1'o 7o 2_ 12 ,'4 ?6 i'_ 26 22 o( oc 1.8- ,_/Y - 0.842 0.05 -

1.6- 0.00 -

\x "%,, 1.4 -0.05 ./-/ --,\ 1.2 -0. I0 OotoPoLntID: 20POTI.RO811 \ x I J rD_ t.O -0.15

i/ill 0.8 o - 17.04± 4.27 Oe 9. -0.20 - \ .z x j Freq. - 14.18 cps 0.0 -0.25 -

- 0.134 0.'I ,4 ,'o -0.30 12 1'o 2'o 2'2 12 ,'4 1'6 1'8 70 2'2 VeL. - 333.0 fps ci 1.8- y/Y = 0.947 Mn - 0.289 0.05 -

1.6- Re - 1.9350_10' 0.00 -

1.4- -0.05

1.2- -0.]0 J r_.)E 1.0 NOTE: -0.15 D.O Y-ScaLe Reduced b_ 20Z -0.20 \ t 0.6 -0.25.

0.'I -0.30 12 ll4 1'6 1'0 2VO 212 12 ,'4 _'0 _'0 _ 2'2 oc

(c) v=0.14

Figure 29. Concluded.

7? 0.05 -

0.00 -

c_ -0.05

-0. I0

oo8411Yo2r -0.15 2o 7 9 1_1 1'3 1'5 i.7 1'9 ,'t t'_ t's 1.7;' I'_ o_

0.25

0.20 14 0,15 0.00" J / 0.10 / rj E -0.05 - 0.05 d 0.05 -0.10-

24 0 0.00 i , -0.15 °'87 G ,'t t'3 1's 1'7 _9 9 1'I I'3 1'5 1.7 1'9 ,'1 1'3 I'5 1.7 _0 o o

0.05 -

0,00 - OotoPoLnt ID: 2DPOTt.R0816 U -0,05 -

-0.10 1.2t4]1.o0.8- _IY - 0.84 __ a- 13.02+ 5.07 Oeg.

-0.15 0.6 7 9 I'l 1'3 1'5 1'7 1'9 Freq. - 4.00 cps

oc u - 0.038

Vet. - 329.7 fps

Hn - 0.289

Re- 1.9870_106

izil°°,1l -0.I0/ ;, ; i', 1'3 t's 1.7 j'9

(a)v =O04

Figure 30 2-D pitch oscillation data; BL-trip, c_= 13 _+5 deg

78 O.IO

[.6"_ _/T - 0,263 0.05

1.4- O.O0-

t.2- cJ = -0.05 - d ., I 1.0. -0.10-

0.8- i! -0.]5-

0.6 li h 1'5 1'7 19_ -0.20

Oi o

O. 30 -

1.6- t 1 _/T - 0.500 o.zs I I 0.05 / I L.4- II 0.00

1.2- d t.O- I j -°'i°"-°'°s I °'I°-°'°s-°'16-°'z°" I I 0.8- -0.15 - 0.6 ;1 ;3 l'S l_' /g o.oo l'l ,'3 1'5 17 1; -o._o 4 ,'3 ,'s ,'7 19' o @ @

1.6- _/T - 0.842 0.05- _ - _ _

1.4-

,.2- -0.0_0"00 d OatoPoLntlO: 20POT1 .R0817 J 1.0- ! -0.10 - _' I

0.9- - 13.03+ 5.25 De9. -0.15- _ f

0.6 Freq. - I0.04 cpe -0.20 "/ _, 1'th ;s I_ /. - 0.096 7 _ 1'i6 1's,'76 @

VeL. - 329.9 fps

Mn - 0.2B9 1.6- _/T - 0.947 Re- 1.9790-10' 1.4-

1.2- d ,.0-

0.8-

0.6- ; /, h ,'5 ,_ 19' 7 _ ,'i1'3,'s,'7/. @

(b)v =O. lO

Figure 30. Concluded.

79 0.00

J r..3E -0.05 7

0.8 -0.I0]

0.6]| |_ |'5 1'7 [19 2_] 23 0"15 lI, 13 lW5 t'7 l'g 2'i 2'3

0.35-

0.30 -

0.05 - 1.6- O. 25 -

r I 1.4- 0.00 -

1.2- 0.15" -0.05 - 0.20 - / J E _S 1.0- 0.10- -0.I0-

0.8- 0.05- -0.15-

0.6 -0.20 I I_3 1'5 ['7 t'9 2_1 2'3 0.00 I 1 13 l'5 ['7 1'9 2I] 2'3 1 13 ll5 IT7 1'9 2'1 23

@ OI

[.4- 0.00 " _ x

L.2- -0.05 - r.j e OotoPoLnt[D: 20POTI.RO813 -0.10 t.0- 0.05 -0.15 0.8 - 17.09± 5.07 De9.

0.6 -0.20 I I'3 1'5 1'7 1'9 2's 2'3 Freq. - 3.99 cps ] u _3 L'5 t'7 L'9 2'1 2'3 c_ - 0.038

Vet. - 330.1 fp8

Nn - 0.290

y/T - O. Re - 2.0000_tO s

L.2- 0.00

1.0- J -o.os°°5t] -0.I0 1

0.6 I1 13 15 17 19 21 213 -0.15 111 I3 115 LV7 lU9 2,1 2,3

(a) v = O.04

Figure 31.2-Dpitch oscillation data; BL-trip; _z= 17_+5 deg.

80 0.05

O. O0

1.6 -0.05

1.4 -0.10 U _ -0.15 j -0.20 1.0- / 0.65 O.B ,, I" -0.25 0.6 _ - _ _ .... _ - i 0.60 - -0.30 -

0.55 0.4 ] ! 13 I'5 1'7 If9 2'I 23 -0.35 r I I I'3 IS ir7 I'9 2rl 23 0,50 o_ ol 0.45

0.40 0.05

0.35 J O. 00 J l.B O. 30 - -0.05 - 1.6 0.25 - -0.10 - t.4 0.20 - C.3E -0, 15

c_' 1.2 0.15- -0,20 1.0 0.10- -0.25 0.8 k / 0.05 -0.30 0.6 -0.35 I ]3 I'5 i17 I_9 2'I 23 0"00 11 I)3 IT5 1'7 I'9 2'I 2'3 I 1'3 1'5 t'7 1'9 21 2'3

0.I0-

0.05

i.a y/Y - 0.8'}2 -0.05

-0.10 J 1.4 -0.15 (_' [. 2 OotoPoLnL[O: 20POT1.RO81q -0,20 - 1.6 1.0 -0.25 - - 17.08± 5.18 De 9. 0.8- -0.30 -

0.6 f - _l I Freq. = 9.99 cps II 13 15 17 119 2'I 23 -0"3511 1'3 ITS t'7 I19 2'I 2_3 (3, - 0.095 c_

Vet. - 329.2 fps O.05 Nn - 0.289 1.6

1.4 Re - ].9870_t06 -0.05 1.2 ,F" -0.10 - l . 0 '/ J -0.15-- O.B / / -0.200.00 - 0.6- _" -_-_ NOTE: -0.25 Y-ScoLe Reduced by 20Z 0.4 II I'3 If5 I'7 if9 2'I 2m3 -0.30 I I1 I'3 I15 1'7 I19 2I] 23 o 0(

(b) v=0.10

Figure 31. Concluded.

81 t.2

t.O y/Y _ 0.25_ ,

0.8-

0.6- C_ _ o.4-

0.2. °-°°1 _ I

0.0-

-0.2 -0.I0-I i i , , , , , i -_--_ I _ ; _ ; i'1f3 l''71'92'1 -I ! 3 5 7 9 II 13 t5 11 19 2]

1.2-

1.0÷

0.0 0.25 -

0.6

0.05 - 0.4 O. 15 - II

0.2 0.20 - /I 1

0.0 I

-0.2 1 i i i o.oo ,_ ; 1'_6 l's 6 1'9_'_ -o.,oj_ I 5 7 9 1'] 13 I'5 1'7 1'9 2'1 1 1 3 5 7 9 11 13 15 17 19 21

t.2- _._.h_/I - 0.800

1.0 - zj'_r-_..,l_lI _

0.8-

0.6- DotoPoLnt[O: RTOSTI.R0283 d 0.4- 0.05 q a - I0.12_ 10.06 De 9. 0.2- J 0,0- Freq, = 0.00 cp8 - • I , i i i i i i i i -°'2-I_ _ ; _ ; 71,'__'s,'7 I'9d, - 0.000 -I I 3 5 1 9 II 13 t5 17 9 21 o_ (_ Vet. - 333.8 Fps

Mn - 0.29!

- . Re - 1.9680"I0 B

0.0

0.6

d 0.4 (3.2 °°'l O. 0 _E 0"001 '_ I -0.05i , , , , , , , , , , ' -0.2 -I I' 3' 5' 7' 9' l'l 13 li5 1'2' 1'92'1 -1 l 3 5 7 9 l] 13 15 17 19 21 @

(a) Repeat no. 1

Figure 32. 3-D round tip quasi-steady data; BL-trip; 0 _<_z<_20 deg.

82 0'15 1 o.lo1 o.o,1 00,1o._o1 o. oool_------q 0.00| -0.05| _ , _ , r , , , _ , , -I i 3 s 7 9 I'I1'_I',1'7i'92'i -I I 3 s 7 9 11 131s171921

n.8- y/Y - 0.986 0.6-

0.4 d 0-15 1 0.2 _2_ O.lO] o.os7 0,0 0207 _._

0.2 o0.00 I _ , ooot.1--->'

o a o

0."10-

0.35 -

1.0- O. 30 0.05 -

0.8-. 0.25

0.6- c__ 0.20. 0.05 - d 0.'1- 0.15- J -0.10

0.2- 0.10- -0.150.00 - I_ 0.0- 0.05 -0.20

-0.2 , 0.00 -0.25 i _ i -1 ] 3 ; 7 g I'1 l'3 1'5 IF7 llg 2'I -1 1 3 ; ) 9 1'1 1'3 1'5 II7 1; 2'1 -Ii _ s 7 _ 11i;i;1'7j;2'i 0 Oc

(a) Repeat no. 1. Concluded

Figure 32. Continued.

83 1.21.o _/Y " 0"2_'_i

0.6 d 0.t

0.2

0.05 0.0 w E 0.00 t

0.10/ _ , -o.2:, I _ _ _ ; I'I 1; ,'51'71; 2'1 -1 l 3 5 7 9 11 13 [5 17 19 21 oL

1,2-

l.O-

0.B- 0.25 -

0.6- O. 20 " d 0.4- 0.15- J , 0.05 7 0.2- 0.10- E 0.00H __7_ 0.0- 0.05 - -0.05 1 '_;_ -0.I0| , , , , _ , , , , , 0.2 i i i l i 0.00 3 _ _ _ 1'i_;1'_b_2'_ -I ] 3 5 7 9 ll 13 15 17 19 21 -1 1 3 5 7 9 II 13 15 17 t9 21

1.2- 91Y - 0.800

0_8

0.6 DotaPoLntlD: RTOST1.R0284 d 0.4 l.O 0.2 = 10.11± 10.07 De9.

0.0 Freq. - 0.00 cp8 u - 0.000 -O.lOt , , , l , , , , , , , o2/, I _ ; _ ; _'1;_I'561;2'I -1 I 3 5 7 9 11 13 15 17 19 21 o VeL. - 333.4 Fps

Hn - 0.290

Re - 1.9560_I0"

0.B-

0.6-

0.4-

0.2-

0.0- _e 0"001"_" t °"°5'1 _ _ ; h 1'3l's l'__'9_1 21 ol

(b) Repeat no. 2

Figure 32. Continued.

84 1.0 9/T - O. 966

0.8

0.6

cj _ 0.4-

0.2- J 0.10

o.0- O. 05 E

-0.2 - o0.00 sOOl_ -0.05| _ , _ , , , , , _ _ i -11 _ J i l'lhitl'7;92'l -1 9 II t3 15 17 19 21 -I 1 3 5 7 9 II 13 15 17 19 21

o_ 0¢ ol

0.8

0.6

0.4

U 0"15 1 0.2- J 0"10 1 0.05 7 0.0- o 7 o.oooI -0.2 -o. os/ °'°°-tl I _ _ _ _1'1 ;31'5 I'_1'9;, -11 _ _ _ _I'1 h 1'5_'_,'9;1

c_

0.40 - i

0.35 f |,0- O. 30 - 0.05 - _/¥ - 0.995 / ;

0.8- 0,25 0.00 -

0.6 J 0,20 -0,05 -

0._ J O. t5 -0, 10 --

0.2 0.I0- -0.15 -

0.0 0.05 - -0.20 -

-0.2 _ T , , 0.00 I _ _ _ 9 1'lh1's1_1'92'_ -11 _ _ _ _'1,'_i'_ _'_;_ 2'1 -o.25 ; _ ; c_

(b) Repeat no. 2. Concluded

Figure 32. Continued.

85 1.2 j/y . 0.25_r_ ]

0.8

0.6 d 0.4 l.O / i_ 0.2 0.00-I_ q ,

0.0- J o.osJ '_t4_V_ -0.I0# l , l , i w J , l _ -0.2 | I _ ; ; ; i'ii'3l's1'7l;2'I -I 1 3 5 7 9 11 13 15 17 19 21 cR c_

t.o-1"2-_/y_ 0.47_f_ A

0.25 -

0.6- d 0.15 - 0.4- _ 0.00 0.2- 0. I0- ! r_E 0.20- -0.05 0,0- 0.05 -

0.00 i -0.10 I , I i I -0.2 i i I i i -I 1 3 5 7 9 1'1 113 1i5 LT7 119 2_1 -I I 3 5 7 9 1'1 1'3 l; l.r7 ll9 2'1 -I I 3 5 7 9 11 13 IS 17 19 21 o @

1.a y/Y - 0.800

0.8

0,6 BaLaPoLnLID: RTOSTI.R0285

0.4 + l.O 0.2- - 10.10± 10.06 Beg.

0.0- Fneq, - 0,00 cpe oo5]t -0,10l , , , - 0,000 -1 1 3 5 7 9 11 13 15 17 lg 21

o[ VeL. - 333,3 £ps

MR - 0.290

1.o- y/Y- 0.900 Re - 1.9480_106

O.G

r_ _ 0.4 0.8- y 0.00 0.2 £._3E -0.05 0.0-

-0.2 , , , , , -0.I0 T , , , l , , , '7 9" 2'I -I 1 3 5 7 9 1'1 1; 1; 1'7 1; 2'1 -t 1 3 5 7 9 II 13 15 1 I (_ (_

(c) Repeat no. 3

Figure 32. Continued.

86 o.2o 7 d / 0,o1 i.f °°51 °°51 J°°° / °'°°:)17-_ _ _ _ l'1;3 _'51'_1'92'_ -°'°_-1 I "__ _' ; ;1 h l's;7 2'92'1 o o

o.a- _/y_ 0.986

0.4- 0.15 U

o,0.24 J o.o0.10 1 / 0.05 7 0.0- """" 0.051_ °" °°°1 -0.2 , , , , 0.00/ , , , -0.05/ , , , _ , , , , , r -I 1 3 5 7 9 ;, 1'3 15 1'7 1'9 2/1 -1 1 3 5 7 9 fi t'3 1'5 1) 19 il -1 1 3 5 7 9 ]I 13 15 ,7 19 21 cA _ cq

0.'10

0.35

1.0- 0.30 0.05 -

0.8- 0.25

0.6- O. 20 -0.05

0.4 0.15- _ -0.10

0.2 0.10-, -0.150.00 -

0.0 0.05 - -0.20

0.2 1 i 0.00 ) _ , -0.25 , _ _ -2 1 3 5 7 9 2'2 1'3 l; 1'7 2; 2_1

(c) Repeat no. 3. Concluded

Figure 32. Continued.

87 1.2- ylY - 0.250 1"I

1.0- q_ I

0.8 d 0.t

0.2 0.00 6_] E 0.0 -0.050051 -0.2 I -0.10 / 1 i 1 ! t i i ! i i i -, i 3 ; } ; A1'31's;7,%21 -I 1 3 5 7 9 11 13 15 17 19 21

o o

1.2

1.0

0.8 0.25 -

0.6 d 0.20 - / 0.4 J 0.15- ,!/ 0.2 0.00 O. I0 - _ ! J [3 E 0.0 -0.05 0.05 1 _'__t ,_

-0.2 11111 -0.I0 , , , , , -I l 3 5 7 g ]tl l_ 15 117 19 21t -1 1 '3 5 7 g 1'1 13 t'5 /7 19 2'1

0

1.2 91Y - 0.800

1.0

0.8

0.6 OotoPoLntID: RTOSTI.R0286

0.4

0.2 a - 10.09± 10.06 De 9, 0. O0 J 0.0 Freq. - 0.00 cps -0.050o5 -0.2 -I 1 '3 5 7 ; l'l l; It5 117 lfg 211 - 0.000 -°"°-, I k ; } ; A 1; ,'5_'7,'92'i

0 o VeL. - 333.2 £ps

Mn - 0.290

|.0- Re - ].9420.i0'

0.8

0.6

0.4 0.2 °°5l 0.0 E o.oo-1---- , i l -0.2 T 1 i T t l ] 5 7 9 11] 1; 1; 1'7 119 211 -o.osj, i k _ } G _, ,'_,'5 _'__'__',

(d) Repeat no. 4

Figure 32. Continued.

88 1.0 y/f - 0.966

0.6- 0.20] d 0.4- / 0.2-0.8 'm _, , J

0.0 4

-0.2 I i ; ; _ _ ,1,'31'sj'7,'g2',

o

0,8- _/¥ - 0.986

0,6-

0.4 J °.,51 /. 0,2 o.,°o.2o]1 o.o5 0.0

-0.2 , , , I 1 3 5 7 ; I'] ,'3 I'5 I)I'9 21 ooo_, i ; ; ; _,,',,'.,,'_,'7,'0 ' -o.o5/ ...... • - 3 5 7 9 11 13 15 17 19 21 -] { 3 5 7 9 11 13 15 17 19 21 o

0.'t0 -

0.35 -

1.0- O. 30 - O. 05 -

0.8- 0.25

0.6 0,20 -0.05 - ',

rj _ 0.'1 0.15 rj e -0. tO

0.2 0.10- -0.150.00-

0.0 0.05 -0.20

-0.2 0.00 , , -0.25 , 1 3 ; 7 ; ,'l 1'3 1'5 1_7 1921 -_ I _ ; ; ; ;i,'_,'5,'_,'92,

0 o

(d) Repeat no. 4. Concluded

Figure 32. Concluded.

89 0.6 y/l( - 0.250

0.05 0.4

rl

/ _ O. O0 0.2

-0.05 0.0 3 5 7 3 5

O

0.6- ylT - 0.475

0.05 - 0.05 - 0.4- f f J 0.00 0.2- 0.00 -

0.0 _ _ oo5 _ _

0.6

O. 05 0.1 OotoPoLnt ID: RTPOT1.R0242

0.2 : 3.94± 1.99 Dog. E o.oo-

Freq. - 4.01 cps

0.0 - 0,038 o.o5

VeL. - 330.2 fps

fin - 0.287 0.05 0.-I Re- 1.9390_I0'

rj e O. O0 0.2

-0.05 I I i 0.0 i i i 3 5 7 3 5 7

(a) v =004

Figure 33. 3-D round tip pitch oscillation data; BL-trip; a = 4 _+2 deg.

9O 0.4 0.05 - 0.05

(_' O, 2 r__ 0,00 - (jE O. O0

0.0 -0.05 -0.05 w t r 7 7 3 5 7

o

0.05 - 0.05 U/Y - 0.986

0.00 - J 0.00 _' 0.2 J J

0.0 -0.05 i r i 3 5 7 5 ½ 5 7

o_

0,4 0.10 0.05 - _/f - 0.995

CO_ 0.2- 0.05 cj E 0.00-

0.0 , r 0.00 t -0.05 i i v 3 5 3 5 7 3 5 7

oc

(a) v = 0.04. Concluded

Figure 33. Continued.

91 0.6 y/f - 0,250

0,4 ¸ O. 05 -

J

0._- J J 0.00-

0.0 1 I 1 -0.05 ! i r 3 5 7 3 5 7 c_

0.6- y/T - 0.475 O. 05 - 0.05 - /

d _ 0.4 0,00 - c)_ O. O0 -

0.2 -0.05 -0.05

o_ c_

0.6-

0,4- 0,05 -

d OotoPoLntlO: RTPOII.R0243

0.2 - 3.93_ 2.04 De 9. _ 0.0o

Freq. - I0.12 cps

0.0 i i i - 0.096 -o.o5 I I t 3 5 7 3 5 7

VeL. - 331.1 gps

Mn - 0.287

0.4 y/I - 0.900 Re - 1.9350xt0' o.os

0.2 0.00

0.0 -0.05 i i 3 _ 7 Cm

(b)v =0.10

Figure 33. Continued.

92 0.05 - 0.05 - 0.4- 9/T - 0.966

U o.2 _y o.oo _,E 0.00 -

i i 0.0- i i -0.05 s 7 3 5 0.05 - -

c_

0.05 0.4 0.05 - y/Y - 0.986

r.___ 0.00 _3-' O. 2 J 0.00-

0.0 ) i ) -0.05 i I i -0.05 i I i 3 5 7 3 5 7 3 5 7

O( o_

0.10- 0.05 0.4 y/f - 0.995

c._jE O. 0.2 0.05 - O0

0.0 i ) ; 0.00 ) i , -0.05 3 5 7 3 5 7 3 5 7

c_ o

(b) v = O.10. Concluded

Figure 33. Continued.

93 0.6 ,ylY - 0.250

/ j i f 0.4 0.05

L< .Y

0.2 Y _:E 0.00

-0.05 0.0 T i i i i i 3 5 7 3 5 7

@

0.6 0.05 - 0.05 y/Y - 0.475 / C_ O. 4 J/ 0.00 - _)_ 0.00

0.2 r ! -0.05 i ---l -0,05 3 5 7 7

0.6 y/T - 0.800

0.4 O. 05

J OotoPotnt[D: RIPOII.R0247

E 0.00 0.2- - 4.00± 2.05 De9.

Fneq. - 10.12 cps

-0.05 0.0 i I I - 0.101 ! T 3 5 7 s s ol Vet. - 316.1 fps

Mn - 0.287

0.05 - o.4- y/Y - 0.900 Re - 2,16BO_LU s

_ 0.2 -

0.0 0.05 ...... I- ..... _r-- -- 3 .... 7 3 5

C_

(b. I) v = O. 10; repeat

Figure 33. Continued.

94 0,05 - 0.05 - 0.4 j/Y - 0.966

A

U 0,2 0.00 - 0.00 -

0.0 -0.05 -0.05

c_

0.4 0.05 - 0,05 y/Y - 0.986

U 0.2 c3_ 0.00 - £D E 0.00 j/J

0.0 i i i -0.05 1 I T -0.05 1 i i 3 5 7 3 5 7 3 S 7

c_ o_

0,4- O. lO- 0.05 - 31Y - 0.995

U 0.2- c3_ 0.05 _'_ O. O0 -

0,0 , -0.05 I 1 1 0.00 7 3 5 7'

(b. 1) v = O. 10; repeat. Concluded

Figure 33. Continued.

95 (I.6 - _/Y - 0.250

/. 0.4 Y 0.05 d

0.2 J cn E 0.00

0.0 - 0.05 si 7i

c_

0.05 0.05 -

_j" 0.4 c_ 0.00 c) E O. 00 -

0.2 i i i -0.05 i i I -0.05 i I 3 5 7 3 5 7 3 s C_ cc o_

0.6 y/Y - O.800

0.4 0.05 -

r.J" OatoPotntTD: RTPOTt.R0244

0.2- - 3.91_ 2.10 De 9. co E 0.00-

Freq. - 14.09 cps

0.0 I I 1 - 0.134 -0.05 3 5 7 3 S 7 @ Vet. - 331.0 rps

Mn - 0,287

0.4- ._IY - 0.900 Re - 1.9320.106 0.05 -

d 0.2 cn E O. O0

0.0 -0.05

(C) v=0.14

Figure 33. Continued.

96 0.05 - 0.05 0.4 u/Y - O. 966

C3 E O. 00 C._ j O. 2 0.00 -

l I 0.0 s s

(i

0.4- 0.05 0.05 ..4/'_ - 0.986

(j_ 0.2- rj _ 0.00 £.3_ 0.00 -

j Jf

0.0 i I I -0.05 1 I 7 3 5

o_

0. I0- O. 05 - 0.4- _/Y - 0.995

d 0.2- c__ 0.05 - 0.00 -

jJ

, -0.05 0.0 1 i i 0.00 I i i i 3 5 7 5 7 3 5 7

C_ C_ 0

(c) v = O.14. Concluded

Figure 33. Continued.

97 U.f_- 9/Y - 0.250

0,4 0.05 - U f J 0.2 J 0.00 -

-0.05 0,0 5

a c_

0.(] - y/Y - 0.475

# 7 0.4 0,05 - 0.05 -

d /J _J 0.2- r__ 0.00 - _ O.OO -

0.0 l -0.05 f _ 5 -0.05 7 c_

0.6 ylY - 0.800

0.4 0.05

/ / DotoPoLnt[D: RTPOTt.R0245 d

0.2 J 0.00 o - 3.89± 2.23 De 9.

Freq. - 20.12 cps

0.0 u - 0.190 -0.05

C_ VeL. - 332.2 Fps

Mn - 0.288

0.4 0.05 - ylY - 0.900 Re - 1.9360-I0'

L__ 0.2 L_,e 0.00 -

0.0 0.05 -

o_

(d) v =0.20

Figure 33. Continued.

98 - 0.4- 0.05 O. 05 j/'( - 0.966

U 0,2- J 0.00 0,00 -

0.0 i i -0.05 5 7

oc

0.4 0.05 0.05 - y/¥ - 0.986

d-..-_-f U 0,2 0.00 - J 0.00 -

0.0 i i I -0.05 r -0.05 i F i 3 5 7 3 5 7 5 7

0 CI

0.4 0.10- 0.05 - _/¥ - 0.995

d o.2 O. 05 - 0.00

jJ

0.0 i i i 0.00 i , -O.OS 5i zi 3 5 7 7

C_ Cx

(d) v = 0.20. Concluded

Figure 33. Concluded.

99 1.2 9/Y - 0.250

1.0 0,05 J

O.R- J C._E O. O0 - J J

0.6 -0.05 lr0 1_2 ii 0 1'2

&

1.2- _/Y - 0.475

1°0" 0.10 0.05-

d

0.8 J 0.05 E 0.00 -

0.6 0.00 , , -0.05 , , 6 8 lO I'2 B I0 8 10 1

04

0.8 - 0.]0-

0.B OotoPoLntlO: RTPOT1.R0266 _ o.o5-

- 8.92± t.99 De9.

0.4 Freq. - 4.00 cp8 0.00 ,'o ,'2 8' 10' 1'2

c_ - 0.039

VeL. _ 326.4 fp9

0.B- Mn - 0.288 o.10-

Re - 2.0230.I0 '

c__ O.B- c_ e 0.05 -

0.4 0.00 ,'o G 8' l 'o 12'

c_ oc

(a) v = O.04

Figure 34. 3-D round tip pitch oscillation data; BL-trip; ct = 9 +_2 deg.

100 0.6- 0, I0- 9/Y - 0.966 0. I0-

0.4 c3_ 0.05- c3E 0.05-

0.2 [i2 n.oo 6 : ,'o h o.oo 6

O.B- O.lO- 0°(_ o _/Y - 0.986

d 0,4- 0.05 j _ 0.130-

0.2 0.00 v -0,05 6 1'o l= : ,_ l'=

o_

0,20 - 0°00 -

0,6- 0.15- 91T - 0.995 J

0.4- 0,10- -0.10- -0.05-

0.2 0.05 6 h ;o h -0.,s 6 ,2t

Q Ot

(a) v = 0.04. Concluded

Figure 34. Continued.

lO1 |.0- ylY - 0.250

0.8 0._- d J 0.6 cn m O. O0 -

0.1 -0.05 T v ! 6 81' I0' I'2 s I0 12

Ol Oc

[°0-

0.8 -

0.6 -

0.4 6 8 I0 ;2

Oi e,,

0.8 0.10-

0.6 OotoPoLntlO: RTPOT1.R0249 _= o._-

a - 8.89± 2.04 Oe9.

0.4 Freq. - 10.23 cps o._ i t 6 ,2 8 10 u - 0.099

VeL. = 325.7 fpe

O.a- 91Y - 0.90O Mn - 0.289 o.m-

Re - 2.0520xt0'

0.8- o a 0.05-

0.4 i i 0.00 6 8 I0 12 6

(b)v =0.10

Figure 34. Continued.

102 O. IO-

0.05- d o.t /J _ o.os- o's t 9/Y- 0.966 o.lo-

0.2 , 0.00 0.08 6 8 1'0 I'2 I'2 ,'o

0°(_ °

d 02 _ o.os- C3 m 0._ o._1 S/ __ o.1o

0.0 , 0.0_] ! , -0.0'5 8 8 ,'o 1'2 L2 6 -' ,'o ,3

0°_ - 0o00 -

0.6- 0.15- -0.0_ - 9/T - 0.995 J

0.4 O.lO- "0.10-

0.2 0.05 -.0.15 . $ ,o ,'2 0' I0 I'2 s _ ,'o ,'2

Ot Q

(b) v = O.10. Concluded

Figure 34. Continued.

103 [.2- _/T - 0.250

1.0- 0.0_-

O°B- r.j s 0.00 - // / o.s ! -O.OS i i i 1'2 @ I0 12

0¢ Ot

1°2- 9/T - 0.475

].0- 0._

d

0.9 - 0._- c._m 0.00 -

0.6 , , . -0.0_ , , 6 i'o ]'2 -0.0_ @ 10 ]2 @ 10

CI CI

OotoPoLntIO: R'rPoTI.R0253 rj _ 0.6 C._m 0.00

- 8.88± 2.04 Oe9.

0.4 i i -0.05 6 8 ]_0 Freq. - lO.O0 cpe ]2 @ @ 10 l v - 0.097

VeL. - 324.3 £pe

0.@ - 9/T - 0.900 Mn - 0.288 0.10- Re - 2.0480"10'

0.8 0.05

0.4 i ! i 0.00 i i 6 8 lO 12 6 12 CI

(b 1) v = 0 10; repeat

Figure 34. Continued.

104 0.I0- o.s- .91y. 0.966

0.I0]

,m 0.05- rj_ 0.4- jf

0.2 0.00 I'2 0.00 6 8 II) I'2 ,'2

(w Ol Ol

0.6 - O.lO- 9/Y - 0.986

0.4- 0.05- f.j' 0.00-

0.2 , 0.00 L2 B 8 10' I '2

ol o(

0.00

0.6 - O. LS- -0.05 9/Y - 0.995 J

0.4- 0.10- -O.lO

0.2 0.05 , -0.15 , , L_' 6 LO 6 8 10 1 -' ,'o 8 12

ct

(b 1) v = O. 10; repeat. Concluded

Figure 34. Continued.

105 1.0- ylT - 0.250

/ /

0.8 ° 0.05- i Y d

0.6 r._t 0.00

0.4 -0.05 lWO ]'2 Ot

t.O ylY = O.475

0.8 d oo,] o,o.

0.8

J o.oo] _" o.os- 0.4 m 1_2 -0.05 6 ' i'o _'2 0.00 1'2

Ol

0.8 0.10 -

OataPoLntIO: Rll=OT1.R0250 _ 0.6 O.OS-

- 8.87± 2.11 Oeg.

0.4 0.00 i i i Freq. - 14.06 cps 8 I0 12

Ot u - 0.136 o_

VeL. - 325.2 fpe 0.9 - _/Y - 0.900 Mn - 0.288

Re - 2.0460"[08

0.8 0.109

d

0.4 ¸ J 0.05-

0.00 0.26 _ ,o 12 e,

(C) v=0.14

Figure 34. Continued.

106 0.6 o. tg- 9/Y - O. 966 0.10-

c__ O. t 0.05 - c_ E 0.05 -

0.2 O. O0 i i 0.00 i e J'o 1_2 1_2 e 1'o 12

oc o

O,IO- 0.05

r_ J o,2 "-_ _ rj _ 0,05 f_ e 0.00

0't t y/Y - 0.98_

o,t3 O, O0 i ! 0.05 . ; /o lf2 8 10 i_2 iiO 112

Oc

0.00

0.6 y/¥ - 0.995 0.15- -0.05

J

d 0.t- 0. I0 -0. [0 -

0.2 0.05 i I -0. I5 12 8 1 12

0

(c) v = O.14. Concluded

Figure 34. Continued.

107 [.0- y/Y - 0.250

0.0 0.I0-

d /

0.6- c] s 0.05-

0.4 O. O0 ].O 1t2 I.O 1'2

@

1.0 y/T - 0.475

O.B 0.05 - 0.]0

J

E 0.6- c__ 0.00 - c_ 0.05

0.4 i .... • 0. O0 i12 0.05 10 12 6 6 1'0 ,'2

0.8- O.lO-

DotoPotntID: RTPOTl.R0251 0.6- u E O. 05

a - 8.85± 2.24 De 9.

0.4 O. O0 Freq. - 20.13 cps ,'O ;2 u - 0.194

VeL. - 325.3 £ps 0.8 3/T - 0.900 Hn - 0.288

Re - 2,0440_t0'

0,6 0.I0

_Y

0.4 e c_ O. 05

0.2 0.00 6 ]'2

(d) v =0.20

Figure 34. Continued.

108 0.6- 0, I0- ,y/¥ - 0.966 o.to

d 0.4- r_ e 0.05-

0.2 l O, 00 I 0.00 i 8 ltO 112 8 _b t_2 8 1'o 112

o_

0.[0 0.05 - 0,4- y/Y - 0.986

d 0.2- J 0.05

0.0 0,00 110 t2 6 ,'o [0 12

o C_ oc

0,00

0.15- -0.05 o.e ylY - 0.995

e

c3_ 0. I0- -0. I0 d o.,

0.2 0.05 -0.1.5 6 8 110 I'2 8 1'0 1'2 6 i_0 tl2

C_ O_ c_

(d) v = 0.20. Concluded

Figure 34. Concluded.

109 1.2- 3/¥ - 0.250

1.0- O.lO- J / 0.8- r_bE O. 05 -

0.6- 0.00 10 112 114

1.2 ylT = 0.475

1.0 O. 05 -

J 0. I0]

0.8 c] E 0.00-

0.6 0.05 8

1.0 31Y - 0.800

0.8 0.10-

DotoPoLnt ID: RTPOTI .R0254

0.6 " 10.86+ 1.99 De 9. E 0.0s-

Freq. - 4.or cps

0.4 - O. 039 o.oo

VeL.- 325.8 Fps

Hn - 0.289

0.0- O.lO- ylY - 0.900 Re- 2.0420_108

C._ O .6 • 0.05-

0.4 U.UU

(a) v = O.04

Figure 35. 3-D round tip pitch oscillation data; BL-trip; a = 11 + 2 deg.

110 O.B- 0.10- 0.10

0.05 - J E O. 05 c__ 0.4- /

O. O0 0,2 0.00 i_4 :o ,'2

0,I0 0.10- O. 986

d 0.05 rj e O. 05 - J

°'6to.2o._ y/¥ "

0.00 0.00 i_4 i'o 1'2 i14 8

0.B- y/T = 0.995 0.25

0.6 O. 20 -0.05 -

J (3 J

0,4 0,15 c3 E -0. IO-

0. I0 -0.15 1_4 I_4 ,'o ,'2

(a) v = O.04.Concluded

Figure 35. Continued.

Iii [.2- ylT = 0.250 0.I0-

¢D _ 0.05-

//

U.8 0.00 i 10 1_2

[.2_ ylT - 0.475

1.0 jf J 0.05 cj z O.O0" 0.]0 1 0.05- / 0.8 0.00 I8 i; I_ ;i -0.05

I. 0 ylT - 0.800

0.8 O.lO-

c_ OotaPotntID: RTPOTI.R0344

0.6 - ]0.96± 2.02 De 9. c3 e O. 05 -

Freq. - 4.00 cps

0.4 u - 0.038 O. O0 8 ]'2 I'4 1'0 8 1o lz I'4 VeL. - 329.4 £ps @

Nn = 0.288

Re - 1.9600"t0' 0,8 - 0. I0- ylY - 0.900

0.6- c_ E O. 05 -

u.4 0.00 i 1'O 112 I14 lO 12 114

c_

(a. 1) v = O.04; repeat

Figure 35. Continued.

112 0.6- 0.10-

0"10 1

_y" 0.4 _Y c) E 0.05

0.05 1

0.2 o.oo ! 0.00 8 i_4 I'0 I'2 I'4

0.6 0,10 0,05 -

L_' O. t (g_ 0.05 c_ E O. O0

0.2 i -0.05 1r4 0.00 1,1 8 110 i12 i14

0.8 y/T = O.995 0.25

0.6 0,20 -0.05 -

d J /- 0.4 0,15 (,.3E -0. LO -

O. 2 0. I0 r -0, 15 8 l'O 1'2 1'4 lO 1'2 1'4 I'O t'2 I'4 ct 0 c_

(a. 1) v = O.04; repeat. Concluded

Figure 35. Continued.

113 1.2- y/g - 0.250

l.O- O.lO-

J 0._]- J 0.05

0.6 0.00

1.2

o lo 1 o.o5 ._ i.o cY 0.05_ / _ _j_ 0.00 0.8 0.00 I 0.05 110 1T2 114 IS I_ ,'4

1.0

0.0 0.10

U OotoPoLnLID: RTPOT1.R0255

0.6 - 10.85_ 2.0d Oe9. w E 0.05

Freq. - 10.00 cps

0.4 - 0.096 0.00 8 1_0 12 1'4

VeL. - 325.8 fps Or

Nn - 0.289

Re - 2.0390_10 B 0.I0-

d 0.6 cj E 0.05 - ._=:_c_ u't_ t ylY 90__,.,.0 •

0.1 0.00 8 llO I'2 1'4 8 1'0 1'2 I'4

c_

(b) v = 0.10

Figure35. Continueff

114 0.10- 0.10-

j 04 -__'#_ __ 0.05 cO E 0.05-

0"6 t "9/'/-

0.21 0.00 i , 0.00 114

U,6- 0.10 0.05 - UIY - 0.986

c3J 0.4- J 0.05 jf CO E O. OO -

0.2 I 0.00 i 1'o 1'_ 14 1'o 1'_ 1_

oc

0._- 0.25 - yI¥ = 0.995

0.8 0.20 - -0.05

U J

0,4 0.15- cc_e -0. tO

0.2 O,lO i -0.15 o 1'o 1'2 t'4 1_0 1'2 ['4 B lrO 1'2 l'i

o_ oi

(b) v = O.10. Concluded Figure 35. Continued.

i15 |.2- 0.I0- y/Y = 0.250

d t.O _ O. 05

f 0.8 8 6 1_ /4 0.00 8 I'o 6 ,4i

d 1.0 _ 0.05- O. 00

t'_1 8/Y- 0.475 o.1o- 0"05 t

0.8 I 0.00 0.05 | ;o ,'2 . 1_0 i12 14 8 1.O 12 114

O_

1,0 -

0.8_ 0.10_

OotoPotntID: RTPOTI.R0345

0.6" _ 0.05- a - 10.94± 2.08 Oeg.

Freq. - 10.02 cps

0.4 1.O 1_ 1'4 - 0.096 0.00 1'o i'2 14 VeL. - 329.4 £ps c_

Mn = 0.287

Re - 1.9500_10' 0,8- 0.10

Cj _ 0.6 0.05

0.4 I 0.00 8 I.O 1_2 114

O_

(b. 1) v = O.10; repeat

Figure 35. Continued.

116 0°8- y/Y - 0.966 O. tO- 0.10-

U 0.6- 0.05 - _.e 0.05

0.4 0.00 1_4 I'O 1'2 /4 0.00 8 1'o ,_ 14

,m O_

0.6- _q/T- 0.986

U 0.4- o_ oo5 _ ooo

O. 10 t Y 0.05

0.2- 0.00 / -0.05 1'o /2 l"_ 8 1'o 112 ll_

c_ c_

0.8 y/f - 0.995 0125 t -0,05 -

0.6 O. 20 - -0. I0 -

d J C._3_

0.4- 0.15 -0, 15 -

0.2 0.10 -0.20 /0 112 114 8 10 /2 ]i4 1'o 1'2 1'4

OI O_

(b. 1) v = O.10; repeat. Concluded

Figure 35. Continued.

11"7 1.2 y/T - 0.250

1.0- 0.10-

J _,/s- O.B- f__ 0.05 -

0.6 0.00 10 ,2 1'4 ,b i'2 114

0.I0 0.05 - _/Y - 0.475

(_ i.0 S J 0.05 Cj,a 0.00- J 0.8 0.00 I -0.05 -_- ,'o ,'2 I_4 14 ,b ,_ ,4

1.0-

0.8- 0.10-

U OotoPotntIO: RTPOTl.R0256

0.6 _7 o.os-, - 10.83± 2.11 De 9.

Freq. - I4.00 cps

0.4 i u - 0.135 0.00 llO 112 14 ,'o I'_

VeL. - 326.! fps

Hn - 0.288

Re - 2.0320_I0' 0.10- o.e- y/y _ 0.900

o _ O.o- c_e 0.05-

o.41 0.00 1_ 12 1'4 ,'o 6 I'4

(c) v=0.14

Figure 35. Continued.

!18 13,6- 0.10- 0.10-

_/y - ._

d D. 4 - 0.05 - 0.05 -

0.00 - -- 0.2 r 0.00 10 1'2 1'4 8 1'4 1_0 1'2

c_

0.10 0.05 - 0,6- y/¥ - 0.986

0.4- 0,05 C.3E O. O0 -

0.2 0.00 -0.05 1_0 1_2 1'4 8 1=0 1'2 1'4 110 1'2

0 o

0.25 - 0.8- y/¥ - 0.995

0.6- 0.20 -

d J

-0.05 0.4 / 0.[5 - co s -0. tO f 0.2 0.10 0.15 1_0 1_2 ['4 II0 I12 t'4 J'o I'2 G

(c) v = O.14. Concluded

Figure 35. Continued.

119 0. I0- y/T - 0.250

C3J [.0- f_ f 0.05

0.8 0.00 I 14 i'o _'2

1.2- 0.10 0.05 - _/T - 0.475

1.0 O. 05 0.00 -

/ 0.0 I; ,'2 ;I 0.00 --0,05

@ 01 01

1.0- y/Y - 0.8O0

w

0.0- 0. I0- J j- OataPotntIO: RTPOTI.R0346

0.6 - I0.93{ 2.15 Beg. cne 0.05

Freq. - 14.02 cps

0.00 0.4 v - 0.133 1'o 1'2 1'4 VeL. - 330.3 tp_ 01

Mn - 0.288

Re - 1.9510"10' 0.0 0.10 y/Y - 0.900

_' 0.6 C.3_ 0.05

0.4 i 0.00 _ ,'o ,'2 14 @ 1; 112 I'4

01 01

(¢.1) v = O. 14; repeat

Figure 35. Continued.

120 O.G O.lO 0. I0

ylT

U 0.4 0.05 J 0.05

0.2 0.00 0.00 trl

Q Q

0,6- .ylT - 0.986 0. I0-

c_ 0.4 0.05 -. £3 e O. O0

0"05 I

0.2 O.O0 -o.o5 l Ll4 O l_ i_ 14

0._ O. 25

0.6- 0.20' -0.05 d J //

0.4- 0.15- £.3 -0.10 J

0.2 O. tO -0.15 1_ 1'2 1'4 J'0 1'2 t'4

Of o

(c. 1) v = O. 14; repeat. Concluded

Figure 35. Continued.

121 0.10- 1.2 y/Y - 0.250

J 0.05 - d 1.0 i _ _ _

.f O. 00 I 0.8 v ].O 1'2 14 1; 1'2 14 o

ylY - 0.475

0.05 - [.0- / // 0.10"

d

0°_ - rj_ 0.05 " r.__E 0.00 -

0.6 0.00 - 0.05 0 1.o 6 I'4 I'o 1'2 I'4 8 i'o ;2 1'4

1.0 ylY - 0.800

// I 0.I0

OotoPoLntIO: RTPOT1.R0257

0.6 - 10.81± 2.23 Be9. r_)e 0.05

Freq.- 20.06 cps

0.00 0.4 i - 0.193 ,.O ,'2 14 l.o 1'2 ;4 VeL. - 326.8 Fps

Mn - 0.289

Re - 2.0340"t0 s 0.10 -

0.05

0.4 8 1.O 6 1'_ o.oo8 I'o ;2 ;4 Cc

(d) v = 0.20

Figure 35. Continued.

122 0.10- 0. I.0 O.G _/Y - 0.966

e_ E 0.05 c__ 0.4 c_ _ 0.05 -

0.00 0.2 0.00 llO it2 114

Cc

0.10- 0.05 O. 6 .y/T = 0.966

U 0.4 J O.OS - c3 E O. O0

0,2 ---- O. O0 ]l0 112 tl ITO 112 i)4 8

0 o

0.25 -

0.20 - ylY - 0.995 /i

/11

0.6- O.t5- -0,05

U

0.4 0.10- -0. I0

0.2 0.05 -0.15 t'4 1'4 1'0 tl2 1'4

ol

(d) v = 0.20. Concluded

Figure 35. Continued.

123 1.2 yI¥ - 0.250 0. I0-

_' 1.0 r._3E 0.05

0.8 0.00 i 8 IU 12 Ie4

1.2- y/Y = 0.475 0.10- 0.05 -

CS t.O- 0.05 - _ 0. OO -

0.8 O.O0 -0.05 6 6 i)4 114 8 6 I_ 1'4

1.0- y/T = 0.800

0.8- 0.10-

OataFoLnt[O: RTPOTl.R0347

0.6 = 10.91± 2.28 Oeg. u e 0.05

J Freq. - 20.06 cps

0.4 v - 0.191 O. O0 6 6 1_ I_0 1_2 1'4

Vek. - 330.1 £p_ o{

Mn = 0.288

Re - 1.9460-t0 B 0.8 y/Y - 0.900 0.10

E r_j _ 0.6 rJ 0.05

0.4 i O. 00 H lO I)2 I)4 8 l; 112 I'4

C_

(d. I) v = 0.20; repeat

Figure 35. Continued.

124 0. I0- 0.6- 0.I0- _/Y - O_

cS' O. 4 J 0.05 - cn E 0.05-

0.2 0.00 O. O0 1._4 6 6

0.05 - 0.6- y/Y - 0.986 o.io

0.00 - r_ _ 0.4- _,._ __.CC.5__ - J o.o5

0.2 0.00 i 1'o 1'_ 14 8 liO ll2 [_4 -0,05

ol OL

(I,8- O. :-'5 91Y - O. 995

/

0.6- 0.20 -0.05 - // "N f_) cz ///

0.4 i 0. t5 r_ e -0.10

0.2 0.10 -0,15 i lrO i12 ll4 8 IrO I12 t_4 I0 12

Oi

(d. 1) v = 0.20; repeat. Concluded

Figure 35. Concluded.

125 0.I0]

cj E 0.05 ] _2I.o- ,u/T._--_-_-"-._"0"250__ _ _ _ ," I 0.8 0.00 1 I0 ]'2 1_4 ,'6 10 I'2 14

C_

1,4" y/T - 0.475

[.2"

O'IO 1 0.I0]

1.0 E

J °'°s 1

0.8 i T O.OO | i 1o 12 li4 lfi I0 ,'2 ,'4 ,'6 lO

c_

t.2 y/Y - 0.000

1.0 0. I0

c_' OotoPotntID: RTPOT1.R0259

0.8 (jE 0.05 o - 12.97± 2.00 De 9.

Freq. - 4.00 cps

O.B - 0.039 O.OO I0 1_2 lJ4 I_B I0 112 114 1_6

VeL. = 325.8 Fps Cm

Nn - 0.288

|.0- ylT - 0.900 Re - 2.0320Mt0 B

t).8

d

0.6 cJ 0.05

• O'IO I

0.4- 0.00 4 ,0 1'2 1'_ 1'_ I0 1'2 1'4 16

ol

(a) v = O.04

Figure 36. 3-D round tip pitch oscillation data; BL-trip; a = 13 _+2 deg.

126 O.tO- 0.10-

U 0.05 - 0.05 -

o.6°At _/¥/- 0.96

0.00 0.00 I'2 I'4 L'6 O. 4 ] 0 112 ll4 1'6 10 1'2 1'4 1'6 I0

0.05 - 0.6- 9/Y - 0.986 0.15-

0.4- J 0.[0 - O.OO -

0.2 0.05 1 -0.05 I0 It2 I_4 116 10 12 ln4 L6 10

o_

0.30 -0. t.0 -

-0. L5 - 0.8 0.25 -

J J

-0.20 - U 0.6- 0.20 -

0.4 O. t5 -0.25 10 112 14 116 I0 I'2 1'4 l B 10 1'2 1[4 1_6

c_

(a) v = O.04. Concluded

Figure 36. Continued.

127 1.2- 0.10-

_' I .0 - ___ O. 05 -

0.8 O. O0 j 10 12 1'4 16 1o 6 G 10

1,4 y/Y - 0.475

1.2. 0. I0- 0.05 -

J

1.0- (j_ 0.05 - __ ¢_E 0.00 -

0.8 7 - - T .... • 0,00

I0 12 14 1B I0 lO ]2 14 16

oq 0¢

t.2 y/T - 0.800

1.0

(.)

0.0 - 12.95± 2.00 De9. e 0.05 DotaPoLntIO: RTPOTI.R0264 °'101 Freq. - 4.01 cps

0.6 - 0.039 o.oo/ I 0 112 ll4 lib io C_ Vet. - 325.4 fp8 Of

Hn - 0.287 1,0-- y/T - 0.900 Re - 2.0140_10 u

O°B- 0.10_

J

0.6- r_]m 0.05 -

0.4 _o i'2 ,'4 I_ O. O0

o o

(a. 1) v = 0.04; repeat

Figure 36. Continued.

128 0.10- O. IO 0._- y/Y - 0.966

d 0.6- J 0.05 - • 0.05

0.4 0.00 0.00 ] 0 ]12 ll4 [16 l 0 12 1'4 1'6 10 12 ['4

C. 0

0.6

0"15 1 0.05]

U 0.4

J o.,o] J o.ooj

0,2 -o. o5 / 10 ll2 ]14 t/6 0.05 10/ II6 I0

o(

0.30

0.8- 0.25

J

d 0,8- 0.20 - -0.I0 ] C3 E -0.15 1 ! O,i 0.15 10 12 1'4 I'6 10 _'_ ;4 ,, -o.2o,_o

o

(a. 1) v = O.04; repeat. Concluded

Figure 36. Continued.

129 [.2- y/Y - O. 250

[.0-

0.8 O. O0 I0 12 1'4 16 I 0 1'2 1'4 1'6

Oc

t.4 y/Y - 0.475

t.2 0.10 - 0. I0

1.0 J 0.05 - CO E O. 05

0.8 0.00 0.00 I I0 1_2 1_ 1; 10 If2 1'4 116 I0

t_ cr O_

|.2- ylT - 0,800

1.0 0.10

d OotoPoLntlO: RTPOTI.R0260

c_ _ O. 05 0.8 - 12.96± 2.05 Oe 9.

Freq. - 10.03 cps

0.6 - 0.097 0.00 10 i_2 I14 16 10 112 I_4 16

0¢ Vet. = 324.6 rps or

Mn - 0.287

1.0 y/T - 0.900 Re - 2.0190_I0 s

0.8 0.10

d

O.G fie 0.05

0.4 0.00 IO /2 1)4 /6 10 1'2 1'4 1'6

Ot

(b) v =0.10

Figure 36. Continued.

130 081 .y/f- 0.966

U J 0.05 rj E 0.05

0'10 t O.lOj 13.6 t

0.4 I 0.00 ! 0.00t IB 10 ;2 1',, _'6 10 116

0,6- y/¥ - 0.986 0.15- 0.05 -

r...._J O. 4 O. tO- 0.00 -

0.05 0.2 -0.05 I ] 112 0 114 116 lO lf2 114 16 10 ]12 114 16

O(

0.30 -

O.EI- 0.25 -0. I0 - J s/Y -

O.B- 0.20 / c3 a -0.15- /

O'_J I 0.15 -0.20 I 10 112 14 16 I0 I'2 G 1_6 10 12 IP4 16

Oc c_ o¢

(b) v --O.10. Concluded

Figure 36. Continued.

131 [.4- ylT - 0.250

1.2-

d

1.0- c_ E O. 05

0"10 1

O.B • O.O0 1 ,o ,'2 1'4 _ lO 12 I'4

1.4- ylT - 0.475

1.2- 0.I0

U If I 0.05 1

t.O 0.05

e O,O0 -I

0.8 0.00 _6 I0 1'2 1'4 1'6 10 lW2 1'4 -0.05 /I0 ,'2 ;'_ ,%

1.2 ylT - 0.800

|.O n 0.10

OataPotntID: RTPOTI.R0261 c-)

0.8- r_3s O. 05 - a - 12.95± 2.1t Do9.

Freq. - ]4,03 cps

0.6 u - 0.135 O. O0 i I0 112 1'4 16 I0 It2 114 16

Oc Vet. - 326.3 Fps

1.0 Nn - 0.288 ylT - 0.900 Re - 2.0260-I0 e

0.8 O. lO-

O"

0.6- E 0.05-

0.4 0.00 ,o |'2 |'_ ,'_ lO I_2 1'4 16

c_

(C) v=0.14

Figure 36. Continued.

132 0.10- 0. I0-

O,flS c__E 0.05 - °°t _:Y- o966

0,4 0.00 0.00 10 112 1'6 116 l 0 i_2 I'4 lrB

0

y/f = 0.986

0. I0] 0.05 1 j o.4 J t J 0.05] 0,2 o,oo I 1_6 10 10 10 I_ 1_ 1'6

o a

0.30

0.25

-0. I0 -

U 0,6o8t l" r_j _ -0, ! 5 -

0.4 O. tO -0.20 10 1_6 I0 1_2 I'4 L'6 10 I_2 1'4 t_6

ol oq

(c) v = O.14. Concluded

Figure 36. Continued.

133 1,4- y/Y - 0.250

t.2-

d

j _ lj 1.0-

0.8 i 10 i_2 ]'4 16 0.00 I0 112 IF4 16

1.4- ylY - 0.475

1.2- /

O. I0 0.05 ] _S / f ! 1.0-

0.8 1'6 o.ooI -o.o_, 1'2 I'4 I0 1'2 1_ ,o ,3 A _; ,o ,'6

1.2- ylT - 0.800

1.0

J

0.8 a = 12.93± 2.23 De 9. cJ o.os OoLoPoLnt[O: RTPOTi.R0262 _ 0.101 / Fneq. - 20,11 cp8

0.6 u - 0.194 o.oo/ 114 I0 1'2 1_ 116 Io 112 16

O_ VeL. - 326.4 fps

Mn - 0.288 t.O y/Y - 0.900 Re - 2.0230_10 B

O.B 0.10

c5'

0.6 (_E O. 05

0.4 0.00 I0 112 1=4 _16

oc

(_ v = 0.20

Figure 36. Continued.

134 0.8 0.10- O. lO _j/Y - 0.966

U 0.6 J 0.05 - r__E O. 05

0.4 0,00 0.00 10 ]_2 1r4 I16 ] 0 t6 10 I12 if4 fig

ol

0.6 0,05 y/T = 0.986

O'IO I

c_' O. 4 0.00

°'°51

0.2 0.00 t -0.05 [16 ] O i12 14 1'6 lo l'_ ,'4 ;6

o

0,30 -

/

0.25 - -0.05 -

r__ 0.20 - J -0.10 - J //i / U 0,6 /_ 0.15 -0, 15 t J;-y _J 0.4 0.10 -0.20 ] 0 1_2 I'4 l'fi 1o 1'2 i'4 ?6 I0 It2 I'4 I'6

0

(d) v = 0.20. Concluded

Figure 36. Concluded.

135 1,2-- 0.05 -

[,0 -¸ 0.00 -

E

0.8- -0.05 - x I

0.6 -0.10 ]v4 )m6 12 ] r4 IV6 lV8 0.20 - 12

(3( Of

0.15 l.'t - y/Y = 0.475 zJ

j_w4

t r r%" • 0. O0 - 1.2- 0.10-

O. 05 - d

1.0- 0.05 -0.05 -

0.@ ,2 l_ 1; in8 0.00 12 I14 l J6 1'8 -0.10 ! 2 14 116 1'8

0

1.2- 0.10-

OotoPotntID: RTPOTI.R0267 r__E 0.05 - 1.0-

o - 14.93± 1.98 De 9.

0.8 r 12 I'4 16 IB Freq. - 4.02 cps °"°°12 1',, 16 1; u - 0.039 O_

VeL. - 324.7 £ps [.2- y/Y - 0.900 Mn - 0.287

Re - 2.0170_10"

1.0 0.I0

0.0 L.p_ O. 05

O.O 0.00 12 1_4 ]6 lIB 12 114 16 II8

@

(a)v = O.04

Figure 37. 3-D round tip pitch oscillation data; BL-trip; c_ = 15 +_2 deg.

136 0.I0

0.5 _/;" r - 0.10 0.05 O.e]_j/y_ 0.96_ 0,15]

o.o51 0.00 O. 4 J 2 114 116 118 12 I14 16 118 12 111 116

0,0 0.15- 0.05 3/¥ - 0.986

r_" O. 6 0,10- E O, O0

0.4 0.05 -0.05 12 114 ]6 t'8 ] 2 118 12 ln4 lib tT8

o

|.0- 0.35 31Y - 0,995 -0.10 -

0.8- 0,30 -0.15_

d 3 / r_3 E

0.6 0.25, -0.20 - /i/¢

0.4 I 0.20 , -0.25 12 ,_ ,'6 [8 12 lit 16 riB

O_

(a) v = O.04. Concluded

Figure 37. Continued.

137 [,4- y/_ - 0.250

[.2- 0.05 -

d 1.0- 0.00 -

I I f.E I / •'. I / 0.8- J -0.05 - / \\ ", lI

0.6 I -0.10 ; I 12 14 1; ,8

O_ C_

1.4 0.20 O. 05 - y/Y - 0.475

1.2 0.15 0.00 - r

J J 11 I [ E

! 1.0 / 0.10- -0.05 / i /

0.8 O. 05 -0.10 12 ,'4 I'6 ,'8 12 1'_ I; /8

ylT = 0.800 t. 2 ]

OatoPoLnflIO: RTPOTI.R0268 _ 1,0- ¢u 0.05

0"10 t a - 14.93± 2.04 Oe 9.

0.8 I Freq. = 10.25 cpe o.oo / 12 /4 ,'6 ,'8 12 1',1 ,'6 /8

ol = 0.099

1.2- VeL. - 325.3 Fps ylY - O.900 Mr) - 0.287

Re - 2.0150_10" l°O-

J fJ 0.10]

0.8- Jf_ _

c__e 0.05 1

0.6 I 0.00 / 12 ,14 ,16 ,8 12 1_4 16 lib

0

(b)v =0.10

Figure 37. Continued.

138 0.8- 4/Y - 0.966 _._"_ 0.10

/ O, t5]

_f o.5- o E 0.05

°.i°- I

0.4 0,85 / 0.00 12 114 16 (8 12 14 l; I'8 12 I'4 I; l'O

0.05 1 J /:. J °.°°1

0.05 t -0.05 | O. 4 12 114 16 lJ8 12 )_ 1'6 t'8 12 1_ ,'6 t'o

0,35 -

1.0 0.30 - -0, 10 - y/T : 0.995 i ! /f / 0,0. c__ 0.25 -0. [5 - /

// U f_E

0.6- 0,20 -0.20 -

0.4 I O. 15 -0.25 12 114 16 18 12 1'4 I16 IB 12 1'4 1; 1'8

c_ o o

(b) v = O.10. Concluded

Figure 37. Continued.

139 1.4- y/T - 0.250

1.2

,/ / / _ 1.o 0.05 ¢ // /

/ / / - f 0.8 0.00 \4\ xz_

-0.05 I 12 114 16 18

C_

0.20 0.05 - 1.4-.91i,_ 0.475

/ - 1.2- 0.15 O. O0

_Y CDI_ / / ////'rl/ / \ |.0- 0.I0- -0.05 -

J // / ' J

0.05 I -0, I0 U.B ] 2 114 16 lB 12 I14 16 11B

C_

0.]0- 1.2- ylY - 0.800

DotaPotnt[O: RTPOTI.R0269 0.05 - C3_ 1.0-

- 14.92_ 2.10 De 9.

0.00 0.8 Freq. - 14.08 cps ]'4 ]lB 118 12 lr4 Ir6 1_8 12

O_ - 0,136

1.2 Vet. - 325.4 rps y/Y - 0.900 Hn - 0.287

Re - 2.0120_10 _ O.lO 1.0

d

0.8* Cj E O. 05

0.6 __r 12 I]4 ]16 lt8 o.oo12 1'_ 1'6 _'_

O_

(C) v=0.14

Figure 37. Continued.

140 j o._ __.f;"- " j O.lO] C3 0.O5

°'_t S/Y - _ °"s l • 0"10 t

0.4 0.05 | 0.00 1 12 ll"l /6 lr8 12 lib 12 /4 [6 I_8

Oc

0.05 -

d 0.00 - o.G _ _ o. Lo °'° t ylT = 0,986_f_. 0'15t

-0.05 0.4 , o,o51 1 t ]14 IB 12 II8 ]2 12 114 16 1161

0

0.35

I .0 - _I¥ - 0.995 0.30 _f/ -0.10-

0.8 0,25 - -0.15

w L;' J

0,6 0.20 / -0.2D

0,4. 0.]5 -0.25 i 12 I'4 l; 118 ]2 I4 16 1'0 12 I'4 16 ]18

(c) v = O.14. Concluded

Figure 3Z Continued.

141 1.4 3/T - 0.250

O. 05 - 1.2 J,

0.00 d l.o N /, / . £D E \

-0.05 - 0.8 ¸ / / \ / k ,,

-0.]0 ll8 o_,2 ,'_ ,'6 t2

c_

1.4 ylT - 0.415

//

O. 05 [.2-

J f _

0. O0 1.0 c_ _ 0.10 // / / _

\J\ i\ /I

U.8 l'Rv O. OS / 1_8 -U.05 12 1'4 1'6 l _8 12 1'4 1_6 12 1'4 16 Oc

0.I0-

OotoPoLntID: RTPOT1.R0270 C3 s 0. 05 _J 1.0 cL- 1.2] ylT = 0.800 - 14.90_ 2.22 De9.

O. O0 Freq. - 20.09 cps ]8 o.e 12 i'4 I; lib 12 - 0.194

1.2- VeL. - 325,6 fps ylY - 0.900 Mn - 0,287

Re - 2.0120_1U _ O.lO- I.O

J Jr (jE O. 05 0.8 jf / /

0.00 0.6 l 12 ll{ 116

O_

(d) v =0.20

Figure 37. Continued.

142 0'I01 d o_ _--_ J olo

co e 0.05 I

0.4 0,05 # 0.00 l Ir4 i-...... I 12 16 1.8 12 1'4 ;B P_ _2

C{ Cx

0.8 0.05

ylT - 0.986 o.15[

c_ _ 0.6 J 0.00

_'_ _ _ 0.05 ! 0.4 , -0.05 I 12 I14 116 118 12 18 12 i14 lJ6 I El

cI 0{

O. 35

/ 1,0- y/X = O. 995 0.30 // -O, lO-

0.8- r_ _ 0.25 / -0.15 \ c_

/ rJ_ -0.20 - 0,6- 0.20'

0.4 0.15 i -0,25 ] 12 ,q ,% It8 2 12 1'4 16 P8

o c{ {_

(d) v = 0.20. Concluded

Figure 37. Concluded.

143 1.2- y/Y - 0.250

1.0 0.00 -

[).6 - CJ -0.05 -

0.6 -0.10 14 16 1 20 14 1'6 1; _o

1.2- 0.25 y/¥ = 0,475

I.D- O. 20 -

fJ

0.0- 0.15- .,/ e -0.05

0.6 0.10 "]6 T_ 7 -0. 10 "t 14 1; 1; _o 14 18 20 14 1; 1; 2;

c_ o_

t.2- _/1 - 0.80o 0.I0-

DotoPoLntID: RTPOTI.R0358 U 1.0 O. 05 -

- 16.96± 2.04 De 9.

0.8 0. O0 Freq. - 4.00 cps 14 1; 1; 2O7 14 ,'6 ,'0 2'0

OC - 0.038 O_

VoL. - 332.9 £ps

ylY - 0.900 Mn - 0.289

Re - 1.9460"108

1.0

_J /

0,0 c) m O. 05

0"10 t

0.6 o.oo ! 14 1'6 1; 210 14

Px

(a) v = O.04

Figure 38. 3-D round tip pitch oscillation data; BL-trip; a = 17 _+2 deg.

144 1.0- y/¥ = 0.966

0.8- U O.tO] 0.6-

0.05 ]

0.4 0.00 -I-- _ T ]4 14 16 18 20

0.20 -

0.8 O. t5 9/T - O. 986 J 0.05 1 0, I0

_-Y" °'6 t rj _ O oO0 1

0.4 0.05 14 ,'o ,'o 2'o ]4 2o -o.os 14/ ,_ ,'8 2'o (_

].2- HIT - 0.995 0,40 -0.15 -

F/-i /,i

],0 _ 0.35. -0.20 -

J o E

0,0 0.30 ,/ -0.25

0.6 ,4 ,'o ,'o 0.25 -0.30 2'0 i_ ,'o i'o 2'o 14 ,'6 ,'o 2'o c_ @

(a) v = O.04. Concluded

Figure 38. Continued.

145 |.0- y/Y - 0.250

0.00- 0.0-

d \ J

0.6 r_ e -0.05

0.4 -o.,o,4 i% ,'8 _o ,_ I% 1'8 2'0 O. 25 -

(_

l 0.20 0.05 1.2 y/Y - 0.475 fJ

0.00 0.15 f I \

/ -0.05 - O.B- _\ J 0.10

0.5 0.05 -0.]0 |4 1'6 1'8 2'0 14 1'6 lib 2'0 14 16 ]'8 2'0

O.lO- 1.2 y/Y - 0.800

/ OotoPotntlO: RTPOTI,R0357 / e O. 05 d 1.0

o - 16.95± 2.08 Oe 9.

Freq. - ]0.12 cps 0.00 1_ 16 1'8 210 O. 8 14 1'6 ]'8 2'0 u - 0.096

VeL. - 331.6 £ps

1.2- y/T - 0.900 Mn - 0,288

Re - 1.9360"10'

1.0-

0"10 1

w_ _ If c _ 0.05 0.8

0.00/ 16 18 _o O . 6 14 116 110 2'0 14 oc

(b) v =0.10

Figure 38. Continued.

146 1,0

0.8 0,t5- 0,10-

U

0,6 0.10- r..3m O. 05 -

0.4 I 0.00 i _0 0,05 14 20 14 1'6 I'8 20

0 oc

0.20 -

O.B- .4/¥- O.986 o. t5 0,05 -

f.3' 0.6- 0,10 r..3e O. 00 -

0.'_ 0.05 -0.05 14 ;6 i'8 2'o 1t 1; 1'B 2'0 14

c_ 0

1,2- _/Y - 0.995 0.40 - -0.15

z

I,O- i/I -0,20

E E_ J J _3 11 I1;

_"_t 0.35 - 0.0 0.30 -0.25 - /11

0.6- 0,30 t4 14 I'_ i'o 2'0

o_ o_

(b) v = 0.10. Conceded

Figure 38. Continued.

147 O.05 [.2 y/Y - 0.250

1.0 0.00

J rj E r t 0.8 / , -0.05 - / x _

-0.10 0.6 i /5 ]; 14 15 1; 2O O.25 ,4 Ot

0.05 - 1.2- 0.20

_IY =_ t+O- J 0.15- f 0.00 -

I f// J J / /J / / , t ! -0.05 - (3,8 - 0.10- S

-0.I0 0_ ,4 ,_ G 2_ O.OS 14 16 I; 210 14 16 I; 2'0

0.10 1.2 9/Y - 0.800

/ OataPotntTO= RTPOTI.R0358 c3E 0.05

f a - 16.95± 2.14 Deg.

0.00 I 0.0 i i v Freq. - ]4.04 cps 16 lib 16 1; 21o 2O u - 0.

VeL. - 332.0 £ps 1.2 _ ylY - 0.900 Mn - 0.288

Re - 1,9340_;0 B 0.10- [.O-

J

0.8- C) e 0.05 -

0.6 0.00 14 1'6 l; 2tO

f_

(c) v=0.14

Figure 38. Continued.

14_ 1,0 9/Y - 0.966

0.8 0.15- 0.10- d

0.6 ¸ cj_ 0.I0- c__E 0.05

0.4 i i O. 00 ]4 16 I'8 20 0.05 14 20 14 1'6 lib 210

f_

0.20 -

// O.B O,15- 0.05 y/Y - 0.986 J fr.// /rt 0.6 0.10 4 J 0.00

0.4 0.05 -0.05 I 14 I'6 I18 2'0 20 14 c_ o_

0.45

0.40

///

1.2- ylY - 0.995 0.35 -0. t5 - //// J

1,0 o 0.30 -0.20 -

/ d /.// fj_ 0.0 0.25 - -0.25 -

0.6 0.20 -0.30 14 l'6 1'B 2'0 14 I_ l_ 2'o

(c) v = O.14. Concluded

Figure 38. Continued.

149 (].0_ -

1.2- 0.00-

,.q/Y - 1.0- c_)E -0.05 -

d Y //

/ -0. 0.8 / IO f 1

0.30 - 0.0 0.15 14 1; 1_ 2;

t 0.25 - 0.05 I I

fl r

0.20 0.00

J

0.15 rj _ - O. 05

J

0.I0- -0,10 0.81.0 !y/ / /. / tf / F

0.6 I O. 05 20 14 1; 118 2'0 -o,, ,, ,'6 ,'8 2'O

c_

0.'0

1.2 9/Y - 0._ z /

DotoPotntID: RTPOTl.R0359 C3 E O. 05

- 16.94± 2.26 De 9.

0. O0 0.8 Freq. - 20.06 cps 1_ 1'6 1'8 It 1'6 1'8 2'o - 0.189

1.2 _l/f - 0,900 VeL. - 333.4 fps

Nn - 0.289

0.,0- 1.0 Re - 1.9390_[0 B J

0.8 cj e O. 05 -

0.00 0.6 14 1'_ 1'_ 2'o ,4 1; I'8 210

Oq 0

(d) v = 0.20

Figure38. Continued.

150 1.0 _/Y - o.966

0.8 O. t5 O. IO-

0.6 c__ 0.I0 rj E 0.05

0.t I 2r0 0.05 14 20 0.00 14

0.20 -

7 /

0.05 O.t5-' /.,'Y J J d 0,6 0.[0_ 0.00

O.Oj .ylT - 0.98

0.4 I 14 16 lib 2_0 O, 05 14 116 18 21° -0.05 14

0.45

0.40 /

1,2_ HIT - 0.995 0.35 -0.15 - J

1.0- 0.30 - -0.20

J

0.8 0.25 - /, -0.25

U.6 0.20 -0.30 14 16 18 20 _4 _; ,'8 _'o 14

c_ c( c_

(d) v = 0.20. Conceded

Figure 38. Concluded.

151 0.6- .9/Y - 0.250

0.4-

0.2- J 0.0-

-0.2 - c_)E 0.O0 / 0.05 1

-0.4 -o.o5 / -'2 ,_ _ -4 o_

0.6- _j/Y - 0.475

0.4

0.2 /, z U 0.0 0.05

=0.2 c__ 0.00 c_ E 0.00 0.05 1

-0.4 , -0.05 | , -0.05 -i 0i 2i 4i -4 _'2 0i 2i 4i B -4 6 -4 cc CI C_

0.4

0.2

OotoPoLnt[O= RTPOTI.RO272 o. 05 0.0-

-0.2 - 0.96_ 4.08 0o 9. _ o-0o t ..-__

Froq. - 4.01 cp9 0.4- O. 05 I -'2 ' ' ' - t2 0i 2i 4v -4 0 2 4 u = 0.039 @

VeL. - 325.3 rps

Nn - 0.288

Re - 2.0230M)0"

0.2 U O.0 c_ E O. O0 _ o4] 0.05 t

-0.2/ -0.05 | -'2 -4 c_

(a) v =0.04

Figure 39. 3-D round tip pitch oscillation data; BL-trip; a = I _+4 deg.

152 0.4 y/Y - 0.966

0.2

U 0.05 7 0.0 0.05 1 J o.oo] o E 0.00 7 _.,_._-_ -0.2 os -4 -'2 , -o.o5/ -'2 -o. -4/ -'2 0' 2' '4 Oi 0

_" o2o.ot.,.f,__/ jY J oo.oot o. t i -o.os / -0.2 -_ -'2 o' : ,; 6, -0.05 -4/ -'2 o' _ 6 -4 -2 o' 2' ,_ o_ o_

O. tO] 0.05]

0"2 t - 0.995 / J o.os] -----_ o E o.oo] _._--_

-0.2 -4 _r2 ow _, ;. , o.oo/ -'2 ' 6I -0.05 |-4 _l2 0 2, 4i o

(a) v = 0.04. Concluded

Figure 39. Continued.

153 0.6- _/T - 0.250 0.4- f 0.2- _J

0.0-

0.05 ] -0.2 J

-0.4 i i i i -o.o51 -2 0 2 4

0.R- y/Y - 0.475

0.4-

0.2- d

0.0- O. 05

0.05 ]

-0.2 - O. O0

c} E 0.00] .--- _ ......

-0.4 T -4 J2 o' : 4 -0.05 -4 -'2 _ 2 4 , O. 05 | -_2

c_

0.4 ylY - O.BO0

0.2

OotoPotnt[O: RTPOTI.R0273 r_' 0.0 O. 05

-0,2 - 0.951 4.17 De 9. r__E O. O0

Freq. - |0.03 cps -0.4 -0.05 4 -'2 6 : -'2 - 0.097 C_

VeL. - 326.4 fps

Mn - 0.288

Re - 2.0230-I0'

0.2- d

0.0 0'II y/Y -0.90 .J 0.2 -o.osI -4 • 0 2 4

cl

(b) v =0.10

Figure 39. Continued.

154 y/T - 0.966

0.2- 0.05

0.05 ] 0.0 J 0.00

ot C_)E 0,00 7

-0.2 ) -0.05 4 - 0 2 4 6 -4 _l2 0I 2l 4u -o.o5_ 92 0i 2 i4 6i

o o

y/¥ - 0.986

0.05 ] e 0.05] d 0.0

0.00] 0.00 1

-0.2 -0.05 | , -0.05 ! -4 92 o_ _ 4 6 -4} 6 -4 - 0 2 4

o o

y/f - 0.995 / 0.05] _¢ 0.0 / o2t o _ 0.00] -0.2 i -0.05 1 o _ 4 _l 2 T i y -4 0 2 4 6 -4 - ;2 0_ 2r 4i

Ot

(b) v = O.I0. Concluded

Figure 39. Continued.

155 0.5-, y/Y - 0.250

0.4 z t /

0.2- d ./ 0.0- ./ f -0.2 - / r_3E 0 00 <. 0.05. 1

-0.05 -0.4 -4 % 6 _ ,; -4

0.6 _/T - 0.'t75

0.4

0.2 z _ J 0.0

0.05 1 _ - - ..... 0.05 ] -0.2 - / J o.oo c-- 5._ J o.oo]......

-0.4 -0.05 | _ _ + , , -0.05 / _"2 ' ' 6 -4 -2 0 2 4 i 0i 2i 4i 6 -4 0 2 4 ci

0.4- ylY - o.8oo

z 0.2-

OotoPoLntID: RTPOTl.R0274 0.05 0.0-

0.2 - 0.93± 4.29 De 9. _'_ 0.00 <" /_..2

Freq. " 14.06 cp9 - 0.05 0.4 ----_ i i i - 0 2 4 0 2 4 ,{ 4} -2 = 0.135

VeL. - 327.1 Fps

Nn - 0.289

Re - 2.0170_I0"

J 0.05 7

-0.20"40.0 10.2'*,y/y - 0.900

-0.05 /-4 -'2 0f 2' 4' -4 -2 0 2 4 c_

(c) v=0.14 Figure 39. Continued.

156 0.2 0.05 - d

O.O 0"41 3/Y - 0.96 °°'1 ] 0.00 1 ..... E 0.00

0.2 -4 - '2 0i 2l 4l -0.05 | -'2 ' -0.05 /

c_

0.2 y/Y - 0.986 U o.o __s_ _" J o.oo C..)e °°5O, O0 t ____ t 0,05 t

-0.2 -4 r 2 0i 2 4I 6I -0.05 -4 I -0.05 | Z2 w

0

o.0 _ __--_-_-"_'_/ J o.o5 o.2 ,y_o.o.,oI / c3 0.0095

1 -0.05 | -0.2 / 92 _ O. O0 | -'._ _ _ 8 -4 _'2 0 2i 4i

o_

(c) v = O.14. Concluded

Figure 39. Concluded.

157 0.8 y/Y - 0.250

0.6

0.4- // t

0.2-

0.0- 0. O0 0.05 t

-0.2 -0.05/ -1 i 3 5

0.6 _ y/T - 0.475

0.6

d 0.4-

0.05

0.2- 0.00 E 0.00 J 0.05 I 0.0 I -0.05 | l , i i i -t 1 3' 5' 7' 9' -0.05 3 5 9 -i 1 3 5 7 9

0.6-

0.4

OotoPoLntlD: RTPOT1.R0320 _j_ 0.2 O. 05

0.0 - 3.96± 4.06 De 9. Lj E O. O0

Freq. - 3.99 cps -0.2 -0.05 -l u - 0.038

VeL. - 331.9 fps

Mn - 0.288 0.6 9/Y - 0.900 Re - 1.9160_10'

0.4

r_ j O. 2 .J 0.0 C-_ 0. O0

-0.2 -0.05 / -1

(a) v = O.04

Figure 40. 3-D round tip pitch oscillation data; BL-trip; a = 4 _+4 deg.

158 o.47 y/y = 0.966 .,,.,

0.05 0.2 y

o.o _-" r.3e 0.00

[).2 t -0.05 -!

f.D' 0.2 _ 0,00 0"4 t 9/Y - 0.986 0'05 1 t o. o tl _'_J_ , , -0.05 | , -0.05 /

c_

0.2

0.0 0.05 -0.05 J 0'05 1 °'41 y/T - 0.99_.._ 0'10 t _ c3e 0.00

-0,2 0.00 / , , -0.I0 / ] _ si zi 9i

o(

(a) v = O.04. Concluded

Figure 40. Continued.

159 0.8- _/Y - 0.250

0.6- //

//// 0.4- d 0.05 0,2- .Y

0.0- J (_)_ 0.00

0.2 -0.05 -I c_

0.0 j/T - 0.475

0.6

0.05 c__ 0."t

/_ zz 0.05 ] 0.2 ...... w E 0.00 J o.oo] 0.0 /1 k ; _ _ -o.os, , , , , -0.05 -I I 3 5 7 9 @ Cw

J OotoPoLntID: RTPOTt.R0321 r_)e O. 00 0"05 t O81QO040 I 3.94± 4.15 Deg. -0.05 / Freq. - 10.00 cps -I

u - 0.094

VeL. - 333.5 £ps

Mn - 0.289

Re - 1.9190_t0 _

c_ E 0. 0.0500t

-0.05 / -1

(b) v =0.10

Figure 40. Continued.

160 0,2 d 0.0 "d'_ _'f J 0.00 (.9_ 0.00 0"4 1 3/¥ - O.g6 0"05 t °'°5t

0.2 I 1 , -o.o5 / r -o. o5 / -1 '1 3 _ 7 o_

0.05

J c_E 0.00 0.4]0.2 9/y . 0.966_cJ _ 0"050.00t

0.0 , , , r 0.051 , 0.05 -1 i 3 5 7 9 -1 5 7 9 -1 1 3 5 7

0.05 1 0.2 0.10-

0'00 1

0.0 _ 0.05 -0.05 0.,t] 91y _ 0.99_ t -0.2 , , , 0.00/ 1 k s' 7' , -o.Ioi-1 _ _ 5

o

(b) v = O.10. Concluded

Figure 40. Continued.

161 0.8- y/Y - 0.250

0.6-

1i I

0.4-.

0.2-

0.0- / <

-0.2 r i i i -0.05 | i i i i i 3 5 7 -I l 3 5 7

@

O,O- y/T - 0.475

O.fi-

0.4 -

CD'

0.2- 0.051 _--- _ _ 0.05]

0.0- c_3E O. O0 C "_ o.oo I ...... _ I I -0.2 0,05 t , , _ , , -0.05 ! 9 -I 1 3 5 7

c_

0.6-

0.4-

OotoPotnt [O: RTPOTI .R0322 (_ 0.2-

0.0- - 3.93± 4.26 009 . iiiit ...... Freq. = 14.01 cps 0.2 -0.05 / i i r i i i T i 1 -I l 3 5 7 -! I 3 5 7 9 - 0.132 C_

VeL. - 333.4 gps

Hn - 0.289 0.6

Re- 1.9150_10 B 0.4-

_ 0.2 -

0.05 ]

0.0-

C] E 0.001 c.____

-0.2 i i l -0.05 1 , , -I , _ 5 7 ; -1 1 _ 5 7

(c) v=0.14

Figure 40. Continued.

162 -- ,

0.2 0.05 d 0.05]

o.o j o.oo1 f_)e 0.00 1 d__.__

-0.2 _ , -0.05 f -, I 3 _ ; _ -1 -0.05 # c_

;o_°_I __-yo+_ ;ooooo,Il +.iiot , , -0.05 -, I _ _; z _ __ -0.05 t OE

.y/Y - 0.995

0.2 0.05] .... d

O.D oI °'°l j/ c-)e O, O0 1 _ o.os1 -0.2 -0.05 1

1 3 S 7 , o.oof ,_, , -1 1 3 5 -0. [0 -'{ ' , r -I _ 3 5 7 c_ O(

(c) v = O.14. Concluded

Figure 40. Concluded.

163 1.2- y/y - 0.250

{.0

0.8 00_] ____

0.6- r._E 0"00 1 -o.o_ _ _ _o ,_ ,'_ 0.4-

|.2- y/y - 0.475

l.O-

d 0.8 °"°I O.G J oo1 0.00_ --l-_ .... -- -- i 0.054 ' ' T-_ 12 _4 0.4 11,,{ 4 6 8 [0 12 14 4 6 8 10 O, o¢

I.U- y/y - 0.800

O.@- x Z OotoPotntlD: RTPOTI.R0324

(j_ 0.6 o - 8.93± 4.05 Oe 9. J o.oo 0.4 Freq. - 3.99 cps -0.054 17"0__ 4 6 8 12 14 0.2 4 _ _'o _Z _'_ - 0.038

Vet. - 328.5 £p9

Mn - 0.289

Re - 2.0000 *t0B

0.]O]

U 0.6 J oos4

0.4 _" o.e I _/,_/ - 0.90o 71 O.OO _ l _ 4 6 8 10 12 114 0.2 ..... T__ .... • 1O

O_

(a) v = O.04

Figure 41.3-D round tip pitch oscillation data; BL-trip; c_ = 9 +- 4 deg.

164 d o°I_jYog_f 07 _ o7 o.2o,/ _ _oo,lJ ooo5l , J , 0.00 | _ _ 0.00 '1 4 6 8 10 12 114 4 6 8 l'O 1'2 LI4 4 _ ,_ 1_ ,'4 0 0 o

0.4 0.[0 0.05 d

0.0 , 0.00 | -0.05 -_ 4 6 8 10 1:2 1]4 4 8 8 10 ! 2 I.T4 4

0.25 -

0.8- ylY - 0.995 o.2o-

0.6_ -0,05 - J C__ 0.4 0,10- __3s -0.10 0.15- / O. O0 -

0.2 ¸ 0.05 - -0. L5

0.0 o. r 0.00 i ) o 1o i'2 i)4 -0.20 ¢, o

(a) v = 0.04. Concluded

Figure 41. Continued.

165 t.2 y/T - 0.250

I°O

x I

c3 _ 0.B- 0.05 1

0.6- J o.oo] y -o.o5-I @ 1_0 t'2 I'4 4 0.4 _ G 6 i14 oc

ylY = 0.475

l.O

o.0 o.o5] ...... L_ 0"10 1

0.6- 7 J o.os] J °-°° 1

0.009 _ _ '" -- 1 0.4 _4 -o.o5_ _ _ 1'o t'2 1'4 4 6 8 tO 112 8 l'O 1'2 O_ O_

1.0- yly - 0.800

0.8-

OotoPoLnt[D: RTPOTI.R0325 0.6 _3 °'°'1 o - 8.90_ 4.17 Beg- 0.4 J o.oo] Freq. - |0.08 cp_ _4 0.2 -o.o_ _ _ _'o G u " 0.096

VeL. - 328.2 fps

Mn - 0.288

Re - 1.9890.I0"

O.B O'lO 1 U

O.e]0.4 - .q/T/_ - 0.90 o._ _ _ _o 1_ 4 6 8 I0 12

(b) v =0.10 Figure 41. Continued.

166 U 0.4 E 0,10] 0"6t y/Y - 0.98 i;;;t O. 2 "'_ C3 0,05 1 _ - ...... o.oo4 1 i 0.00| _ , 4 6 8 i0 I I14 4 6 8 liO I12 LI4 4 6 8 I_0 1'2 [14 ol C_ o_

0,6- _/Y - 0.986

0.4 d 0.2 i;;it____y 0"05 1 _ _: ...... _ E 0,00 ] 0.0 0.00 t 6 0 10 1 t14 -0.05 # , , _ , 4 6 8 tO L2 114 Ot a

0.25 -

0.8- y/Y - 0.995 0.20 -

0.6- 0,15 J U 0.4 // 0.10"

0.2. J -o.o5] 0,05 - °°°1 0.0 -0.I0 1 0.00 ,b i_ _4 -0.15 t 6 6 4 6 6 1'o l'_ 14 C_

(b) v = O.10. Concluded

Figure 41. Continued.

167 1.2- 9/y - 0.250

t.O

o.8- 0.]0]

f..E 0.6 0.05 _ _ _ _ - - ,C__._.

6 8 1'0 l'2 114 0.4 0.0044 _ 114 Oz

1.2 y/y - 0,475

1.0

0.8 0"I01 °°'1

0.6- J c.3_ 0.00 1 C__ 0-0S 1 -0.05| , , , , I'4 4 8 ]0 12 I'4 0.4 i i • O.O0; ...... - 6 6 8 110 1'2 114 6 8 l O 12 C_ o_

|.O- 9/y - 0.800

i 0.B-

DotoPoLntID: RTPOTI.R0326 0.6 o.o_] ...... (-__._ a - 8.89± 4.27 Oe 9. J 0.4 0.00 1

Freq. - 14.0] cps -0.05/ ]'4 0.2 4 6 B t_O ]_2 u - 0.134 o¢

Vet. - 327,9 Fp8

Mn - 0.288

Re - 1.9840 W106 9/y - 0.900

0.6 O'lO 1 C_" 0.4 1 O.OOl , , 0.2 4 6 @ ]10 1'2

4 c=

(c) v=0.14 Figure 41. Continued.

168 _/Y - D,gBB

_a

O,O

O,l!O

0,11i,

_,lfl:

O,O_: =CI,ll_:

4 =1_,1I I 1ii bl t.O O'lO 1 J o.8 ,-21/ 1 7 o.oo s _ l'o s'2 s'4 1_ 0.6 16 6 c= @

9I¥ - 8.475

t.2-

(5" |.0 j J O.O 0.10 0.05! ./ 0"051 _ -0,050.00 ,, 0.00 8 l'O l'2 t4 1_6 0.6 16 6 8 LID tl2 l'4 ]i6 1'0 l'2 L_t 6 (X c_

1.2- y/I - 0.800

1.0-

j o e OotoPoLnt[D: RTPOTl.R0328 0.10]

0.6 - 11.00_ 4.06 0e9. J o.os_ Freq. " 4,01 cps 0.004 , q 6 O 1'0 t'2 t'4 16 0.4 I'6 6 I'D 1'2 L'4 - 0.038 = Cq VeL. " 328.0 Cps

Mn - 0.288

Re - 1-9850 Mlo° |.0- 9/y - 0.900

0.8- 0"10 1 U 0.6 o 1 0.00_ 1'6 5 0 llO 112 114 O.4 I'0 I'2 I'4 15

(a) v = O.04

Figure 42. 3-D round tip pitch oscillation data; BL-trip; a = 11 +._4 deg.

170 0.6 d 0.4ooIYogo.,o o.,o1 0.2 o.o_1 . o.o_1 o.oo -t 6 8 10 12 14 l's s o' 1'o 1'2 ,'4 1_6 o.ooI 8 10J 12, 1_ 116 ol

J 0.05] o._]j__ o.9_ o.,o1 / J o.oo] 0.2 J J _ 0,00 | 6 8 lO 12 I_ lib 6 6 I'O I_ -o.osj :4 1; B c_ 8 I0 12 i I Q

0.35

0.30

0.25 - i.o 9/'{ - 0.995 -0.05

0.20 -0. I0 -

_ 0.6- 0.15 0.00 -0.15-

0"8_ ,__ 0.'1 0. I0-

-0.20-

0.2 _6 0.05 f I 0.25 - lO 12 1'4 lB r r 8 I0 1_2 114 _6

C_ (a) v = O.04. Concluded

Figure 42. Continued.

171 1.4- yly - 0.250

1.2-

f/1

L.O- 0. I0] J 0.8 I

/ 0.00 6 8 1'0 t'2 L'4 0.6 @ t'2 1'4

(_

[.4- yly - 0.475

1.2 d t.o °'°l o.os] ...... -....u 0.8

j o.os] /- _--- -0.05 -I / 0.00 I'0 16 0.6 - - I "_ 8 1'2 114 8 tiO 1'2 LI4 16 l'O i'2 t'4 16 6 6 om ol (_

t'2 t y/T - 0.800 OataPatntIO: RTPOT1.R0329 d 0.6 0.10] 1o /,_" - 10.96± 4.19 0e9. o" o.os] ......

8"6 1 Freq. - ]O.Ot cps 0.00/ I'4 0.4 , , 1 , ,'B 6 8 I'O 1'2 6 8 I0 12 14 - 0.096 Cq VeL. " 528.5 £ps

Hn - 0.288

Re - 1.9790-t0'

0.0- 0.10] d

0.6- loIj:oofl +" °'°+1 0.4 /_ o.oo,+ _ _'o ,'_ ,'+ ;'6 6 8 I_ t'2 t'4 lj6 ol

(b) v =0.10 Figure 42. Continued.

172 0.6 c_

0. t J 0.05 .,z- J 0.05 081JYog6°"° 1_ ._f. 0'10 1 0.2 r v 0.00 1 6 8 zo ,_ I_ , I'6 6 _ ,'o I'2 ,'4 IB 0.00 | 6 8 1; 12 ['4 l'6

(3(

°°511 ...... _-_-_. U o.,O-6t JY-j o.o__ O.1OIr3 E O. O0 0.2 , , 0.00 J , 6 8 10 1'2 1'4 1'6 6 B ,'0 1'2 l'_ [_6 -0.05 i 6 8 lwO 1'2 ['4 I'6

0.30 - 0.00

1.0 y/Y - O.995 0.25 - -0.05 z x 0.8 0.20 - -0. I0 -

J CD£ co_ 0.6- 0.15 -0.15 -

0.4 0.10 -0.20 - /

0.2 0.05 -0,25 6 ,'o I'2 1'4

(b) v = O.10. Concluded

Figure 42. Continued.

173 1.4

1.2

d 1.0- 0"I0 1 0.8- _"°-°_I_

0.6 O.OOl 6 @, t_O ['2 I'4 6 cc c_

1.4 ylY = 0.475

1.2 d l.o °,°1 °°_1 0.8- / _oos1 _ _ooo1_' 0.6 -°'°56m e 1'6 0.00/ 6 8, I'O 1'2 t'4 1'6 6 1_0 1'2 1'4 o_ Cq

|.2 y/T - 0.800

l.O

DotoPoLntID: RTPOTI.R0330 _J 0.8- 0"I0 1

- 10.95± 4.30 Oe 9. 0.6- e 0.051 / Freq. I 14.01 cps o.oot 0.4 6 I'0 1'2 I'4 I'0 Iv2 I14 6 - 0.134

Vet. " 328.2 fps

Mn - 0.288

Re - 1.9770_10'

0.8 J J o.os _- ...... _.> 0.6 i 0'10 1 (___

,.oI o.9oiY_ 0.001 6 8 t'O 1'2 I'4 i'6 O. 4 8 llO I'2 114 I'6

(C) v=0.14 Figure 42. Continued.

174 0.6 0.[0- 0.10 d o8t;o._ J o.osj J o.os 0.2 , , 0.00| , 0.00 6 8 lO 12 {4 l'6 6 0 1'0 1'2 1'4 1'6

'_ o_ 0

U o6o.4 t jY _ o0.05 _'_ oo.oo-_o5 , O. 2 _,,,_Sr O. O0 | , , -0.05 | , 6 ; I; I_2 I'4 I'6 6 8 i0 (2 I'4 ,'6 6 8 1; I'2 /4

O_ (_ (_

0.30 - O. O0 -

/ 1,0- -0.05 SI/'/ - O. 995 o.2s- I /

0.8 -0.10 \ J r_ E

r__" 0.6 O. t5- -0.1.5

0.20 - 0.4 0.10- -0.20

0.2 i , 0.05 -0.25 1 r 8 1'0 12 I_ 1'6 6 8' I0' 12' I'4 8 _o ,'2 ,'4 I'6 o a

(c) v = O.14. Concluded

Figure 42. Concluded.

175 0.0_- 1.4 y/Y - 0.250

0.00 1.2

c3 E -0.05 t__ t .0

/ , -0.10 O.@-

-0.15 O.G @ ,o ;2 ,'4 ,'6 ,'_ 01

0.20 - q

0.00 / _ t / _// J 0.05 1 d 1.2 __,_ j o.lo O. 05 -

L'4 1 _/Y - 0.475 0.15 1.0 _ r~ /

0.8 0.00 0 I_O {2 t'4 1'6 B 1'0 1'2 {4 I'B I'6 l_O ['2 tl4 1'6 1'6 -0.10/

o(

1.0 OotoPoLntIO: RTPOTI.R0332 0.I0]

0.0- / - 12.98± 4.07 Oeg. J o.o5] .=___ o.ooi 1.21o.;oo I'8 8 1'0 L'2 1'4 1'6 0.6 0 IVO ['2 {4 1'6 ,'6 Freq. - 4.01 cpe

u - 0.038

VBL. - 328.3 £ps

Mn - 0.288

Re - 1.9770.I0' I.o] 91Y _ 0.900

d 0.I0] J 0.05] _=--...... o.oot B m'o {2 t'4 t'6 ,'6 0.4 8 I_O I'2 I'4 I15 I'8 o

(a)v = O.04

Figure 43. 3-D round tip pitch oscillation data; BL-trip; a = 13 __+4 deg.

176 0.15] 0.6 d 0.'1-o1 0.10 1 / 0.10 0.05 ] _ c_ E 0.05 0.2 0.00 -I 0.00 8

£D

0.4°'6 t _/¥__ ffi "

0.2 8 1; 112 1'4 1;

c_

0.35 - /

1.0 i I 9/T - 0,995 0.30 - r"" -0.05 0.8 0.25 -

J i/I I -0,10

0.20 c.3 _ -0.15-

/ f 0.4 i- 0.[5 -0.20 -

0.2 O. lO 8 fo 12 1'4 1'O i l ;o 1'2 1'_ 1'O t81 o2s I0 112 I_ It6 I8

(a) v = O.04. Concluded

Figure 43. Continued.

177 [.47 y/¥ - 0.250

1.2" // /

1.0-

0.00 \_ . / / 0.8 1 / / 0.o5] _ i -0.05 0.6 8 I;0 112 ['I [I6

C_ c_

0.05 1

0.10] __ 0.05] I<-

118 -0.05 _8 I;0 li2 I'4 I_ i18 _8 O.OOq 8 I'0 I'2 {4 L'6

1.0 OotoPotntID: RTfOTL.R0333 0.I0] d

1"21 9/Y - 0.800 - 12.96± 4.19 De9. °'°_1 ,.cc_

0.00/ [_6 8 1;0 I'2 1'4 0.6 8 ,'o I'2 ,'4 L'6 Freq. - 10.03 cpe C_ - 0.096

Vet. - 327.9 fps

Mn " 0.287

Re - 1.9570-10'

0.8- O.lO] , .I J

0.6 _.o[ _/¥_ ._;d/.. 0.900I o" o.os] _- ...... Ls>

O.OO/ I'8 8 1'0 L'2 {4 115 O. 4 8 ['0 L'2 {t 1'5 o

(b) v =0.10 Figure 43. Continued.

178 0.151 0.6 d 0.4 _'_"-__ _ 0"81 _I/'I" _ _'_

0.05 I _"_'_- - I C_ e 0.05 ] 0,2 I 0.00 I _ _ 0.00 #

0,6 d 07 C3_ O'lO l 0.05] 0.4 °e I _/¥ - 0.98 °°'1,,,.___ _ c.3E O. O0 1_-_ 0.2 i r 8 10 12 114 116 0.00 / f r -0.05 / _ I'8 8 10 I_2 I'4 I16 [8 8 10 12 l'4 I_6 i_8 O_

0,40-

0.35 - I

1.0 _IY - 0.995 0.30 -

0.8 rj _ 0.2S - -0.10. 7 z / -0.05

c_ _ 0.6- 0.20- C.3_ -0. ! 5 -

0.4 O. t5 - -0.20 -

0.2 7 8 ll8 0.10 i w -0.25 lO 12 1_ ll6 118 8

(b) v -- O.10. Concluded

Figure 43. Continued.

179 y/y - 0.250

1.2- //

1 t.O- o" o.oo 0.8 / / - -o.os e 1'o {2 _'t t's ,'8 0.6 t'o ,'2 A 1'6 o¢

[.4-

1.2

[.0 O. ]0 0.05 ] !

0.05 O.B c__e 0. O0

0.00 0.05! 0.6 1'8 8 I'0 1'2 I_4 1'6 1_8 8 1'(3 1'2 I'4 1'6 I'[3 {2 t'4 B 1'6 ol o_

1.0 OotoPotntID: RTPOTI.R0334 0"I0 1

0.8 _ C 1-21 ylY - O.BO0 - 12.951 4.30 De 9. I

0.00/ @ I'0 1'2 1'4 116 Freq. - [4.02 cps

- 0.134

VoL. - 327.9 Fp_

Mn - 0.287

Re - 1.9620MI0'

0.8- 0"I01 d _" 0.054 _ _-- ...... _..__ °l'Ii0.6 ._.<_i | o.0ot 8 I; 1'2 t'4 I;

c_

(c) v=0.14

Figure 43. Continued.

180 0.15-

0.6 y/y = U 0._ t t - _ C3E °.,°0,05 1 ...... 0.05 r 0.2 o.oo / o.oo -I 0 llO 12 114 10 l'O 0 1_0 1'2 1'4 |'6 1'0 0 1'0 17 1'4 16 llO

3/'£ = 0.986

0.6 d o,_]°.i° I , O.05] 0.4 t 0.2 1 i o.ooH 8 io 12 l',t 1'6 l'o B J; l_ fi l; i; -o.o_/8 1o.... 12 14 16 l_

O. 40 -

0.35 - / //

0.30 -

1.0- 91Y - 0.995 0,25 -0.05- 7 Y/

0.8- 0.20 -0.[0 -

d 0.6 0.15. c3 e -0.15-

0.4 0.10- -0.20

0.2 0.05 -0.25 B LiB liB 8 0

(c) v = O.14. Concluded

Figure 43. Concluded.

181 0.05 -

0.00 - 1.4- y/y - 0.250

0.05 {..2 F_ E

-0.10 r__ 1.0

-0.15 0.8

- 0.20 0.6 % I0 1'2 1'6 lO I_2 1'4 I'6 I'8 2O

0.25 -

O. 20 - jt 1.1

/F/_! 0.15 1.2 J

0.10 CS 1.0-

J 0.05 O. 05 1 _ 0.0-

0.00 0.6 (2 1'4 1'6 iT@ lO l'2 I'4 I'6 I'8 2'O i0

1.0- OotoPoLntID: RTPOTI.R0336 U 0.05 1 0.8 oo01 21 - 15.02_ 4.06 Oe 9.

-0"051{0 I'2 1_4 1'6 [_8 0.6 Freq. - 3.99 cps I0 1'2 I_4 116 (8 2O ot o¢ v - 0.038

VeL. - 328.6 Fps

Mn - 0.287

Re - 1.9660_I0"

l.O- u _.e O. 05 O.fl- 0"10 1

0.00! J 10 112 ll4 116 118 20 112 114 118 210 (J.6 tO 116 o o

(a) v = 0.04

Figure 44. 3-D round tip pitch oscillation data; BL-trip; (x : 15 _+ 4 deg.

182 0"15 I

J 0.6 0+10 1 O, 05

0.4 o.ooI / ,o I'_ i'_ ,; 1'8 2_0 0+00 f 10 1r2 I'4 '6 I_8 Jo o

U U.6 /._ _ 0.,5 t /

O'4 1 _- -- 0.10 1 0.2 1 0.05 'f -0.05 | ]0 1_2 1'4 16 1_8 20 lO 12 1"t 1; l'B

o_ O,

0.40 -

0.35 -

/ /

d // / -0.,0] _ r_)e -0"15 1 -,\ o.6°'e'°t "y/Y_._J_._._.-_'_'_ o.2o°"25°"3°

0.4 /.- 1 1o ;_ ,'_ 1; 1; _'o °'ISio ,_ i'_ ,; _; _'o o,_5t° , , 1; i'_ _0 a

(a) v = O. 04. Concluded

Figure 44. Continued.

183 0.05

0._ \ 1.4 y/Y - O.250 -0.05

L.2 J % -0. I0 - % d [.0- ; {/ y -0.15 - 0.0 / \ f -0.20 % I0 112 114 |'8 I'8 _0 0.6 i 20 0.35 - 10 I'2 I'4 i 5 I'8

t_ 0.30-

t p 0.05 - O. 25 - :._ _/y - 0.475 / / 0.00 • 0.20

/ / J -0_05 0.15 //f \ x\\\% 1 1.2- / a J d /." j -0. I0 0.I0- 1.0 // J %t / I -0.15 - 0.05 0.8 _ ._ I 0.20 I'4 I'8 I'8 20 0.00 _0 I0 I12 O. 6 ___r --_ I0 12 14 L6 L8 10 12 14 16 In8 20

Oq

|.4 - ylY - O.8O0

1.2- OotoPotntIO: RTPOT1.R0337

L.O 0.I0] a - 15.00_ 4.17 Oe9. 0.0 J o.o5] ___<_---_..... Freq. - 9,94 cps 0.00 -_ iO I'2 I'4 I'5 I'8 20 0.6- 1'2 114 I'6 I'8 20 10 - 0.095 @ VeL. - 327.2 £p9

Nn - 0.286 1.2" - 0.900 y/T Re - 1.9540_I0'

1.0'

"_ 0.@ (D 0.107

0.8 o _ 0.05] ._-L...... ZC_

o, O0 _ I__0 10 I'2 (4 0.4 I'2 I'4 l'G L'8 -_0 10 c_

(b) v = O.lO Figure 44. Continued.

184 _/Y - 0.966 0.8 0.,5]0.10 _ / 0. I0- 0.6 - _ r C3 0.05 °t 0.05 1 _ 0.4 0.00 f _ 0.00 | 10 2'0 IO 12 1'4 16 18 20 10 0 0

0.20-

0.8 _/Y - 0.986 0.15 -

c__ O. tO U

0.4 0.05- £3 e 0.00 -. 0"6 I t 0.2 r r 10 112 ll4 16 18 _0 0.00 10 -0.05 ! 2'0 _o 1_2 1'4 J; 1'a 2_0 C_

0.'_5

0.40

21

0.35 z// -0.05 -

0.30 - -0.10 1.2- ylY = 0.995 I Ill J

l.O- 0.25 - -0.15 \\

r_ _ 0,8 0.20 -0.20

0.6 0.15 -0.25 -

0.4 0.I0 -0.30 _0 10 2J0 ]0 I'2 ,'4 1_ ,8 o o{ (b) v = O. 10. Concluded

Figure 44. Continued.

185 O. 05 - i.s- ylY- 0.250

0.00 \ \

\ -0.05 1.2 E \ d \ -0. I0 \ \

-0, 15 " k 0.8 //

[ .0 /f'12 I I I -0.20 I12 I'4 I16 lIB |O I0 I14 ll6 1'8 Ol

0.30 +

0.25 - 1.6- ,j/¥ - 0.475 s

I i 0.05 t.4 0.20 -

/' 11 / 1 0.00 -,----h 1.2 J 0.15 - x I

d illl{i x I 0.10 \ I t,O

\ ! 0.05 \ ! 0.0- i ,.___.. -o.m z J / , i 0.6 , o.ooi 1'2 114 1'6 1'8 2_0 12' 1'4 l'B t'8 210 -0.15 I0 20 I0 I'2 I_4 I'6 t'B I0 ol c_

yI¥ - 0 800 -).._-_ "z_

1.0 / DotaPoLntlD: RTPOT1.R0338 J 0.I0]

- 14.99± 4.28 Beg. r3 E 0.05 1 o.oo/ 112 1'dI 1'6 1'8 0.61o I_ i'_ i'e i'e 2'O Freq. - 13.98 cps 10 ci - 0.134

VeL, - 327,1 fps

1.2- Mn - 0.286 ylT - 0.900

Re - 1.9490_106 1.0

cS o.0

0.6

o.oo/ -% I'2 t'4 I'8 2O 0.4 I0 1'6 I'4 I'6 I'8 I0 I'2 2'0 c_

(c) v=0.14

Figure 44. Continued.

186 0.8 °"'51 J 0'101 O'lO 1 0.6 1'01 9/Y 0.96- o.os] ___ _- caE 0.05] _-_ -- _ ..... _ 0.4 o.oo ! , 0,00 | ]o ,_ _'4 1; ,'B 20 lO 1'2 ,4 116 1'8 2_0

C_

0,20-

0. t5 -

0,6 --'_ 0.10 - u 0'05/7 '_--'------_-_ _ _ - _ _ 0.4- 0.05- o'B l 9/Y 0.98- o.ooI 0.2

]0 lJ2 1'4 l; 1_8 20 0.00 10 -0.05 1 20 10 12 ]_ 16 18 21o

0,45 -

7 O. 40

]/

0.35 / // -0.05 -

],_- O. 30. /"// -0.10 9/Y - 0.995 J I.O- 0.25 - / -0.15 E CD

d o.8_ 0.20 - -0,20

0.6 0.15 /, O. 25 •

0.4 IO 2'o °'1°,o I_ 1'4 16 l'B 20 -0'3010

(c) v = O. 14. Concluded

Figure 44. Concluded.

187 0.05 - 1.1- y/T - 0.250

0.00 - !.2 - /_

U L.0- -0.05 -

0.8- -0. I0 -

-0.15 0.6 12 It4 I'6 I'8 2'0 _2 t2 l_ i'6 1'8 2_

0 0.30

0.25-

/ 0.05 1.4- 0.20 - y/¥ - 0.475

0.00 1.2 J 0.15- F /

/ o.1o - r.DE - 0.05

0.8 0.05 - -0.I0

0.6 22 0.15 1'4 1'6 1_8 2_] 12 I14 I16 IB 20 22 0.00 12 1'_ 1'6 IF8 20 12 o c_

_Y OotoPotntID: RTPOT1.R0340

11"21"4].0Y/Yr/ - 0.80__ << a - 17.04± 4.05 De 9.

1 O.B 12 1)4 I)6 1'8 2'0 22 Freq. - 4.02 cps -o.,o_ , ,'6 ,'8

u - 0.038

VeL. - 329.7 £ps

Mn - 0.288

Re - 1.9700_I0'

1.O

J (D 0,8 o0.00osI -0.05 ! 0.6 12 I'4 I16 lib 2'0 2'2 12 ,_ I'6 I'8 2'o 2'2

(a) v =0.04

Figure 45. 3-D round tip pitch oscillation data; BL-trip; cl = 17 +_4 deg.

188 O, t5 9.05 d oB°t°9°6 ,Y J °°t

0.I _ 0.051 , -0.05 12 i'4 1'6 i'8 2o 2'2 12 ;_ ,'6 1'8 2'0 _2 12 114 I_ I'8 2_ 72

0.25

0.20 z"

0.05 ] _-3E 0.00 1 65 _ .. -o.05] O. 4 i 0.05 -o.1o/ 12 I'4 lJ8 18 20 212 _2 I 22

c_ oc

0.50 -

0.'15 -

0.'40 - I -0.10

cj_ 0.35 - -0. I. E

1.0 D.30 - //i-" £3 e -0.20 - cY'

0.25 -0.25 o1.2)o y/T-_. 0.995 /-// 0.6 1 -0.30 2r2 0,20 12 22 12 ,'4 1'6 1'8 2_ 2'2 c_

(a) v = O.04. Concluded

Figure 45. Continued.

189 0.0S- r"--

0.80- i.s- 3t Y _ 0.250

-0o05 -

[.2- J -0.10 - 1.4- d -0.t5-

1o0 / -0.20 - O.B \

0.45 - -0.25 12 ,_ ," 1'. 2'o 2'2

O. 40 -

0.35 -- 0.05

0.:30 - 0.08

c__ 0.25 - -0.05

t.61.4,.2 Y/f " 0.20 - c3 m -0.10 - d 0.15 - -0.]5- l.o- / /// O.]O- -0.20 - O.B- _ z

0.8 O.OS 2_2 -0.2512 12 I'4 l" t; 2_0 2'2 12 1'_ 1'6 L" _o 1'4 1" t" _o 2'2

|.4 ° _/Y - 0.800 /

1.2- 0.05 ] d 1.o. OotoPotntID: RTPOTI.R0341 O.B- e = 17.02& 4.15 009 . °o:°oZ] Freq. - 10.03 cpe -0.10| 0.6 1'I ,'o 1'. 2'o 2_2 12 ,'_ L; L" 12 u - 0.096 ol

VeL. - 327.7 £ps

Hn - 0.286

Re - 1.9530"10"

d 0"I01 0.0 cn 0.05 l.Ot'2i ,q/Td_0.90- - / " 1 O.G 0.00! 12 114 lJ6 1" 20 12 ll4 1_6 ,J8 2_0 C_ o_

(b) v =0.10 Figure 45. Continued.

190 0,8 0.05

c) O. t5J 0.6I'°I Y/Y__ "_ _ o lo,1 ' o_ ooot -_------_C___ 0,4 1 O.05 t _ -0.05 } _ , 22 12 14 16 I_8 2VO 2'2 12 114 lY6 I8 20 .]2

0 @

0.30 -

].0- 0.25 - H/T - O. 986

0.8- 0.20 /' 0.05 J cjJ O. 6 0.15 0.00 "_'_-"_- - _ 0.4- 0.10 1 0.2 r i 0.05 12 [14 |6 ]8 20 12 ]2 ,'4 1; ,; _'o _'2 -o.loj 0 c_ oc

0.60

0.55

0.50 /

0.45 - /

1,4- 0.40- y/Y - 0.995 /I -0.10 - J 1.2- 0.35 / ,/ -0. t5 -

I I 1.0- O. 30 -0.20 - U e_ E 0.8 - 0.25 -0.25 \

0.6 0.20 - / _ _0.30

0.4 1 0.15 12 22 12 f4 [ r r ] ]6 18 20 ]2

(b) v = O.10. Concluded

Figure 45. Continued.

191 0,05 - |._- ylT - O.25O

0.00 - 1.4"

-0.05 - 1.2

c__E -0. I0- (_ 1.0-

-0.15 0.8-

- 0.20 0,6 0.45 -

-0.25 0.4 0.40 - 12 ,'_ 1'_ ,'8 2'0 12 ,'4 l'6 l'8 2'o 2_

0.35 - /

0.30 O. 05 - 1.8 /// /

ylT - 0.475//_ O. 25 0.00 - 1.4 // / , J 0.20 -0.05 - 1.2 1/II \x // !' # • -O.lO- L.O- 0,15" / 1 / i / / 0.10- -0.15 - 0.8- z /

0.05 - 0.20 0.8-

0.00 7 -0,25 ! 0.4 I'4 22 12 I'4 ['6 I'8 2:'0 2'2 I'4 116 I'8 2'0 212 12 !.'6 I'8 12 ol ol

1.4

1,2

OotoPotntID: RTPOT1.R0342 c3 _ 1,0-

o - 17.04± 4.28 De9. 0.8- C3 e 0.00] _ xr-_ / Freq. - 14.03 cps -0. O5 1 2'2 0.6 12 I'4 I'6 liB 2iO 11@ 20 22 12 114 115 u - 0.134

Vet. - 328.4 fps

1.2 Hn - 0.287 ylT - 0.900 Re - 1.9520,10' 1.0 d' c_ e O. 05 0.8 0"10 t

0.00 0.6 /4 116 I18 210 2'2 1'6 118 212 12 12 /4 210 C_

(c) v=0.14

Figure 45. Continued.

192 [.2- y/T _ 0.966

1.0-

_' 0.8 -

J 0.15] // 0.05 _ ..... _

0.6 f o.,o0'201 I • o.o°I1 0,4 12 1',, 1'6 1'6 2t, _'2 o.os_ - I'4 1'e i'8 2'o 2'2 -o.o51 , ,

c_

O. 30

1.0 H/T - 0.986 O. 25

0.8 0.;20 - 0.05 - J // _ 0.6 0.15 - 0.00 -

0.4 0.10- -0.05 i f-DE _

0.2 0.05 12 ,',, ,'_ ,_, 2'o 2'2 12 I'4 16 /8 2_0 212 -0. LO /

O_ Oc @

0.60 -

0,55 - /

i I 0.50

0,45

1.4 0.40 9/_ = 0.995 / II -0. I0 - J

1.2 0.35 -

//I I1 -0.15 // I.O 0.30 -0.20 ,Y E £3 0.0 0.25 -0,25

0.6 0.20 / -0.30 - /

O. 4 0,t5 12 12 I_ 16 18 20 22 -0.35- c_

(c) v = O.14. Concluded

Figure 45. Concluded.

193 0.05 - w 0.00 - 1.2 J -o.os- d [.0 -0,10- O.B

-0.15 0.6 1'9 :1 h ,'s ,_ i'o oz

O. 25 -

0.20

0.15 0.00 1.2 J d 1.0 O. 10 -0. lO 0.05 - O.Bt-41 q/Y/ 0.47- - - J -°-°5 t

0.00 D.B o.15/ ? 9, l_L [_3 I'5 l_ _9 7 9 I'1 I'3 Lf5 117 1; 'o :, I"+ t'5 ;7 1'9

OI

l.O

OataPoLntlD: RTPOTI.R0364 d 0.0 0.10]

0.6 o - 13.021 5.06 Dog. J 0-051 _ ...... 0.00/ Freq. - 4.00 7 9 l't 1'3 t'5 1_ 0.4 7 9 II 13 15 17, 1 0 u - 0.038

Vet. - 333.6 £po

Mn - 0.290

Re - 1.9470w10 B

d 0"10 7 o+0.6 .i _i..-/- +._,+0.051 +_=-...... o.oo, ; ,'t ,'+ _'+ ,; ,'9 O.4 7 9 11 13 [5 17 119 cl O_

O) v = 0.04

Figure 46. 3-D round tip pitch oscillation data; BL-trip; a = 13 +-5 deg.

194 1.0- _/Y = 0.966

0.8

0"15 7 0.6 J O.lO] 0.10] 0.4 J o.osI _ - ...... 0.2 0.00 1 , , , , , _' ; ,'l _; ,'s ,'7 I'. 7 9 ] l 13 15 17 IV9 131 Oi

0.20 -

0+6 _ 0.10 d 0"05 1 0.4 0.05

0.2 v 0.00 7 9 11 13 15 17 19 ?, I'3,_ ;7 1'9 f I

0

0.40 -

0+35 -

t f 0.30 -

#/

1.o] ylY. 0.995 _ o.2s- -0.05 -

0.8 0.20 /#// / d r) s -0.15 - ",,

0.I0. 0.60.4 t / I_._]_I O. 15 / -0.20-0,10- - _ _ _ -.

0.2 -_7 1 r_7 T 1 0.05 - -0.25 7 9 11 13 IS 17 19 ; ;I t'+ I; I? 1'9 ; fi I'+ ,; I_ _9 oc oq o_

(a) v = 0.04. Concluded

Figure 46. Continued.

195 l.'l

1.2 y/Y - 0 .__/_ 0.05 l _ _ _ _ _

1.0- d I lilly/ 0.8 -0.050"00 1 (/ C-DE -0.101 U.6

-0.15_ G Ill 1-13 1'5 117 0.4 li I lit II5 117 1i9

0

ylY - 0.'t75

t.4 l % / 0.15 1.2- 0.05 l 0.00 __ J 0.I0- 1.0 0.20 - \ 11 J -0.05 " \ / 0.05 O.B 1

0.00 i "l -O.lO_ 9, lWl ll3 115 117 19'l O.B 9 [ I1 iI 3 115 ll7 19 0 I I II3 115 il7 19

0

),.2-

1.0 yly - 0.800 .-'" . OatoPoLntID: RTPOTI.R0365 j o.8- 0.10] J 0.6 - 13.01_ 5.19 Dog. 0"05 1 ,__--_-__ .Z_.___...._=_ o.oo-t 7 9 I'1 I'3 115 ['7 1'9 0.4 Freq. - I0,07 cpe lli ll3 ll5 [17 19 o u - 0.095

VeL. - 332.4 fps Nn - 0.289 Re - 1.9350"106 i.o] slY _ o.9oo j;._. 0.10] d 0°1 ./;;..- J o.ol

,.. o.oo47 9 I'I t'31'5t7_9 7 9 It [3 15 [7 19

GI

(b) v =0.10 Figure 46. Continued.

196 1,0- u/f - 0.966

0.8-

0.6- J o.lo] 0"I01 0.4 ,..:_ - o.o51 c_3m 0.05 _ _ _ .... / I 0.2 , 0.00 # , w , , , , o.oo / 9 1_1 1_3 15 17 1_9 7 9 11 13 15 17 19

o_ o_

0"20 1

o.o _ o.1o] o.05]_ o., °°°1 0.00 / -0.05 t 0,27 ; I'I I; I; 17 119 2 ; ]'1 l; I; If7 I'9 7 G I'I ]'3 I15 I17 I'9

ol oc

0.40 -

O. 35 -

O. 30

|.0_ "9/ 0.20 O.B _ - " -* cZ

0.6 0.15- 0,25

0.4 0.10-

0.2 n 0.05 ' 1' 1; '; 1) 1'9 o_

(b) v = O.10. Concluded

Figure 46. Concluded.

197 0,05-

-0.05 - J cJ -0.10-0.00 -

-0.15 - lo0.8 Ii!l lo °"611 1'3 1'5 77 ?g 2'1 2'3 -°'2°t,73 ?s ?7 l'9 2'I 2'3 o= 0.35

0.30

0.25 / 0.20 J 0.15

d 0.I0- " J" -0.05 ]

0.8 0.0'5- o0:Oo:t _c J -o.io]

°'_It 73 ?5 L'7 l'g 2'1 2': 0"0011 ,'_ I15 lW7 t'9 21 213 °151_ ,'3 75 t_ 79 21 2; ci O= o¢

1.4- 9/Y - 0.800 0"05 7 ¢.___ _ ", L.2- DotoPoLntIO: r__ 2.0- RTPOTI.R0362 J-0.05

0.8- o,- 16.93+ 5.07 Oe 9. -°'1° 1 1 0.6 I I_ 1'5 t'7 I'g 2'1 2'3 Freq. - 4.01 cps -0.15/ 1, 73 ?5 ?;' ?g 21 23, ot a - 0.038

Vel. - 334.2 £ps

Mn = 0,290

Re - 1.9460_10'

1.0 d 1.2] 9IT - o.go °°'1 r.._:,= 0.00 1

06 II 1'3 1_5 I'7 1'9 2_1 2_3 -o.o51,6 i_ 77 t9 2'J 23

(a)v = 0.04

Figure 47. 3-D round tip pitch oscillation data; BL-trip; c_= 17_+5 deg.

198 0.25 -

0,20 -

/ 0.8 0.I0

J 0.05 7 0.6 0,05 C3E O. O01 O. 4 0.00 II 13 15 17 19 2[ 23 11 I; lW5 I)7 I)9 it 2)3 -0"05 :I I)3 l)S I'7 1.9 2)I 2)3

o OE

0.30 -

O. 25

0.20 - // " ° i J / o.o5]"_<'_--.- - 0.6 0.15- d J 0.4 0,[0

0.2 f _ ) 0.05 1! 13 15 17 19 21 23 i 1'3 ,'5 :7 ,_ 3t 3_ -o.lo:, _'3 ,; ,'_ ,'_ _', 33

0.50 -

0.45 - I

0.40 /21

1,2- 0.35 ,:,u/'f = 0.995 o_ .z -O. tO] l.O- O. 30

d o.0- 0.25 - //"/r c3 _ -0.20] _- _ _ /_'/ 0'151 _N_" 0.6 0.20 - -0,25 ] 0.4 -0.30 / 1'3 ,'s ,'7 1'9 _I 33 0'15 11 1; 1; 1'7 1)9 2'l 213 ,I 1; l; ,'7 ,'9_l 2'3 Cc ct Cc

(a) v = 0,04. Concluded

Figure 47. Continued.

199 0.05 -

\ D.00 - 1.6

-0.05 - 1.4 \\ \ -0. I0- 1.2 £.3E -0.15-

O. 20 - 0.8" x /i 0.55 -0.25 - 0.6- 0.50 - -0.30 0"411 13 1'5 1'7 119 2'1 23 I 13 I_5 1'7 ll9 2fl 213 0.45 - O C_ 0.40 -

0.35 - O, 05 -

1.0- 0.30 - 0.00 _-.\ J 0.25 -0.05 "_ "\ 1.6- /i y/¥ = 0.4_ -0.10 1.4- 0.20 - c_)£ -0. ] 5 c_J-' I. 2 - 0.15-

1.0 0.I0- 0.20 / ¢,, -0.25 - 0.8 z I 0.05 -

0.6 0.00 -0.3011 t'3 1'5 1'7 t'9 2'1 2'3 11 113 |I5 117 _19 211 21_ 1 I'3 t'5 1'7 1'9 2'1 2'3 c_

1.6 y/Y - 0.800 0.05 - 1.4

0.00 - 1.2 /J d OotoPoLnL[O: RTPOTI.R0361 1.0- -0.05 -

- 16.91± 5.18 Oe9. -0. I0 - 0.8- \ /I

Freq. - 10.03 cpe -0.15 0.6 I 1'3 I'5 1'7 L'9 2'1 2'3 0.095 - @ o_ VeL. - 332.3 fps

1.4- Mn - 0.289 ylT - 0.900

[.2 Re - 1.9430_I0 m

1.0 J 0.8

0.6

-0.05 l 0.4 I I 13 I5 117 It9 2'1 2'3

(b)v =0.10 Figure 47. Continued.

2OO O. 25 -

1.0 O. L5- // J 0.8 0.10-0.20 - 0.05 l- _ - _ _ _ _ 0.6 0,05- _- - o°0If 0.4 j 71 ]3 I'5 I_7 I; 2'! 23 0'0011 13 lIS 17 I; 211 2'3 -o.o5_ ,'_ ,; ,; ,; 2', 2; ot

0.35 -

0.30 -

1.o ,Y _ ,

0.8 r__ 0.20 -

d 0.6 0.15-

£3 e -0.05 1 0.4 _ /_ - _ _ o.0.25-to

-O. tO] (3.2 ¢ i ; i r m 0.05 -_'- _ -o. is ! 11 13 15 17 19 21 23

Oc oc ¢_

0.65 -

0,60 I

O. 55 ¢i

0.5( // -0.05 -

-0.10 - _ O. 45 - jl 1.4 _/Y - 0.995 C3 O. 40 -

-0.20 // 0.35 - "1/I/ J 1,0- -0.25 d 1.2 0,8- 0,25 0,30- ///l/f/ -o.15--0.30' _" ""

0,20 -0.35 -

°4JI ,; /s ,'7 _, _3 O. t5 -0.40 /9 , ,; _'s ,'7 1'9 2'_ 2'_ o o

(b) v = O.10. Concluded

Figure 47. Concluded.

201 1.2

1.0

0.8

0.6 U 0.05 u.4

0o00_ 0.2

0.0-

0.2 T I T-[ ] 1 3 "f T 7 I i 1 3 5 7 9 11 13 15 17 t9 21 oc ot

1.2-

t.O-

0.0- 0.25 -

0.6-

0.4 J 0.15- o.05 1 O. 10 - 0.00 -I 0.2 0.20 - /_ | (jE -0.05 0.0 0.05 - l -0. I0 | i i _ i i w , i , _I 0.2 i ) l i i O. O0 r , , ) 3 5 _ 9 1'1_; ,'5 l'z,; 2'1 -1 1 3 5 7 ; 1'1 1=3 1'5 1'7 1'9 2'1 -1 1 3 5 7 9 11 13 15 17 19 21 c_

1.2- y/T - 0.800 1.0

0.0-

0.6 - OotoPotntlD: STOSTI.R0290 d 0.4-

o - I0.09_ I0.06 Oe 9. 0.2-

0.0- Freq. - 0.00 cps

-0.10/ -0.2 I ; ; _ ; ;, G ;5 ,'zl; 2'l - 0.000 -1 I "_ 5 7 ; 1'1 1'3 1; 1'7 1'9 2'1 o¢ VeL. - 332.4 fps

Nn - 0.288

Ro - 1.9210"10 °

0.0

0.6

fj_ 0.4 1.0- 0.05 -a 0.2

0.0 cj E 0.001 -o.o5/ , , , ) , , , , , , , -0.2 ) , , , -1 1 3 5 7 9 11 13 15 17 19 21 -I ] 3 ; 7 9 1'1 1'3 t5 117 1'9 2'1

(a) Repeat no. 1

Figure 48. 3-D square tip quasi-steady data; BL-tdp; 0 <__z<_20 deg.

202 1.0-

0.8-

0.6- °'2°1 ! c# 0.4 °151 / 0.2 0,01 /i oo,1 0.0

-0.2 -1 3.....s 7 g A1'_15 771'921, -1 I 3 s 7 9,1131s171921 -o.os_lI _ _' _ _, _ I'_?_I'5771'92'_

c_ oq ot

1.0 .g/T - 0.986

0,25 -

0,6 0,20 -

U 0.'1- 0.15-

0.0 // J 0.2- 0.10 o.ool U.O- 0.05

-0.2-_ 0.00 / -0. I01 , , , , , , , , , _ , -1 1 3 ; 7 9 71 1'3 1% J)1; 2'1 -1 1 3 5 7 9 11 13 15 17 19 21 c_ C_

O.'lO

1.2- 9/T - 0.995 0.35

1.0- 0,30

0.8- 0.25

0.6 0.20 - d -0.05 0.4 0.15- -0.10 J 0.2- y 0.10- -0. [5 0.00 -

0.0 -_ 0.05 - -0.20

-0.2 0.00 , , , , -0.25 , _ , T -1 3 5 7 9 1'1 /3 15 117 19 2'1 -I 1 3 ; 7 9 1'1 1'3 1% /7 /9 2'1 -1 1 3 5 7 ; 1'1 113 15 lJ7 119211

(a) Repeat no. 1. Concluded

Figure 48. Continued.

203 _.2- J_llY" - -0.250 f_l,_,

0.8-

0.6 d 0.4

0.2

0.0 °'°51 -0,I01 , , r -1 ] 3 5 7 9 11 13 15 [7 19 21 -ll 3;}glll 0 Oc

°

I.O

0.8 0.25 - ,i

0.6- O. 20 - J ,g:

0.4 - c_ O. O0 0.2- -O. 05 0.0- o.os] -0.I0 l l , , l , _ '5 t'7 I_9 2'i -0.2 , _ , -I 1 3 5 7 9 11 13 1 o {x

t.2 yll - 0.800

0.0

0.6- OotoPoLntID: STOSTI.R029! U 0.4- ° "°51_._-_ _ 1.0 _-'_ a - 10.08± 10.06 De 9. 0.2- o" °'°°1 _ "_i 0.0- Freq. - 0.00 cp8 oos] ,11 -0.I01 _ _ _ , , _ , , _ _ -o.2 I _ ; _ ; Ahl'_'_'__ - 0.000 -I l 3 5 7 9 l] 13 15 t7 19 21

VeL. - 33].9 Fps

Mn - 0.288

1.2 Re - 1.9120-10" l.O

0.8-

0.6-

0.4-

0.2-

0.0- e 0.00 1 -0.051 , , -0.2 _ , , , -1 1 3 ; 7 9 I'1 1'3 1'5 t'7 1; 2'1 -I 1 3 5 7 9 I'I I_3 15 IT I_9 2'i o, (x

(b) Repeat no. 2

Figure 48. Continued.

2O4 I.O-

d O._0.60.20_0.40.0 J

-0.2 i _ _ _ _ 1'1fi,'5_'71'o2',

ol oc oc

1.0 _/'f - 0.986

0.8

0.6-

c_ ) 0.,,1 J (3.2

0.0

0.2 -1 i _ _ _ _ 1'11'3l's ;z 1'92'1

o_

0.40

_.2- 9/Y _ 0.995 0.35 -

0.30 - .,

0.B-

0.25 / t 0.6- J O. 20 U 0.'1-l.O- 0.15

0.10 0.2 . r-3E -0'-0.20 10-0"05_0.15__0.00- 0.0 J O. 05

o.2__ I _ ; _ _ fih1'Sl'Zl;2'1 °'°°-1 _ _ ; _ ; i'i ,'_ i'5 ?z i'9 2'i -0"25-I 1 3 ; 7 ; I'l 1'3 1'5 1'7-I'_I

c_ Ot

(b) Repeat no. 2. Concluded

Figure 48. Concluded.

205 1.2 y/T - 0.250

0.05 1.0

J ///

E O. 00" 0.8 I//

-0.05 l 0.6 I12 6 @ liO I_2 O( c_

|.2- y/Y - 0.475

1.0- u

0.8-

ej_ 0.050.001 eje 0.000.05 !

-0.05 | O. 05 o.0 /2 6 ; ,'o _2 110 i_2

c_ o( @

0.05 - 0.8

DotoPoLntID: 5TPOTI.R03IO e 0.00 - d 0.6

- 8.95± 2.01 De 9.

0.05 0.4 I Freq. - 3.99 cps 6 8 110 112 6 _ ,`o ,'2 (_ C_ u - 0.038

VeL. - 333.8 £p9

Hn - 0.290 0.i0 y/Y - 0.900 J Re - 1.9330.10' j 0.6 c._E O. 05 o8t J 0.00 0.4 I'D 1'2 6 o_

(a) v = 0.04 Figure 49. 3-D square tip pitch oscillation data; BL-trip; a = 9 +_2 deg.

206 O.Fi- 0. I0- 0.05 -

d 0.4 J 0.05 - c..3e O. O0 -

0.2 0.00 , -0.05 i_2 @ ]; X'2 6 I'0 1_2

0,6- _/Y - 0.986 O.[O- O. 05 -

_g 0.4 J 0.05 E 0.00-

0.2 i 0.00 u -0.05 I 12 12 6 _'o ,2

0.15

0,6- 0.I0

J 0.00 1

0.4 0,05 -

r__e -0.05 1 0.2 0.00 i -o.lo / 112 6 trio 1'2 oq &

(a) v = 0.04. Concluded

Figure 49. Continued.

207 1.2 y/Y - 0.250

O. 05 - 1.0

I d i / -/ _3 E 0.00- 0.0-

< y_

0.05 0.6 i i 1 B 10 12

1.2- y/Y - 0.475

0.05 1,0- 0.05 -

J

r___ O. O0 O.B- f J 0.00 - / 0.6 i -0.05 , -0.05 i'o I'2 6 6 II0 II2 6 8 IrO I'2

@ @

I.O ylY - 0.800

0.10- 0.8

DotoPotnt[D: STPOTI.R0311 d

0.6 _jE O. 05 - 1 8.94± 2.06 Dog.

Freq. - 10.00 cps

0.4- G {o ;2 - 0.094 o.oo6 G ;o ;_ VeL. - 333.8 £ps

Mn - 0.289 0,10 y/T - 0.900 Re - 1.92goxto'

¢3 e O. 05 0.6

0.4 0 I O0 i 8 1'0 6 8' 10' 1'2

(b) v =0.10

Figure 49. Continued.

208 0,6- 0.[0- 0.05 -

_/T-

d 0.4 0.05 - .,__.,=_ c3 'E 0.00

0.2 i I 0.00 I I -0.05 i i i 6 8 1_0 12 8 luO 12 B 10 12

Oc el

0,6 O. lO- _/Y - 0.986 0.05

d 0.4- 0 105 I c.3E 0.00

0.2 i 0.00 i -0,05 i 12

131 oc

0,15-

0.6 O. lO- - ° J

0.4- 0.05 - J

0.2 i i 0.00 i -0. [0 8 10 I'2

o_

(b) v = O.10. Concluded

Figure 49. Continued.

209 t.2

0.05 - 1.0

d _

0.00- 0.8 j -0.05 0.6 ei 1'o 1'2 6 8 I; I'2 @ o_

1.2- y/Y - 0.475

0.05- |.0-

d

0.8- rj e 0.00 0.05] J o.oo]

0.6 -0.051 i _ ,'o 1'2 8 e 1'o iJ2 -0.05 110 1'2

o_ O_

0.05 - 0.8

DataPoLntID: STPOTt.R0312 c3e 0.00- ,_ 0.6

a - 8.93± 2.12 De 9.

-0.05 0.4 Freq. - 14.01 cps 6 8 1_0 1'2 llO I'2 v - 0.132

Vet. - 334.1 rp8

Nn - 0.290

Re - 1.9270_10' 0"101 _ o.0 oot r3 e 0.05] o.oo/ 0.4 l_O 1'2 6 1'0 I'2 6 c_

(C) v=0.14

Figure 49. Continued.

210 0.6 y/Y - 0.966

r...__ O. 4 ' 0.00

E 0"05 t

0,2 i -o.os ! 8 I_o tl2 0.00 LI2 6 8f ]0i 112

0

0.6 ,.4/Y - 0.986 0.05

C_ _ O. 4 • 0 ( 0.00'

0,2 1 0.00 -0.05 1'o I_ 6 I; 1'2 8 I'0 o_

0,15

0.6 0. I0 0.00 - J

d 0.4 le 0.05 - r_ -0.05 -

0.2 .... 0,00 I_0 112 if2 -0, lO 6 _ 6 1_0 [12

c_ oc

(c) v = O. 14. Concluded

Figure 49. Continued.

211 1.2 _/Y - 0.250

0.05 - I.O

d

c3E 0.00- 0.B-

-0.05 0.6 I I'o G 6 B lI0 I'2 c, @

1.2 9/Y - 0.475

0.05 - t.O

d O'lO 1

)E 0.00 0.8

0.05]

0.6 u 0.00| , ifo ii0 ]I2 6 8 1_0 It2 B B Oc (w

0.05 - 0.8

y/T -

DotoPoLntID: STPOTI.R0313 c__E O. 00 O.B

o - 8.91± 2.25 De 9.

-0.05 0.4 Freq. - 20.04 cps 6 IF0 in2

Cq u - 0.188

Vet. - 334.4 £ps

0.10 o.o 91Y - 0.900 Mn - 0.290 Re - 1.9260_10"

c_E 0.05 c_= 0.6

0.4 i o.oo 8 B IrO 1_2 i_2

(d) v = 0.20 Figure 49. Continued.

212 0.6 _/T - 0.966 o.lo- 0.05 -

U 0.4 _,.S-'':S"""/_'S_"- " " " J o.os E 0.00

0.2 i 0.00 i -0.05 ; ,o ?2 = l_ tl2 6 _ ?o ?2

ol

0.6 _/T - 0.986 o.to- 0.05 -

0.4 + 0 E O. O0 J o.os-

0.2 i 0.00 ; ,b ,2 = 1i2 -0.05 ?o ,S

0.15-

0.6- 9/Y - 0.995 o.io

d 0.4- J 0.05

0,2 O, O0 8' 10' I'2 1'2 -0. O L 6 8 II0 I'2

(d) v = 0.20. Concluded

Figure 49. Concluded.

213 0.I0- 1.2- 2/, / _ 0.250

e 0.05 - 1.0- c...)

0.00 i 0.8 I

@

0.10- 0.05 - 1.2- 91Y - 0.475

c3 e 0. O0 - d 1.0 J 0.05 - / I 0.00 -0.05 O.B 14 8 1; 12 1'4 10 1'2 1'4

|.0- y/Y - 0.800

0,10 0.8 DataPotntID: 5TPOT1.R0305 d J

0.5- - 10.87i 2.0t De 9. c_ e 0.05

Freq. - 4,00 cps

- 0.038 0.00 0.4 0 '0 i_ 1'4 : I0 1'2 114 VeL. - 334.0 £ps

Hn - 0.290

Re - 1.9440_I0' 0.0 0.I0-

O. 05 - d 0.6

0.00 0.4 ,'o ,'2 ,4i

(a) v = O.04

Figure 50. 3-D square tip pitch oscillation data; BL-trip; a = 11 _+2 deg.

214 0.8- y/¥ - 0.966 0.05 -

d 0.6- co e 0.00-

0,4 0.00 -0.05 8 1_4

O,B_ y/¥ - 0.986 0.10 0.05 -

0,6 / J 0.05 co E O. O0 -

0.4 -0.05 i_4 O. O0 8 tl4 8 I_ ,_ ,'4

0.20 - 0.00 -

O.B 0.15- _/Y - O.995 -0.05

J E

_j 0.6- 0. I0 -0. lO

0.4 0.05 -0.15

8 1 '0 1'2 114

(a) v = 0.04. Concluded

Figure 50. Continued.

215 0.10 1.2-

0.05 t.O-

O. O0 0.8 110 112 I'4 iI0 1n2 i14

ct

0.I0 0.05 -

U J 0.05 0.00 -

1"2II.0 YlY - 0.47.

-0.05 0.00 I'2 It4 B 1'O I'2 I'4 O.B 8 i_0 1'2 1'4 110

1.0 ylY - O. 800

0.8 OotoPoLntID: 5TPOTI.R0306 J

0.6 a - 10.86± 2.06 De 9.

Freq. - 9.98 cps

o.oot 0.4 u - 0.094 1'0 1'2 ;4 ;o 1'2 1'4 8 VBL. - 335.2 rps

Mn - 0.289

Re - 1.9260_108 0.10 O.B

m . ///f/

cj E O. 05 0.6

0.00 O.i 1 ,'o 1_ 14 I'O I'2 114

(b) v=0.10

Figure 50. Continued.

216 0.0- 0.I0- _/Y - 0.966 0.05 -

d o.6 0.05 - rJ + 0.00-

0.4 0.05 8 110 I12 ti4 0.00

(3(

0.0- ylY = 0.986

0.6- O,IO 0.05 - d

0,4- J 0.05 • e__E O. O0 -

0.2 i 0.00 -0.05 10 I_2 i)4 110 I'2 I'4 I)0 lJ2

C( Oi (3<

O. 20 0.00 -

O. t5 -0.05 -

J w E d o0.6 0. I0- -0.10 0.4 0.05 I -0.15 8 1'o 1'2 I)4 8 l'o t'+ i',

c_ o

(b) v = O. 10. Concluded

Figure 50. Continued.

217 0.10- t,2 y/T - 0.250

f/ cS 1.0 co E 0.05-

0.8 I 0.00 llO 112 14 @ iI0 112 in4 c_

[.2- ylT - 0.475 0.10

0.05 l // cj _ t .0 - J 0.05 c...)e 0. O0 ] I 0.8 0.00 -o.os ! 1; 1'2 i'4 3'o 1'2 1'4 8 1'0 _2 I'4

1.2- _/Y - 0.800

|.O- O.lO-

d DotoPoLnt[O: 5TPOTI.R0307 / 1

0.8 J 0,05 - e - 10.85± 2.11 Oe 9 .

J Freq. - 14.Or cps

0.6 u - 0.132 0.00 ;0 ,'2 i'4 8 i'o i'2

VeL. - 333.8 £ps

Mn = 0.289

Re - 1,9260.I0 B 0._- 0.10-

d 0.6- __e 0.05-

0.4 0.00 1=0 112 114 B ]n4 o

(c) v=0.14

Figure 50. Continued.

218 0._]- O. IO- y/¥ - 0.966 0.05 -

0.6- 0.05 r..3 e O. O0 -

0.4 w 0.00 -0.05 t4 8 1'o ,'2 14

0.6- 0.10- 0.05 -

d 0.4- c_ _ 0.05 - r_3e 0.00

I 0.00 I -0. O5 t4 14 B ,_ l_ ,'4

0,20 - 0.00 -

0.8- _/Y - 0.995 0.15- -0.05 J J

O. - ___ 6 0.10- -0.10

0.4- 0.05 -0.15 ,'o 1'2 114 I_ 1_ 1'4 1_ l_ ,'4 ol

(c) v = O. 14. Concluded

Figure 50. Continued.

219 0.10 - t.2 y/Y - 0.250

0.05 - ej-' 1.0

/ 0.00 0.8 6 l'o ;2 i'i 1'0 1'2 1'4

9/I = 0.475

/J 0.05 1.0- 0.10-

d f O.B- 0.05 - r__E 0.00

I 0.6 ,b 13 1_ ooo 8 13 ;2 14 -0.05 oc

1.0-

0.10- 0.0-

DotoPotntiO: STPOTI.R0308 d

(3= O. 05 - 0.6- a - 10.82± 2.25 De 9.

Freq. - 20.03 cps

0.00 i 0.4 v - 0.188 B 10 I12 Iill 8 llO lw2 1'4 ci Ot VeL. - 334.2 £ps

Mn - 0.290

0.10 0.8 Re - 1.9280-10'

y/y -

0.05 d 0.6

0.00 0.48 l'o 1'2 ;4 i'o I'2 l'_ cI

(d) v =0.20

Figure 50. Continued.

220 0.8- 0.10- 0.05 y/Y - O. 966

cje 0.00 d 0.6- J 0.05-

0.4 0.00 -0.05 t_4

O

0.8 y/T - 0.986

0.6

d 0.,0- 0.05-

0.4

0.05 1 _._- _ r__ e 0.00-

0.2 ooom -oo5

0.20 0.00 -

0,8 0.15 y/T - 0,995 J J

-0. tO - d 0.6 0.I0- -0.05 -

0.4 0.05 -0.,5 1_4 8 1; 1) "4 1; 1'2 1'4

0 0

(d) v = 0.20. Concluded

Figure 50. Concluded.

221 [,2- 0.I0-

y/y -

1.0- co_ 0.05

O B 0.00 I0 1'2 1_ 1'6 ,o 72 1_ i;

1.4 - ylY = 0.475

[.2-

0.05]

|.0- J O. 05 E

0"10 1

0.8 r 000 / I0 1_2 1_4 16 I0 1'2 1'4 1'_ 1o ?2 A ;6

[.2- O.IO- ylT - 0.800

OotoPotntlO: STPOTI.R0315 d [.0- c_ e 0.05- .=___ a - 12.87± 2.03 Deg.

0.8 Jo¸ ;2 1'4 1'6 Freq. - 4.00 cp8 0.00 1o i'2 A i; u - 0.038

VeL. - 33].9 fps

|,0- Mn - 0.288 ylY - 0.900

Re - 1.9260.10'

O.B

c_ 0.I0] 0.8 10.05 0.4 0.001 io

c_

(a) v =0.04

Figure 51.3-D square tip pitch oscillation data; BL-trip; a = 13 +_2 deg.

222 1.0-

0.8- 0.15 0.05 -

d

0,6 4 J 0. I0 0.00 -

0.4 i 0.05 -0.05 lfi 10 116 10 12 I'4 1_6

o

°151 0"00 1

r__ 0.6

J o.loj c__e -0.05 1

0.4 o.o5 / ]0 It2 ]_4 .t'6 l 0 1'2 I'4 t_6 -0.10 lO| 1'; l_ 1'6 o_

|.0- 0.25 -0,05 - y/T = O. 995

0.0- O.20 -0. lO -

d J f..De 0.6 0. t5- jf -0.15-

0.4 O. lO lO 1'2 14 I'6 10 1'2 1'4 lO -0.20 lO 12i 14 I'6 o oc o

_) v = 0.04. Conceded

Figure 51. Continued.

223 1.2- O.lO ylY = O_

L_ l.o o.os

0.00 o_ ,o ,'2 ,_ i_

I..4 BIT - 0.475

1.2 0.I0- 0.05 -

d

1.0 0.05 - W E 0.00 -

0.8 0.00 -0.05 10 12 14 16 IO 1'2 1'4 1'1G I0 12 1'4 16

1.2 ylT = 0.800

1.0 0.I0-

d DotoPotnt[O: 5TPOT[.R0316

r_ E 0.05 - 0.8- e = 12.86± 2.07 De 9.

FPeq. - 10.01 cps

0.6- u - 0.095 O. O0 - _o G 1'4 1'6 I0 I)2 I'4 116

VeL. - 332.7 fp8

Mn - 0.288

[.0- ylT - 0.900 Re - 1.9190xt0 E

0.8 0.I0

J

0.5 __)E 0.05

0.'I 0.00 I0 1)2 I'4 16 10 1_2 I)4 116 o(

(b) v =010

Figure 51. Continued.

224 1.0- _/Y - 0.966

0.8-

d

0.6- 0,00 0.10 0.05 t

0.4 0.05/ -0.05 / 10 1'2 1'4 _6 10 1'2 1'4 1_6 10 lr2 L_q 1'6 c_ O_ oc

0.8 O.t5 - 0.05

d 0'6 O.tO- c3 E O. O0

0.4 0.05 -0.05 I0 112 I)4 1)6 10 lr2 ll4 rib 10 c_ Of

1,0- 0.25 - -0.05 -

0.8 0.20 - -0.10 -

E _S J [J

O,G 0.15 -0.15

O.q 0.10 -0.20 10 1)2 1_ 116 IO 1)2 14 1'6 10 I'2 I)4 1'6 ot c_

(b) v = O.10. Concluded

Figure 51. Continued.

225 [.4- y/Y - 0.250

1.2 ¸

d

1.0

0.0 1 O.GO , i 10 1'2 1'_ 16 0

1.4 BIY - 0.475

1.2

d 0.I0] 0.05 ] 1.0-- J J

0.8 I0 i'2 i_ I'6 10 1'2 ;4 1'5 ol

1.2- SIT - 0.800

1.0 0.I0-

d DotoPoLntID: STPOTI.R0317

0.8 a = ]2.85_ 2.]3 De9. 0.05 -

Freq. - 14.01 cps 0.8 1o ,'2 h ,'_ u - 0.]33 0.00 Vet. - 332.2 £ps oq

1.0- Nn - 0.288 ylY - 0.900 Re - 1.9140_10"

0.8

0.I0] O.G-

cj E O. 05 1

0.4 I o.oo/ I0 112 114 ]G ]0 116 c_

(C) v=0.14

Figure 51. Continued.

226 0,15 0.05

d o._ f< "_'_""'"- 0.I0, C3 _ O. 00 -

0"01 .qlY-

0.4 0,05 -0.05 10 I12 114 l_6 l 0 1)2 I)4 116 l 0 l '2 I )4 I)6

0

0,15

0.05] d 0.6 J O.tO

uIYf# - 0..98 r3 E O. O0 1 0'0 t I 0.4 I 0.05 -0.05 / 1 10 1)2 1)4 15 i0 1=2 1)4 16 I0 1)2 i14 I 6

O(

1.0- _/Y = O. 995 O. 25 -0,05 -

O.B ;j'/ O. 20 ' -0. I0 -

d J r.D E

O.R O. t5- -0.15

0.4 0,I0 -0.20 tO ,'2 i'i 1'6 ,o ,_ 1',1 10 1'2 & (6

oq

(c) v = O. 14, Concluded

Figure 51. Continued.

227 |.4- y/Y - 0.250

O.IO 1.2-

d

fJ f I.O- J 0.05

_ f

0.00 0.8- IO 1'2 1_4

1.4 ylT - 0.475

1.2 / /

O.IO] 0.I0]

|.0 J

°.°'1 e 0.05] _- _ _ .... __

o.oo ! , O.O0 ! I o.61o I'_ 1'I i'_ io I'2 i'i 16 10 ]2 I'4 ]6

1.2 y/Y - O.BO0

0.10- 1.0

OotoPotntlO: STPOTI.R0318

a - 12.031 2.28 De 9. w O. 05 -

Freq. - 20.04 cps

O. O0 0.6 - 0.190 I0 1_2 1'4 1T6 I0 1'2 14 16

o Vet, - 332.0 Fps

Mn I 0.288 ].0- y/Y - 0.900 Re - 1.9120_10 s

0.10 0.8

d

0.6 e O. 05

0.4 I O.O0 I0 I_2 114 116 lO 1_2 114 16 C_

(d) v =0.20

Figure 51. Continued.

228 1.0- _/¥ - 0.966

0.8- 0.15 0.05 -

d

0,6 0 0. I0 _ 0.00-

O. 4 " F .... 1 .... 0.05 10 12 14 1_6 10 IT2 14 _6 O. 05 lO 12 1'4 116

o_ 0¢ 0

U 0,6 0.10 r._3_ 0.00 0"8t y/Y - 0.98 o151 oo5t 0,4 o.o5 / 10 ln2 114 l_fi 10 112 114 1'6 -o.o5 l/0 ] '2 I r4 l_B

1,0- y/Y - o. 995 0.25 - -0.05 -

>>'

0.8 O. 20 - -0.10 ///

E J C3 ////

0.6- 0.15 -0,15

0.4 O. IO -0.20 116 l 0 I n2 1'4 I]6

C_

(d) v = 0.20. Concluded

Figure 51. Concluded.

229 0.8 - y/T = 0.250

0.6 z z

//z 0.4 d z

0.2- 0.05 / 0.0- r_ m_ O. O0

-0.05 u u -0.2 i u i ; _ s 7 -I i 3 s _ 9

oq

0.8 HIT - 0.475

0.6

0.4

0.05 - 0.05 7

0.2 _ 0.00

(_3E O. O0 ] ......

f , , , _ -0.05 1 0.0 n i I i , -0.05 1 , , , , ' i 3 5 7 9 -I ! 3 S 7 9 -I l 3 5 7

o

OotoPoLntIO: STPOTI.R0293 c_ 0.05 ]

a - 4.00± 4.05 Oe 9. o.oo] -_-_ i

I 0 _ 0 _ ! , , Freq. - 4.08 cpe , l _ s 7

- 0.038

VeL. - 334.8 £ps

Mn - 0.292 o.e- yly _ 0.900 Re - 1.9640"I0 i

0.2-O, 4 _ _I

0.0

-0.2 I -0.05 ! 9 -I

(a) v = 0.04

Figure 52. 3-D square tip pitch oscillation data; BL-trip; a = 4 _+4 deg.

230 0.4 0.05 d 0.2 J 0.00 rj E 0. O0 0.05 1

0,0 J , -0.05 , -0.05 1 I i i l 9 -I 1 3 5 7

c_ c_ oc

J 0.05 ]

d 0"4o.2-t ylT_ - 0.986 J o.oo0"05t o.oo1 _ ------

, -0.05 / 0.0 1 _ _ _ _ 9_ 0.05/ 1

0

0.2- 0.10-

d 0.05 ] J f.jE 0.0 - CO_ 0.05 J 0.00] -0.05 4 ----_ 1 _ _ -0.2 r----- T -7 _ T _ 0.00-1- -1 l 3 5 7 -1 5 ? 9 -1 1 3 5 7

(a) v = O.04. Concluded

Figure 52. Continued.

231 m_ /

0.8- y/I - 0.250

O.G

0.4 z d // z

0.00"2 1 r___ °°sO. O0 t __ ...... 222->- I -0.2 ! -0.05 1 , -I I I 3 5

0.8 y/Y - 0.475

0.6-

0.4_

0.24 J 0.00 0"05 1 ......

0.0 , -o.o5I , , -I 9 -1 ; 3 _ 7

c,

OotoPoLntID: STPOTI.R0294

f_De 0.00 _ - - - -

0.05 ] 0. 0"0"6- 3.981 4.14 De 9. -0.05 / 0.0-, I _ _ Freq. - lO.O0 cps

o - 0.094

Vet. - 335.0 fps

Nn - 0.29]

Re - 1.9590.t0'

d 00610.2 c__ 0.°5]0.00 U.U _ i -o.os / ! 1

(b) v=0.10

Figure 52. Continued.

232 O. 4 0.05 0.05

j_ °610.2 JY;°9_ O.OO , (D F 0.00 0.0 t J r r -0.05/ i -0.05 T i r 1 -I 1 3 5 7 9 -1 g 1 3 5 7

o_ C_

0.05 ] J 0.2 J 0,00 O"i t _q/l' - 0.986 0"05t c3 _ 0.00 1 _-- ...... I O. 0 , -0.05 4 , , -o.os!

c_ o_

0.2

0.05 ] o.0 0't 1 "U/Y_ J oo50"10 t ______._..__/_ j -0.2 , o.oo/ i;111

c_

(b) v = O.10. Concluded

Figure 52. Continued.

233 0.0- y/Y - 0.250

0.B-

0.4- / z¢ d 0.2- .f 0.05 1 f E 0.0- fJ

0.2 ...... r ---r -I I 3 -0.05?, 1

0.B- y/¥ - 0.475 J 0.6-

cj _ 0.4 -

/ 0.2- 0.00 CmE O. O0 0.05 1

/ 0.0 , , , -0.05 1 i I -0.05 1 i i -t t 3 '_ 7 g -, t + 5 9 -1 1 _ 5 7

ot c_

0.6-

O._-

DatoPoLnt[D: 5TPOTI.R0295 j o.2 0.05] 0.0- - 3.96± 4.25 De 9. o • 0.00 l c,.__ Freq. - 14.02 cps -0.2 -0.051 -I v - 0.131 oc ol

VeL. - 335.5 £ps

Mn - 0.292 0.R- s/Y - 0.900 Re - 1.9590"10 B

0.4-

j o._-

0.0-

-0.2 -o.os I i 3i 5+ 7i 9i -i

Oc

(C) v=0.14

Figure 52. Continued.

234 0.2 0.05 °"I 1 0.05 ] ...... _ _ o.o j o.oo1 c_ E 0.00] c____- -_ -_ 0.2 r , , l -0.05 | I I 3 5 7 9 -! -0.05 f r , o o

c °,0.2 1_,Y-o9_o C_ 0.000o71 0.0 0"05' I -0.05 f -0.05

oc o

0.2

c_ O. tO] 0.0 _ 0.05] O. 41 .4/ _I__ o-o5-I _____._.__...,,_J -0.2 o_ 0.o0] ___. i J k 5i l o.0o/ -0.05 | , o

(c) v = O. 14. Concluded

Figure 52. Concluded.

235 1.2 ylY - 0.250

1.0

/ // c_ 0.8 - 0.05]

0.6- ./ J o.oo]

-0.05 -_ 1 , L'2 0.4 4 6 8 I'0 4

1.2- _/y - 0.475

l.O-

_j O. 8 0.05 ] 0"I0 1 0.6- 7 _ o.oo] __ ---- 0.05/ , , i_4 0.4 114 _ 6 8 llO 1'2 6 I'0 8 tlO ['2 114 o.oot , 8, _2 C_

1.0- ylY - 0.800

0.8"

DotoPoLnt[D: STPOT1.R0297 d U.6-

/ - 8.92_ 4.05 0e9. 0.4- cj E 0.00 1 Freq. - 3.99 cps -o.osq 114 0.2 4 6 8 1'0 1'2 u - 0.038

VeL. - 333.0 rps

Mn - 0.290

yl¥ = O. 900 Re - ].9470"t0 G

0.8

0.6 J

O. O0 0.4 jJ °'°_t =____

-0.05 1 I 0.2 --7 J= 6 B tiO If2 14 [)2 L 4

c_

(a)v = O.04

Figure 53. 3-D square tip pitch oscillation data; BL-trip; c_= 9 +_4 deg.

236 0.05 d ]

J 0.05 0.20.s_o.e-10.4_ _I/T/,= 0.96_, 0'I0-1 r_ _ O.O0 -]

O.OOl r n J 0,05/ , , i_4 4 6 8 /o 13 t_4 4 B 8 I0 1'2 l'4 4 6 8 110 13 o

0.4-

d 0.05 l

0.2 C__ O.O5 0"61 YlY-_ o,ot o.oo I -0.051 , o.o,_ ; _ ,b /2 1'4 4 ; ; 1_o 1'2 1'4 4 6 8 10 1_2 LI4

Oc (_

0.8- 0.20 - ylY - 0.995

0,6 0,15-

0.4 0.10- ooo] 0,2 0.05 -

0.0 0.00 i F _ 1'o 1'2 I'4

(a) v = O.04. Concluded

Figure 53. Continued.

237 1.2- y/Y - 0.250

I.O-

O.G J o.oo]

0.4 r t -o.o51 6 8 tiO l_2 1'4 4

1.2- _/T = 0.475

l.O-

_; o.e 0. lO 7 0.05

/ ,,-.__,,__.. 0.8 / j o.o5-I .I_ o.o.oo

0.'1 i i ! 1 6 8 LiO Ll2 I_4 6 8 llO tl2 1=4 0.001 4 6, 8, IIO t=2 ]]4 0.05

@ @

I°0- ylY - 0.800

0.8-

OataPoLntIO: STPOTI .R0298 0.05 r__ 0.6-

0.4 / a- 8.89+ 4.15 Beg. J o.oo

Freq. - ]0.0[ cps -0.05 0.2 4 _ _ ,'_ ,'_ u - 0.094 o

Vet. " 333.7 fps

Mn - 0.290

0.8 Re- 1.9450.106

0,6

0.4 E 0.050"101

0.2 O.OO / I i 4 6 8 I'0 I_2 1'4

c_ c_

(b) v =0.10

Figure 53. Continued.

238 0.6 O. tO

d O. 05 ] _ _ ...... _ _>.

o.4 j o.osj r.3 _ O. O01 _

O. 2 , 0.00 | -o.os / 4 5 ; ,'o 13 G 4 ; ; ,'o ,'2 t'4 4 B B ]'0 1'2

oc o_

-.-.,. o.4o.o.98 O.Olc__ o.,ot0.051 _ JY-c3 E o.o5to.o0 0.2 _ 0.00/ , -0.051

o oc 0

0.0_ 9/Y - 0.995 0.20

0.6 O. t5

I: _

r__ 0.t J 0.10 - /._ J -o.os0.00 1] ..._.__ 0.2 0.05 - / -O.IO J

0.0 , -0.15 / 4 & _ ,'o ,'2 ll4 0.00 6 8 I'0 ,'2 ,'_ 4 ; 8 ,; ,)

Ck o o

(b) v = O.10. Concluded

Figure 53. Continued.

239 1.2 y/T - 0.250

1.0

# j o.8 // 0.I0]

0.6 0"o51 ...... h 0.4 0.00 | , , 4 6 @ 1'0 1'2

Oc

1.2 y/Y = 0.475

1.0

0.0 0.05 l O.G o-oo1 ...... J o.oo] _

0.4 , , -0.05 l , , I 6 8 |'0 |'2 |'4 4 6 8 l'0 m'2 |_ -0.05 t4 6, |4

1.0

O.O

DotoPoLntIO: STPOTI.RO29g d 0.6

0.4 o - 8.BB± 4.26 Oe 9. C_ _ O'lO0.05 t _ _ _ - - _ __,_ / C Freq. - I4.00 cps 0.2 f l 0.00 | I 4 6 B I'0 I'2 i14 u - 0.132 C_ Cx

Vet. - 333.4 fps

Mn - 0.290

Re - ].9400_10 _

0.6- i I i J C_ E oo5 ...... E.> 0.4Io/o O'lO t 0.2 i i r , o.oo / 1'4 6 8 10 |2 i14

O_

(c) v=0.14

Figure 53. Continued.

24O 0.6_ 0,10

f_]" 0.05 ]

O. _ 0.05 .__ __3E O. O01 <-

, r I O. I I 0.00 i t -0.05/ 4 6 8 I0 112 1'4 6 8 110 I_2 14 4 6 o ,'o ,_

o.ol_Iy,o.__ o.,oI _ o.o_] _ o.2o.41_---_-__ _- _o.051_ _o.ooI_...... __ i , 0.00| i -0.05/ , 4 5 @ lO I'2 L'4 4 B 8 /0 I'2 [4 4 6 @ fro Ir2

0,20 - 0.0 _/Y - 0.995

0.6 0.15-

-0.05 c_" O. 4 O. IO'-,

c..)E 0.00

0.2- 0.05 - -0.10

-0,15 D.O 0.00 L_4 8 1'0 I'2 I'4

(c) v = O. 14. Concluded

Figure 53. Concluded.

241 d 0.82]1.0 jy___ 0250 f 0.6 0.00 -_ i i 6 ; 110 1'2 1'4 116 6

1.4 ylY - O.475

1.2 _ 1.o °.,°1 °.051 0.8 J 0.6 T 0.00 l 6 ; ,; ,'2 ,_ 16 6 _ z'o I'2 I'4 ]_ -0.0516

|°3-

I.O-

O.B OotoPoLntlD: STPOTI.R0301

0.6 - 10.89± 4.05 De9. J 0.05 0"10 t

0°4- Freq. - 3.99 cps o.oo/ i i - 0.038 6 8 L'o L_ _'4 16

VeL. - 334.2 £ps

Nn - 0.290

Re - 1.9460M10 e

0.10- J 0.6- /, e 0.05 -] 0.4 1 l T • ] 0.004 6 8 lO 12 14 16 6

(a) v = O.04

Figure 54. 3-D square tip pitch oscillation data; BL-trip; o_= 11 _+4 deg.

242 ].0- 3/Y - 0.966

0,8-

0.6 O, 10 - 0.05 J 0.4 / 0,150.05 1 (3 _ 0.00

0,2 , O. O0 _ -0.05 0 8 i'o ,'2 I'4 i'6 G ; 1'o 1'2 ,'4 I'6 o_

O. 6 O. 10 0.05 c_ 0.81/ o.25 G ,'o ,'_ 1'4 ,'s o.oot6 ,'6-0.056 8 ]0 12 14 116 C_ _ O_

0.25

1.0- 9IT - 0.995 0.00 -

0.8- -0.05 - J r.__ O. 6 0.20 / 0,10- J -0.10 0.15 /

0.4 / 0.05 - -0. t5

0.2 0.00 -0.20 ,_ 1'2 1_ t'6 ll6 6 1_ I_ 1_ 1'6

(a) v = O.04. Concluded

Figure 54. Continued.

243 1.4- 9IT - 0.250

1.2-

0.10 (5 > 1.0-

0.8- r) @ O. 05

0.00 0.6 llO 112 tJ'l 1'6 8 110 I'2 1'4 or o

1.4 y/Y - 0.475

1.2

(D _ 1.0

O. 10 - 0.05 1 /

0.8 / 0.6 1'4 t'O I'2 I)4 1_- 0.00 | 6 8, 1'0 t'2 114 1'6 -0.05 / 6 I)0 1_2 I'6

O(

|.2- j/Y - 0.800

1.0"

OotoPotntID: STPOTI.R0302 0.8-

0.6- e - 10.87± 4.15 De9. o e 0.050.10] - ,__ Freq. - 10.00 cps 0.4 0.00 | ) 6 8 1'0 1'2 1_4 I'0 t)2 1'4 u " 0.094 or Vet. = 333.3 fps

Nn - 0.289

Re - 1.9350_106 1.o y/T - 0.900

u (_]E 0.60.8 _/ /- 0.4 o.ool I'0 1'2 I'4 1'6 I'0 I'2 1)4 1'6 6 c_ or

(b) v =0.10

Figure 54. Continued.

244 1.0 _/Y - 0.966

0.0

c__ O.g O. tO - 0.05 J 0.4 0.05 I-._"_- - _ ¢_E 0,00

0.2 0.00 _-- -0.05 t16 6 o I'o I'2 i'4 l'e

o

// 0.6

Fj' 0.05 ] 0.4 O.e] y/f - 0.98 _ o.o0 1 o.oo / , -o.o5/ o26 _ ,'o ,_ ,'_ t'6 6 8 1'o _'2 1'4 16 6 8 1o 1'2 t'4 1'6

O. 25

[,0- y/Y - 0.995 0.20

O.8- O. t5 -0.05 - J

d 0.6 O. tO _ -0.100.00-

0.4 0.05 - -0.15 -

0.2 l 0.00 i I -0.20 16 8 10 1_2 I1'1 116 O lIO ll2 114 16

(b) v = O. I0. Concluded

Figure 54. Continued.

245 1.4 9/Y - 0.250

1.2

r_ _ 1.0 f- 0.8 / / 0.6 ,'s

1.4 HIT - 0.475

1.2

1.0

0.8 /" 0.6

1.2 .y/T - 0.800

1.0

DotoPoLnt [0: STPOT[ .R0303 _'-' 0.8

0.6 e- ]0.854-4.25 De 9.

Freq. - ]3.98 cps 0.4 ; ,'o 1'2 1'_ ,'6 ,'6 " O. 131

Vet. " 334.3 fps

Hn - 0.290

Re- 1.9390.t0 _

(c) v:0.14

Figure 54. Continued.

246 1.0

0.8

0.15] r_ J 0.6- J

0.4- 0"I0 1

0.000"05t 0"05 I ...__ 0.2- o.oo! -0.05 | 5,0 :b 1'4 1; 6 _ 1'o :'2 :4 1'6 B B l_O I_2 I'4 I'B

o_ ol c_

cY C__ O. IO] / 0.05

0.1- o.BO'BI Y/Y - 0.98 0.061 --- CJE 0.00 I

0.2 0.00 i i 6 ; i'o ,'2 I; _6 /6 I_ I'0 I'2 I'4 t'6 -0.05 /6

131

O. 25 -

1.6 ylY - 0.995 O. 20 -

0.8 O.15- -0.05 J 0.00 d 0.6- 0.16 cb E -6.18-

0.4- 0.05 -o. i5

0,2 O. OO f -0.20 1,0 I'2 1'4 1_6 6 lO l_2 1'4 i'6 tr6

cq

(c) v = O. 14. Concluded

Figure 54. Concluded.

247 t.2 31Y - o.263 _,. i,

0.B-

0.6" d 0.4 i.0 _ V_ 0.2 °'°5]0.00 l $ 0.0 [3E 0.05 l

0,2 ! T T I I _ V I T _ °"°-'11_ _ _ _ /iI'3,'5/71'9Z -! l 3 5 7 9 11 13 15 17 19 21

c_

1.4- 3/T - 0.500 1.2-

1.0- / $,

0.B-

0.15 C/ 0.6 -

0.4 cS O. 10

0.2 0.05 - c3 E o.oo N_ 0.0- 0.00 - -0.05°'°sI ._.,-_'_-''-_ A "', -0.05 -11 _ ; _l ; l'lfi_'s,z,;2'l -0. I0 -, i _ 6 _ 9r 1'16,5 _'71'92'1

(3( o 0

t.2 ,9/Y - 0.842

O.B

0.6 OotoPoLnt[D: 2005TN.R0540

0.4

0.2 - 10.23± 10.05 De 9. 0.05 q 0,0- Freq. - 0.00 cps o -0.051 , , _ , , ; , , , , , - 0.000 -' l 3 5 7 9 11 ]3 15 17 19 21

0 Vet. - 339.3 £ps

Mn - 0.293 _.2- 3/T . 0.947 Re - 1,9370M10'

0.B-

0.6

0.4

1.0- //__ 0.2 _" o.05

0.0

-0.2 l , , l v 5 7 g I', 1'3 {5 I'7 I'9 2'1 -I 1 3 5 7 9 Ill I'3 15 It7 i'9 2',

(a) Repeat no. 1

Figure 55. 2-D quasi-steady data; no BL-trip; 0 S _ S 20 deg.

248 1.2

1.0

0.8

0.6 cJ' 0,4 ,_y/Y - 0.263 0.2

0.0 w E O.OO | I -0.2 -0.o51 , _ , , , , p , , , , -I I 3 5 7 9 11 13 15 17 19 21

1.2- .Y/¥ = 0.500,,.--"q,_

t. 0 - tl II

0.6- L_ 0.4 0"15 1

0.2-

0.0_ o. o] o.io]0.05 1 , ' E o.os]0.00 I -0.2 l r r 1 1 3 5 7 ; 1'1 113 1'5 1'7 (9 2'1 0"°°-_1 1 3 5 7 9 11 13 t5 17 19 2'I -0.o5 ! I 3 5 7 9 11 13 15 17 19 2'1

C_

t.2

t.O

0.8

0.6 J DotoPoLntID: 2DOSTN.R0541 0.4

0.2, o = 10.20± 10.09 Oe9.

0.0 Freq. = 0,00 cpe r:j F O.O0 1 0.2 -, I _ _ _ _ ,', ,'3 ,'_,'7 _'_;, - 0.000

ol VeL. - 339.0 fps Hn - 0.293 1.2- y/Y = 0.947 Re - 1.9240_10 B

0.B-

0.6 _ _J 0.4

I.O- 0.05] n.2

0.0

°211 _ ; _ ; 1'1l; t'51'71'92'_ -°_°J11 _ ; ; ; /, h l's 6 1'92'_

c_ O_

(b) Repeat no. 2

Figure 55. Continued.

249 1.2-

1,0-

0.8-

0.6- d 0.4- j/Y- 0.26i,f,_,_ ' g.2- E 0.0- f_ 0.00 1 -0.2 - -0"05JI ] 3 5 7 9 I'1 I'_ 1'5 I'7 I'9 2'I 1 3 5 _ ; l'l 1'3 115 117 19 21 c_

O. 20 -

0.15- J 0.10-

0.05 -

0.00 - (je 0.00°°sl1 -0.05 r r i I T -if 3 5 7 9 11 113 115 1'7 ll9 2_1 °"°s J, I _ ; _ ; 1'1,'__'_,'7 ,'92'J

0

1.0

0.8

0.6 OotoPoLnt[O: 200STN.R0542 J 0.4

0.2 a - 10.18± 10.[2 De 9. O.O Freq. - 0.00 cps wE°0.05] ' -0.2 -0.05 / _ _ _ ]i]31_,_21 - 0.000 -I 1 3 5 _ 9 1_1 ]_3 Its 1'7 I'9 2_I CI VeL. - 339.3 fps

Mn - 0.293 1.2_ y/Y = 0.9'_7 Re - ].9240"I0 e 1.0-

0.8-

0.6 _Y 0.4- 0.05 ]

0.2- 0.0- _ -o.o5J ,,_ -0.2 -O.lO| _ , ) ) , , , , ; , i _ ; _ _ 1'11'31;1'71;2'1 -1 1 3 5 7 g ll 13 15 L7 19 21 ot o

(c) Repeat no. 3

Figure 55. Continued.

250 _.2 u/Y o o.2_<_

0.0,-°, / i

d

°°'l0"00 1 I 0.40"60.2 - / Ir'_/ ,_II c....3_ -0.05 1 0.0 -0"101 I _. ¢" I -0.2 I 3l ; _ 9,',1%,%,'7,%2'1 -°"5:,I _ _ _ ; i'i 1'3i'51'7I'92'i

o c_

0.35

1.2- 0.30

1.0- 0.25 I

0.0 0.20 - J (3' 0.6 - 0.15-

0.4- / l,_,y/Y- 0.50(MI_ 'r 0.10

0.2- 0.05

0.00 o.o:_I _ ; _ ; I'_,;I;6 ,'o2'I -0-]5/1- I i T i 1 I T i 1 i 1 , I _ _ _ _ 1'11'3,'5,'7I'o2'I 1 3 5 7 9 11 13 15 17 19 21

0

1.2 - 1.0

0.8

0.6 J OotoPoLntID: 2005TN.R0547 0.4

0.2 o - 10.35± I0.07 Oe 9.

0.0- Freq. - 0.00 cps i:t -0.2 I I i i i ,, _ 5 7 9 4,'_,'56,;2'] u - 0.000

o Vet, - 329.8 fpa

Mn - 0.288

Re - 1.9500.10 _ l.O

0.0

0.6

0.4

0.2-

0.0-

C3 e 0.°°51O01 -0.2 -O'05Jl 1 ½ ; 7 ; I'! I'3 I'5 t'7 I; 2']

c_

(d) Repeat no. 4

Figure 55. Continued.

251 L.2 ylY - 0.263ffv_ I ,

0.8

0.6 0.05-_ 0.4 t,O / }_ 0.2 E -0.05 0.0

O.IO| l _ _ _ , , , , T--7 0'2-5I _ ; _ ; 71i'_I'5L'_i;2'i -1 1 3 5 ? 9 11 13 15 17 9 21

a

1.4- y/y . 0.500

L.2- _ " i

0.15- 0.0-L.O- J O.lO- 0.6 J 0.20- , 0,00 / 0.05 - 0.00 - -0.05 0.40.2 / '

-0.I01 v I v v I v l T v v I 0.0 _ v l T -0.05 , _ w -I 3 ; 7 ; 11 I; Lr5 I'7 I; 2'I -1 1 3 5 7 9 11 13 55 17 19 21 I ! 3 5 _ 9 1'1 I; 115 I'7 l; 2'5 l C_ Ot

1.2 UIY - 0.84_ I.O

0.8-

0.6- OofloPoLnfi [0: 200STN.R0548 _J 0.4 0.05 0.2- = 10.14± lO.t6 Oeg.

0.0- Freq. = 0.00 cps -0.051 , , , , , , T , , , 0.2 - O. 000 -1 1 3 5 7 9 IS 13 15 17 19 2

c_ gl VeL. - 330.2 Fps

Hn - 0.288

_ ° Re- 1.9450_I0 B 5.0

0.8

0.6

0.t 1.2- 0.00 0.2- °-°5t

0.0- c"gE -0.05 1

-02-11 _ ; _ ; _', h ,; _'__'_2'_ -O'lOjl 1 ½ 5 7 ; lrl 1'3 1'5 1'7 I'9 2'1 ol

(e) Repeat no 5

Figure 55. Continued.

252 1.2 _/y - o.26_.4,4. . 1.0

O.8

0.6 rj _ 0.4 °°510.00 1 0.2

£jE -0.05 1 t 0.0

0,2 l ] 3 5 7 9111315171£21

o_

0.35

_.4 _qly_ 0.500 0.30

0.25

t.O- 0.20

0.8 J 0.15 ;/ 0"05 l 0.6 0.10

0.4 0.05 CDe -0.05 1 0.2 0.00 - -0.101 Ir, 'ip_, _ 0.0 r i r _ i -0.05 r , , -0.15| I , , ; , ; ; _ , l , 11 3 5 7 9 1'1 1'3 !; 1'7 1'9 2'1 3 ; 7 9 1'1 1'3 1'5 1_7 1_9 2'1 -I 1 3 5 7 9 11 13 15 17 19 21 c_ CK (_

1.2-

1.0-

0.8-

0.6 DofloPoLnLIO: 20OSTN.R0549 (L, 0.4- 0.2- = 10.13± 10.16 De 9. °°57 0.0 Freq. " 0.00 cps t -0.2 r -0.10_ I I I I ; I I I I I f -I 1 - 0.000 -I l 3 5 7 9 ll I3 15 17 19 21

VeL. - 329.4 £ps

Mn - 0.287

Re - 1.9390,10' t.O

O.B

0.6

0.4

0.2-

0.05 l 0.0

-0.2 1 I 3i _1 _ o, fi i'31;1'7 ,'92'1 -I I 3 5 7 9 11 13 15 17 19 21 c_ @

(f) Repeat no. 6

Figure 55. Concluded.

253 0.6

0.05 - 0.4

c_)E 0.00 - 0.2

-0.05 i i 0.0 i 5i 3 5

c_

0.05 0.6 - O. 05

E O. O0 0."I - C__ O.OD

-0.05 0.2 i 5i

(_

0.6

0.05. 0.4

d OotoPotntlO: 2DPOTN.R0628

c_3E O. O0 0.2 - 4.01± 2.00 De 9.

Freq. - 4.01 cps

-0.05 0.0- -- - 0.038 i ; i 3 5 7

& VBL. - 329.9 Fps

Hn - 0.289

0,6- Re - 1,9820_t0 _

ylY - 01_ 0.05 - 0.4- // _ O. O0 0.2

-0.05 i i I 0.0 v 3 5 7 3 5

c_

(a)v = 0.04

Figure 56. 2-D pitch oscillation data; no BL-trip; a = 4 _+2 deg.

254 0.6 u/Y - 0.263

// 0.4 0.05 -

d

Y E 0.2 0 0.00 -

0.0 ...... r" " 1 "" --2 0.05 3 5 7

Oq

0.6 0.05

y/T - 0 .i0 / o.os E 0.4 / / _ 0.00- _.3 0.00 / 0.2- _ -0.05 j -0.05 i i _ s 7 7 3 5

@

0.0 0.05 -

ylT - 0.841_ /

OotaPoLnLID: 20POTN.R0629 0,4- i / r_, w O.O0 - _X Y/ - 4.00± 2.07 De 9. 0.2 1 Freq. - 10.02 ops -0.05

- 0.095 o¢

VeL. - 329,8 £ps

Nn - 0.289 0,6 0.05 Re - 1.9770_10 a

6j _ 0.4 rj E O.OO

0.2 -0.05 i

0c

(b) v =0.10

Figure 56. Continued.

255 0.6 31¥ - 0.263

0.4 0.05 -

/ d

0.2 E 0.00 -

0.0 w i -0.05

c_

0.6- 0.05 - 0.05

ylT = O_ 0.4- 0.00 - .... E O. O0 -/ Y 0.2 i i , -0.05 , _ -0.05 3 5 7

0.6 -. _t/Y - 0.842 .Y / 0._- 0.05 - / / U DotoPoLntIO: 2DPOTN.RO630

0._- - 3.98± 2.15 De9. r_ e O. O0 -

Freq. - 14.04 cps

0.0 i i i - 0.134 -0.05 i ! i 3 5 7 3 5 7 Vet. - 329.9 fp8

Mn - 0.289

0.6 Re - 1.9750_i05

0.4- O. 05 -

J

0.2- r_ e O. O0 -

0.0 -0.05

(C) v=0.14

Figure 56. Continued.

256 D.6

0.4 -¸ 0.05 -

C.:, e 0. OO -

0.0 -0.05 3i si I i

Cx

0.6- u/Y - 0.500 0.05 - 0.05 -

f J 0.00 CP 0.00 -

0.2 -0.05 -0.05

0.6- .q/Y - 0.842 .S

0.4- .J 0.05 - d /- OotoPoLnflID: 20POTNIRO63I 0.2_ - 3.99± 2.31 De 9. _ 0.00 -

Froq. - 20,05 cps

0.0 i i i u - 0.190 -0.05 i i 3 5 7 3 s VBL. - 330.7 £ps Mn - 0.289 0,6- 9/Y - 0.947 Re - 1.9760_106

/ I

0.4- 0.05 -

c_

0.2- Y J O. O0

n.O i i -0.05 3 5 _ t i i 3 5 7 or

(d)v = 0.20

Figure 56. Concluded.

257 1.2- y/¥ - 0.263

0.05 |.O-

d / _f 1

0,8 e 0.00

-0. OS 0.6 6 oI 1'o 1'2 ,'0 1'2 o_

|.2 ylT - 0.500

0.05 0.05 1.O

.J

i/ I J 0.00 - 0.@- J O. DO

0.6 i -0.05 , -0.05 1'2 e l'0 ;2 B 1'0 1'2 6 @ 1_0

c_ o_

9/Y - 0.B42

0.05 - |.(]-

/ d OotoPotntID: 2DPOTN.R0633 i /

0.00 - 0.8- / a - 8.99± 2.01 Dog. Freq. - 4.00 cps

-0.05 0.6 - 0.038 G _ |'0 1'2 6 8 1'0 ]'2

c_ VeL. - 329.B fps

Mn - 0.289 1.2- _/Y - 0.947 Re - 1.9780_10 s

0.05 |.0

J

0.8 (je 0.00

0,05 06 _ _ 1'o |_ 1'o 1'_ @ 0¢

(a) v =0.04

Figure 57. 2-D pitch oscillation data; no BL-trip; a = 9 +_2 deg.

258 1.2 _/T - 0.263

J I.O- 0.05 -

J J O.B- _ 0.00 - .///

0.6 -0.05 8, 1'O 12, 1'0 1'_ C_

1.2 H/Y - 0.500

t.O 0.05 - 0.05

J J

0.8 cj_ 0.00- J 0. O0

0.6 i -0.05 -0.05 o I'o 1'2 _ G i'o ,'2 G !'o 1'2

1.2 y/Y - 0.842

1.0 0.05

OotoPoLntlD: 20POTN.R0634

0.8 c_ E O. O0 a - 8.99± 2,08 Oeg.

Freq, = ]0,02 cps

0.6 - 0.096 -0.05 6 8 fo 1'2 6 ; fo 1'2

VeL. - 329.5 rp9 O_

1,2- Mn - 0.289 y/f - 0.947 Re - 1.9710_10 e

1.0 0.05 -

d

0.8- 0.00 -

-0.05 0.6 I 1 8' 1'o 12' B fo 12

C_ O_

(b) v =0.10

Figure 57. Continued.

259 1.2 9/Y - 0.263

1.0 0.05

i

0.@ Cn_ 0.00

0.6 -0.05 i 6 8 1_0 12 G _ ,'o ,2

(_

[,2- y/Y - 0.500

[.O- 0.05 - O. 05

d /

// 0.8- O. O0 - E 0.00

0.6 -0.05 , 6 ; 1'0 1'2 O 1'0 1,2 -0.05 6 B l'0 12

OI Oq Oc

[.2- y/Y - 0.842

1.O- 0.05 -

j/ d i t OotoPoLntID: 20POTN.R0635 0.8 Y = 9.0li 2.14 009. 0.00 - Freq. - 14.03 cp8

0.6 - 0.133 -0.05

o_ VeL. - 330.2 fps

[._- Mn - 0.289 y/Y - 0.947 Re - 1.9710.10'

|.O- O. 05 - d f ¢)E O. O0 - 0.8- Y/

0.6 l'o ,2i -0.05

(c) v=0.14

Figure 5Z Continued.

260 1.2 .y/Y - 0.263

l.O 0.05

,<

0.0 (je 0.00

-0.05 0.6 ; ,'o 1'2 G lrO l_ C_

1.2- y/Y - 0.50(?

1.0 0.05 0.05 -

U

O.B J 0.00 c._E O. O0 -

- 0.05 0.6 i 12 -0.05 6 G 1o i'_ 6 _ 1.0 o c_

1.2- y/¥ - [?.842

0.05 - [.O-

DotoPotntID: 2DPOTN. R0636 J

0.8- a - 9.00± 2.31 De 9. J 0.00 -

Freq. - 20.03 cps

0.6 v - 0.190 -0.05 6 B' 10' 1'2 6 G 1.0 I_ c_ Vet. - 330.B £ps Mn - 0.2B9 1.2- 9/Y - 0.9't7 Re- 1.9740"[0 B

l.O-

d 0.05 ] 0.8- f 1O. 00 0.6 -0.05 -t 6 1.0 112 6 110 i=2

(d) v =0.20

Figure 57. Concluded.

261 1.2- 0.10-

U 1.0- 0.05 -

O.B 0.00 I'0 1'2 I'4 I'0 ,'_ 11

1.2- 0.10 0.05 -

d 1.0- c__ 0.05 r n e 0.00 -

0.8 0.00 -0.05 I'0 1'2 I'4 io ,2 14 io 12

O( @ @

1.2- O. I0 - y/Y - 0.842

J OotoPoLntID: 20POTN.RO63B J 0.05 ¢_ 1.0-

a - 10.92± 2.01 De 9.

0.8 i Freq. - 4.00 cps 0.00 I'0 I12 14 I'0 112 i14

u = 0.038

VoL. " 332.3 fps

Mn - 0.290

Re - 1.9540.10 B 0.I0-

I.O- 0.05 -

0.8 0. O0 ll4 I'0 I'2 /4 ]'0 1'2

o(

(a) v =0.04

Figure 58. 2-D pitch oscillation data; no BL-trip; a = 11 _+ 2 deg.

262 0.I0- y/T - 0.263 U 1.0] E O. D5 0.8 O.O0 8 /4

1.2- 0.05 -

c_ 1.0- c_e 0.00 - - J o.oo _/y - _ 0"05 1

0.0- -0.05 I I; i_ i'4 8 i14

1,2 ylY = 0.842 0.10-

OotoPoLntID: 20POTN.R0639 d +' t .0 r_._E O. 05 -

a - 10.92± 2.08 De 9.

0.0 O.O0 Freq. - lO,O0 cps i'o ,'_ 114

u = 0.094

VeL. = 332.9 fps

Mn - 0.290

1.2 0.10 Re - ].9530,t06

(__ [ .0 c_)E O. 05 •

0.8 0.00 ;o ,'_ 74

(b)v =0.10

Figure 58. Continued.

263 O. lO-

_ 0.05-

0.00 0.8 @

1.4- ylY - 0.500

[.2- 0.05 -

d

[.0- 0.00 - c) 0.00

e 0.05 t

0.8 -0.05 -O.05 1 @ 1; lr2 1'4 114 @ l'o i'2 i'4

cw oc

O.lO-

DotoPoLntID: 20POTN.R0640 j l.o J 0.05 .j.Yo.4 - 10.92± .2.16 De 9. O.O0

Freq. I 14.02 cp8 0.06 I; ,'2 IJ4 1'0 1'2 _'_ u - 0.132

VeL. - 333.2 £ps

Nn - 0.290 1.2 O.IO- ylY - 0.947 Re - 1.9540x10"

///

c__ 1.0 c.3 e 0.05 /-

0.00 G.O lWO 112 114

C_

(c) v=0.14

Figure 58. Continued.

264 1.2- 0. I0- u/Y = 0.263

/

U l.O- ¢3 E 0.05 -

0.8 0.00 8 10 112 1'4 B 10 12 1'4

c_

1.4- 91T - 0.500

1.2 0.05 0.05 -

U

t.O J O. O0 c3 E 0.00 -

0.0 r I 0.05 I -0,05 113 [2 14 ]4 1o /2 ,'4

c_

1.2 0.10-

DatoPoLntID: 2DPOTN.R0641 d 1.0 rj e 0.05 -

a = 10.94± 2.31 De9. 0.8 Freq. - 20.03 op8 0.00 ,'0 l'_ ;4 oc u - 0.189

VeL. - 333.2 fps

Mn - 0.290 1.2 y/Y - 0.947 0.10 Re - 1.9520_t06

c_ J 1.0 J 0.05

0.00 l O.B llO / t 8 12 14 8 ,'0 ,12 ,4

oc

(d) v =0.20

Figure 58. Concluded.

265 [.2-

d [.0- CJ e 0 •O0 )

0.8

-0.05 I0 I0 1'2 114

13(

1.4 H/T - O.SO0

1.2

J 0.I0]

1.O 0.00

0.05 1 J o.o_]

0.8 ,o I'2 I_ 1'6 0.00 /10 I'2 I'4 1_6 -0.05 |10 C_

[.2- 0,05

y/ -T_ OataPotnt ID: 2DPOTN.R0643 C__ l,O- rj = 0.00

= 13.014- 1.99 De 9.

0.8 _o ;2 A 1'6 Freq. - 4.01 cps -o.o5 I0 @ - O. 038

VeL. - 332.B £ps

1._- Hn - 0.290 .y/l" - 0.947 Re- 1.9560.I01

1.2

d 0.05 ]

l.O ¸

°'°° 1

0.0 -o.o5 / ,o _'2 A /6 to

(a) v = 0.04

Figure 59. 2-D pitch oscillation data; no BL-trip; c_= 13 +_2 deg.

266 1.4 9/Y - 0.263

1.2 0.05

1.0 r_3 O. O0 _/rl /

0.8 -0.05 1o 12 A ;5

1.4- _/¥ - O.SO0

1.2-

L_ c3_ /

[ 1.0- J / J °°I °°51 0.05 C__E O.OO [

O.B o.oo / Io I_ i'* l'_ ,o 1'2 I'* 16 -o.os=10 I'2 ]'_

@ C_

1.4 ylY - 0.842

1.2

f_ J /

1.0 e - 13.02_ 2.06 De9. J o.oo DotoPoLntID: 2DPOTN.R0644 0.o5] Freq. - 10.01 cps

0.8 ¸ - 0.095 -o.o5/ 10 I_ i'* ,_

VeL. - 332.0 fps

1.4- Mn - 0.289 y/T - 0.947 Re - ].9500_10 e

1.2-

d

1.0

O.B I 0.00 I0 1=2 14 16 lO I_2 I'4 16

(b) v =0.10

Figure 59. Continued.

267 1.4 y/Y - 0.263

1.2 / 0.10 - // d

1.0 Lje O. 05 -

0.@ O. O0 10 1_2 14 ]'G

o(

1.4- y/Y - 0.500

I ! 1.2- 0.I0 - 0.05 - i d

@ 1.0- 0.05 CO 0.00 -

0.8 0.00 ,o 13 J'_ ,; _o ,3 ;4 ]'5 -0.05 I0

|.4- glY - 0.842

[.2- 0.I0- 1 I d OotoPoLntlO: 2DPOTN.R0645

1.0- - 13.02± 2.14 De 9, C_3E 0.05 -

Freq. - 14.02 cp8

0.8 - 0.132 O. O0 i ,o ;2 A ;6 10 i)2 i14 16 VeL. - 332.6 fps

1.4 Mn - 0.290 ,y/¥ - 0.947 Re - 1.9520"10'

L.2 0.I0 - z// J

/.t 1

1.0 (E 0.05

0.0 1 0.00 ) I0 I)2 14 16

c_

(c) v=0.14

Figure 59. Continued.

268 1.4 ylY - U.263

// 1.2 O.lO -

d'

E 0.05 - I .If z £.3 / /

0.8 O. O0 IU 112 ]_4 116 10 ,'2 A

1.4- ylY - 0.500 S

i//

1,2- 0.10- 0.05 -

d ///

1.0- J 0.05 E 0. O0 -

_ f

0.8 , 0.00 -0.05 lO 1'2 1'4

m

1.4- ,y/Y - 0.842

/ 1.2 -¸ F /

U OofioPoLnLID: 20POTN.RO646

,- // 1.0 a = 13.03± 2.30 De 9. 0.05 °'I°I Freq, - 20.03 cps

0.0-' u - 0.189 o.oo/ I0 1_2 11t I'6 10 C_ VeL. - 333.2 £ps

Mn - 0.290 1,4 y/Y - 0.947 Re - 1.9540_10'

1.2 f/./_///

J / /

1.0 F..jE 0.05

0"10 t

O. 8 o.oo / 1 IO 112 I'4 16 I0 112 114 16

Ot

(d) v =0.20

Figure 59. Concluded.

269 [.2- 0.05-

C.5) [.0 - o. oo -

0.@ -0.05 12 1_4 1'6 18

0.15- 0.05 -

1.2 0. I0- 0.00 - r/r / J L_E

1.0 0.05 - -0.05

0.0 -O.lO 12 I'4 I'6 1'6 o.oo12 1'_ 1'6 1'6 _2 1'4 ,'6 ,'6

ol

1.2 0.05

OotoPoLnLID: 20POTN.R0648 1,0 J 0.00

a = 15,05± 1.98 De9.

0.8 1'8 Freq. - 4.02 cp8 -0._ 12 @ u - 0.038 o_

VeL. - 332.7 fps

[.4 - y/'_ - 0.947 Hn - 0.290

Re - 1.9580MI0'

1.2 0.05 -

d

[.0 ¸ f_ E 0.00 -

0.0

(a) v = O.04

Figure 60. 2-D pitch oscillation data; no BL-trip; a = 15 +_2 deg.

270 1.4 y/¥ - 0.263

0.05 1.2

0.00

c_ E f

0._ -0.05 -

0.20 -

0.6 12 ll4 ll6 -0.10 12 114 116 IiB

CI 0.15- 0.05 - 1.4 9/Y - 0.500 ,../ c__ 0.I0 O,O0"

// i E

- 0.05 1.0- 0.05

1

0.8 0.00 i -0.10 12 1_ 116 ]8 12 1'4 1t6 le 12 1'4 lJ6 118

Oc I_ t.4_ y/T_ 0_.842

0.05 - 1.2-

OotoPotntlD: 20POTN.R0649 o.oo- _" t .0 -

a - 15.05± 2.03 Beg. J

0.8 Freq. - 10,01 cps -0.05

v - 0.095

0,6 I VeL. - 332.7 rps -o.lo 12 114 lib 18 12 Mn - 0.290 1.4- y/x - 0.947 Re - 1.9530M10'

1.2-

U / f, 0.05 ] 1.0 / \ / / e O. O0 ] I 0.0 -0.05 l 12 1'4 l; ,'8 12 l',t i'6

cI Ot

(b) v =0.10

Figure 60. Continued.

271 1.4 _/Y - 0.263

1.2 0.05 - /

_r> i.o i / 0.00 -

0.8 -0.05 -

0.6 12 -o.lo,_ 1_ ,'_ ,',,

O(

1.4 0.20 -

1.2 Y/Y -_ 0.15 - 0.05 -

1.0 r_ _ 0.10- 0.00 - 1 1ii I Ill i /111 J

O.B 0.05 - -0.05 -

0.6 -0.10 ,'8 oo0,2 ,'_ ,'6 ;8 12 1_ 1i6 10 12 o{

1.4 0.05 _/Y - 0.842

1.2 0.00

DotoPoLntID: 20POTN.R0650 I.D -0.05

_ f a - 15.05± 2.11 De 9. ¢ O.B -0. lO Freq. - 14.02 cps

u - 0.132 O.B -0.15 12 114 1B 12 i'4 i'6 1. VBL. - 333.2 fps

1.4 fin - 0.290 y/Y - 0.947 I Re - 1.9530.I0 a

1.2 0.05

I/I I 0.00 _ [.0 NOTE: J

D.I=I Y-ScoLe Reduced by 20X -0.05 i

0.6 I -0. I0 i 12 |14 lib 18 12 14 116 18

Cl C_

(c) v=0.14

Figure 60. Continued.

272 1.4-

1.2- 0.05 -

0.00 - U 1.0- E Q3 k 0.8 -0.05 - \ \ I

-0.10 0.6- 12 1'4 1v6 1; I2 1'4 1'6 lo

Oi

1,6- ylY = 0.500

1,4 0.20 -

// / I I 1.2 0.15- / I O. 05 - J

////I ; 1.0- 0.10- 0.00 J

0.8- 0.05 - -0.05 \ I \ I

\^j

0.6 -0.10 i 12 114 ll6 _'O o.ooL2 I', 1'6 ?_ [2 1't 16 lib

O_ o¢ 1.4- ylY - 0.842

1,2- 0.05 -

DotoPoLnt[D: 20POTN.R0651 0.00 - cj _ 1.0-

£ x 1 o e = 15,05± 2.28 Dog, ,, I 0.0- -0.05 \ I \ I Freq. - 20.02 cps j \ / . - 0.189 \,, 0.1_- -0.10 I'4 I; 12 lU4 16 I'O 12 118 VeL. - 333.5 £ps

I.'L Nn - 0.290 3/T - 0.947 _._ Re - 1.9520-10' |.2- 0.05 -

C._' 1.0 - 0.00 - \ I E \ I NOTE: \ / \ -0.05 - \ / Y-ScoLe Reduced b_ 20X \ /

0.6 -O.lO 12 14 16 lib 12 1'4 1; fo

oc

(d) v = 0.20

Figure 60. Concluded.

273 y/Y - 0.263

|.0-

d 0.05 1 0.8

c_e 0.00 ] I 0.6 -0.05 / 14 16 18 ,4 _ ?o 2'o oq 0.20 -

0.15- r..,r

,.y 0.05 _J ,) L.0 _, 0.I0- tooL ¢j_ O. O0 ] 0.0 , i O. 05 i -0.05 | 14 16 IB 20 20 14 2'0 oc o_

1.2 9/T - 0.842 0.05 -

,.0 OotoPoLntID: 20POTN.R0653 _" 0.o0 dt_--

o - 17.06± 1.99 Oe 9.

O.B i Fneq. - 4.01 cps -o.os 14 ,'6 ,'8 2O 14

u - 0.038

Vet. - 332.1 £ps

Mn - 0.289 l._- 0.05- B/Y - 0.947 Re - 1.9490.10'

d |.0- ¢3m O. O0

0.8 1 -0.05 f ,_ I'6 78 20 14 I'6 ,8 20

(a) v =0.04

Figure 61.2-D pitch oscillation data; no BL-trip; a = 17 +_2 deg.

274 1.2 ylY - O.263 0,05

1.0 0.00

c_ J

0.8 -0.05 0.25 -

0.6 i -0.I0 i 14 116 118 20 O. 20 - 14 1'6 18 2U

C_ (_

J 0.15- 0.00 -

J 0.10- E -0.05 -

1.2) _/,(_

0.8 j -0.i0 2'o o.o5,4 l's 1'8 20 14 ,'6 ,'8 _b

oc

0.05 -

H/Y - 0.842 0.00 I. 2 -1

f_.ff

OotoPoLntIO: 20POTN.R0654 1.0 -0.05

a - 17.06± 2.05 De9.

0.0 / Freq. - lO.O1 cps -0.10 14 1'6 I'B 2'o - 0.095

VoL. - 331.2 rps 1,4- y/I - 0.947 Mn - 0.288

Re - 1.9390Mt0 B

1.2

_J

1.0 _._)e 0.00

0.05 ]

0.0 -0.05 | M ;6 1'8 2b 14

c_

(b) v =0.10

Figure 61. Continued.

275 1,4 y/Y - 0,263

1.2 O. O0 -

d

1.0 c.3_ -0.05 -

0.8 -0. ]0 14 ,'_ 4, 2'o _ ,'6 _'. 2'o

ol ot

|.0- y/Y - 0.500 O. 30

O.B- 0.25 - -0.05 - /1 J J

f _/ /I 0.6- O. 20 r..3_ -0. I0 -

0.4 i i 0.15 14 16 18 _o

1.4 _IT - 0.842 0.05

[.2 ¸ 0.00

BoLoPoLnt ID-" 20POTN.R0655 d l.O -0.05

,¢ - 17,05+ 2.13 De 9.

0,8 Freq. - 14.0| cps 0.I0

u - 0.133

0.6 I -0.I5 16 f8 Vet. = 330.4 fps 14 2'O 14 & Mn - O. 288

t.2 y/Y - 0.947 Re- 1.9300.10' 0.00 -

\

t.O 0.05

0.@ -0.I0

\ /

0.6 -0.15 14 _'+ ,'8 14 l '6 18' 20'

c+

(c) v=0.14

Figure 61. Continued.

276 y/Y - 0.263

t.O 0.00

J

0.8- c2 E -0.05

-0.I0 0.6 f I 14 2O

1.4 0.30 - _/Y = 0.500

1.2 O. 25 - r r z Xr_x

c3_ t.O- J 0.20 - -0.05 0.00

£3 E

0.8 0.15- / _ " -0.10

0.6 0.I0 14 i'_ I'o 2_ -0.15 ,_ I; l; 20,

1.4 9/T - 0.842

1.2 0.05 -

DotaPoLnt ID: 20POTN.ROB56 o.oo- c5' .0 J e - 17.05± 2.29 Be 9. O.B -0.05 - \\ Freq. - 20.03 cpe

0.6 u - 0. 190 -o.1o ,4 1's I'8 2'o 14 VeL. - 331,3 rps

MR - 0. 288 1.4 y/Y - 0.947 Re- 1.9310-10'

1.2 0.05 -

U [.0 0.00 - NOTE : c._)e Y-ScaLe Reduced b.y 20?. -0.05 - O.B-

0.8 -0.10 i 14 i_ I'B 2O

c_

(d) v = 0.20

Figure 61. Concluded.

277 0.6- ylT - 0.263

fl,4 1/ z

0.2 c3_

0.0

0.05 1 -0.2 f c__ 0.00 J 0.4 -0.05| 4 _2 0i 2i 4i 6i -4 _1 0i 2i '1 GI c_

0.6 ylT - O.SO0 0.4- // 0_2 _ U

0.0 _ J O. 05 0.2 f E 0.00

0.4 T_ "-T-- • - " r " • -o.o51 0.05 - 4 -4 92 I 1 -1 .... 7 2 0 2 6 0 2 4 6 4 - 0 2 4 6 &

(].6- _llY - 0.842

0.4- z /

/ / 0.2-

d // OotoPoLnt [D' 20POTN. R0658

0.0- / - 0.88± 4.07 De 9. -0.2 / Freq. - 4.00 cps 1 0.4 ! u - 0.038 -0.05 / -4 -2 2 ; 6 -4 Oc VoL. - 330.3 f'p_

Mn - 0.290 0.6 ylT - 0.947 Re- 1.9860M10 e 0.4 ,/ 0.2 J / 0.0 _. -0.2 - t -0.4 -0,05 | -4 _I2 i i I 0 2 4 -4 0

(a) v = O.04

Figure 62. 2-D pitch oscillation data; no BL-trip; a = 1 _+4 deg.

278 0.6 y/T - 0.263

0.4 ,/

0.2 //// d

0.0- /

-0.2 - CnE O.O0 0.05 ]

-0.4 - o _ 4 -0.05 4I -'2 _ 2 ;

0.5- _IY - 0.500

0.4-

0.2- lz / d

0.0- /

-0.2 - cn_ 0.00 c._z 0.00 Y 0.05 ] _ _ _ _ ..... 0.05

-0.4 4 12 0i 2i 4, 0.05 __ -'2 0.... 2 4 6 -0.05 -4 -i 0r 2i 1i C_

0.8 _j/Y- 0.842

0.4

0.2 / "/_ J OotoPoLntlO: 20POTN.R0659 0.0

- 0.88± 4.20 De 9. -0.2 Freq. - 9.99 cps

-0.4 - 0.095 -0.05 1 4 12 0i 2_ 4i

VeL. - 331.0 £p8

Mn - 0.290 o.s- y/T _ 0.947 Re - 1.9860_I0' o4 .¢>/

d 0.2- t/ 0.0 / 0.05

r_:,E 0.00 0.2 "/_

-0.4 -0.05 -4 _m2 0i 2i 4i -4 c_

(b)v =0.10

Figure 62. Continued.

279 0.6 y/Y - 0.263

0.4

fl j//

0.2 (j

0.0

-0.2 _" 0.00 _ J 0.05 1 ......

-0.4 w i i i -0.05/ i i -4 -2 O 2 4 -_ -'2 o _ ;

c_

0.6- ylY - 0.500

0.4- ./ 0.2- .j.;>Y c5'

0.0-

/ / 0.05 1 r- - - - -0.2, 0.00 0"05 1 J o-oo] c..C___ "_ -0.4 -0. O5 1 2 i i l l , i , -0.05 -"2 ' ' ' -4 - O 2 4 -4 _12 0 2 4 6 -4 0 2 4

C_ C_

0.6- y/f - 0.842 "7 0.4

0.2 d DataPoLnt ID: 2DPOTN.R0660

0.0 0.05

i / - 0.88i 4.34 De9.

-0.2 _._)" O. O0 Freq. - 14.05 cps <

-0.4 u - 0.133 -0.05 2 i i i -4 - 0 2 4 -4 - 0 2 4

VeL. - 332.1 £pe Cq Mn - 0,291 0.6 ylY - 0.947 Re - 1.9900x10' 8.4 J/ i/

0.2 ¸ . J

0.0- /

-0.2 - E 0. O0 < 0.05 I

-0.4 -0.05 l __ 0l 2i 4i --

c_

(c)v=0.14

Figure 62. Concluded.

280 0.8-

0.6

0.4 J 0.2 0.05 7

0.0 J o.oo] -0.05 -0.2 3i _ 7i o¢

0.8

0.6

d 0.4 0.05 I 0.05 ] "/ 0.2 / J o.oo] ...... , -0.05 | 0.0 -0.05 !

0.8-

0.6-

,y/Y - 0./ 0.4- OoLoPoLntID: 20POTN.R0662 d 0,2 11 J - 4.03± 4.04 Oe 9 . 0.05] 0.0 Freq. = 4.00 cpa J o.oo] -0.05 { , , , , -0.2 - 0.038 t i i t -I 1 3 5 7 -1 l 3 5 7 CI VeL. - 329.2 £ps

Mn - 0.289

0.8- Re - ].9780_I0 e

0.6-

0.,4- d

0.05 j

0.0 0.2] -0.05l , , , -0 2 -I l 3 5 7 -l i _ 5i 7, 9i o_

(a) v = 0.04 Figure 63. 2-D pitch oscillationdata; no BL-trip; c_= 4 +_4 deg.

281 0.8 yll - 0.263 ./ 0.6- ..:)Ay" 0.4 / / - / d :/ // 0.2

0.0- cjE 0.00 o.os ] ...... Z)

-0.2 r -0.05 i I , I -I 3 5 7 g -I 1 3 5 7 Ot

11°8- _/¥ - 0.5O0 J

0.6- ./)/ //

c__ O. 4 o.os] o.o5] 0.2 ,y Y ..... c e o.ooi/ _- ..... --> 0.0- -1 -o.os /

0.8 ylY - 0.842 ./ / "/ 0.6 .Aft / OotoPoLntID: 20POTN.R0663 (_j_ 0.4

0.05 ] 0.2 - 4.05± 4,t6 De 9. // jooo] Freq. - 9.99 cp8 O.O -0.05 1 , , -I i 3i 5i 7i - 0.095 cI

VeL. - 331.9 fp8

0.0- Mn - 0.291

91Y - 0.947 _/ Re - 1.9830_10 e o.6-

0.4- / // d z/ / 0.2-

0.0-

0.2 T l ! -o.os / i i / i r -I -1 1 3 5 7 9

(b) v =0.10

Figure 63. Continued.

282 0.8- y/Y - 0.263

0.6 .>>/ ..f/

_T _ 0.4

0.;2- cn e O. O0

// °'°st 0.0 i i r r -0.05 -I I 3 5 7 -! 1 3 5 7

0.8- - . /

0.6

Cj_ 0.4

0.2 J o.ooO.O5 1 ...... J o.oo _.--- 0.05 1

0.0 -0.05 | i _ _ i _ -0.05 ] -I

oc Oc (_

0.8 - HIY = 0.842 ./ -/ 0.6- -S/ .-y 0.1-' d -/ OotoPoLntIO: 20POTN.R0664

0.2 //

- 4.02± 4.31 De 9. 0.05] 0.0- o" Freq. - [4.06 cp9 _iiii1 -0.2 - 0.133 -I -i 1 k ;

VeL. - 332.5 Fps

Hn - 0.291

0.8 ylf - 0.947 Re - 1.9790MI06 ./ 0.6

#// 0.4-

J ,,/lJJ/_

0.2-

0.0-

0.2-,-- -o.o5/ -I

(c) v =O. 14

Figure 63. Concluded.

283 _.2 - y/_ _ 0,263

I.O

/ d 0.8 / o 0.5

f_E 0.00 ]

0.4 -0.05 / , w 4 IB 8 1'0 112

_.2 91T - 0.500

(_Y' 0.8 0.05 0.05

0.6 J _'-" o.ooI o" o.oo] 0.4 -o.o5/ -oos / G ,'o ,_ ['4

[.2- y/Y - 0.842

1.0

OotoPoLntIO: 20POTN.ROG86 << o.8 / /

0.05 1

0.6 / - B.93_ 4.02 De 9.

Freq. - 3.99 cps 0.4 -0.05 / 1'4 ,_ & 8 ,'o ,'2 A - 0.038

VeL. - 329.9 £ps

Hn - 0.288

1.2- ylT = 0.947 Re - 1.9610.10'

[.O-

c< o.8 O.OS ] / 0.6- y J o.oo]

0.4 i I -0.05 / i 1 B II0 li2 I14 6 6 llO 1_2 i14 4 6

(a) v = O.04

Figure 64. 2-D pitch oscillation data; no BL-trip; c_= 9 +_4 deg.

284 1.2- y/Y - O.263

I.O-

cD O.8 J t _"f 0.I0] 0.6- C_E 0.05

o.4i , , 0.00 | , 6 8 I'0 I'2 I'4 4 6 8 I'0 I'2 14

1.4- ylT - 0.500

/ /

1.0 _" d

O.B 0.05 0.05 7 oo j °°°7 °°°li o._ G G l'o _'2 I'4 -o.osm_ _ G i'o i'2 i'4 -o.osm _ G i'0 ?2 i'i

t.2 y/T - 0.842 _,

t.O

_ _ _ DotoPotntIO: 20POTN.R0667 d 0.8 o.o5j _ _ ...... - - - "C.> 0.6- - 8.82± 4.17 Oe9. J o.ooi 0.4 Freq. - I0.02 cps -0.o5/ 4 - O.095

Vet. - 330.9 fps

Mn - 0.289 1.2- ylY - 0.9't7

1.0 Re- 1.9600M10'

j o.0 0.05 7 _ - / 0.6 //

0.4 -0.0s/ 1'4 4 6 8 I'0 I'2 I'4

(b) v =0.10

Figure 64. Continued.

285 [.2- ,U/_ - O.263

1.0-

O.8- / 0"10 1 O.fi- J o1 0.4. 0.00 / , i ! 4 6 8 lO 12 ]l,i

1.2-

I.O-

_.j 0.8 z 0.6 -j J o.oo --- _ o.oo 0.05 1 _ 0.05

0.4 i i -0.05 | , _ -0.05 ! i 6 8 i'0 t'2 1'4 t 6 8 [I0 I'2 1'4 6 8 1'0 1'2 c_ Oc

1.2

1.0

r__ 0.8- OatoPoLntlD: 2DPOTN.R0668

VeL. - 332.0 Fps

Nn - 0.290 |.2- y/Y - 0.947 Re - 1.9610_106

1.0-

0.8- 0.05

/ c__._.. 0.6- o _ 0.00

O. 4 -0.05

c_

(C) v=0.14

Figure64. Conclude_

286 |.4- y/'t" = 0.263

1.2-

j 1.o- 1 /

0.8-

r.j E 0.00 ] -0.05 0.6 6 8 LVO II2 Ir4 6 ii 0 ln2 114 IP6 @ O4

1.4- ylY - 0.500

1.2

/¢ j t.o 0.05 ] 0"I0 1 J ooo 0.8

0.001 0.6- _'e -o.os6 e 1'o 1'2 t'4 I'6 llO t'2 114 1'6 6 8 IVO I12 I'4 /

@ O_

1.4 _ ylY - 0.842

1.2-

OataPoLntIO: 20POTN.R0670 1.0- 0.05 7 - 10.95_ 4.04 Dog. 0.8- c b m O. O0 7 _ *j Freq. - 4.02 cps 0.6 -o.o_, _ ;o ,'2 ,', 1'8 6 I_o 1'2 ,'4 1'6 u - 0.038 oc VeL. - 330.6 £ps

Nn - 0.289

1.4 ylY = 0.947 Re - 1.9520"t0 s

1.2

d' 1.0

O. 05 0.8 0"10 1

0.00 / I 0.6 6 8 [10 112 114 110 112 i14 16

(a) v = O.04

Figure 65. 2-D pitch oscillation data; no BL-trip; c_= 11 +_4 deg.

287 1.4 y/Y = 0.263

1.2

1.0- 0.10

0.8- J O. 05

0.6 O. O0 llO 1_2 [_4 L'O I12 L4 26

o_

1.4 y/Y - 0.500

1.2 /z

/i ,-_ 1.0 O. lO - 0.05

O.B oo51 j ooo

0.6 Ii0 I_2 [I4 I'6 O. O0 |6 8, L'O I'2 I'4 I_6 -0.05 I'0 I'2 1'4 I_

1.4 911' - 0.842

1.2

_ 1.0 DotoPotntlO; 2DPOTN.R0671

0.I0]

0,8 a - 10.94_ 4.18 Be 9. J

0.05 1 _ Freq. - 10.03 cps 0.6 o.oo ! I'0 i'2 14 16 ,'o :2 ,'4 ,_ - 0.095 O_

Vet. - 331.7 rps

Hn - 0.289

1.4 ylT - 0.947 Re - 1.9490-10'

L.2 i /

d t.o

0.]0] 0.8

I" c3 _ 0.05] <.______0.6 o.oo / 6 6 @ llO /2 lJ4

(b) v = 0.10

Figure 65. Continued.

288 [._- y/Y - 0.263

1.2- /i

1.0-

0.8-

0.6 rio L12 ]16 6 1_4

I._

1.2-

0.]0 1.0-

0"05 7 _ - ......

0.8- 0.05

C3 E 0"001 C

0.6 1'2 1'4 1'6 6 Li0 LI2 IP4 l_ 0,00

c_ oc oc

1,4- ylY - 0.842

[.2- /f/ DatoPotntID: 20POTN.R0672 1.0-

0.0- a - 10.93± 4.32 De 9. J 0.05 _ _ .... - 0"10 t < Freq, - 14.00 cps 0.6 o.oo/ lrO tl2 1'4 ,'6 6 8 I'0 I12 ll4 1'6 6 - 0,132 C_

VeL. - 332.4 £ps

Mn - 0.289

[.4- 9/f - 0.947 Re - 1.9480_10"

1,2- //

d t.O

0.I0]

0.8- £3 @ /- 0.15- O. O0 6] 8 llO I12 [14 6 ii0 tl2 114 116

(C) v=0.14

Figure 65. Concluded.

289 1.4- y/Y - 0.263

[.2-

U 1.0- °°51

0.8-

0.6- -o.1o, 1'o 1'2 1'4 ,'6 1'8 8 ,% ?2 ,'4 ,% I_ C_

¢jJ 2 1.2 __ _ 0.10 / 1.4] y/T - 0.500 0"151 1.o _ ...... _ o.os] t O.8 i 0.00| I% -°"'°8' ,% 8 I% I'2 1'4 16 18 @ 1% L_2 I'4 1% 1'2 1'_ 1'.

0.00 - 1.2 OotoPoLntID: 20POTN.R0674 U J

1.0- -0.05 l.,1 - 12.96± 4.04 Deg. 0.8 i _-- -o.io! 0 I% 12 14 1T6 _8 Freq. = 4.01 cp9 e i% 1'2 1'4 1'6

@ " 0.038

VeL. - 333.3 £ps

Hn - 0.290

1.4- yl_. - Re - 1.9530_I0 s

1.2

0.05 I // 0.94_% r_) _ O. O0 1

o.o ,'o ,% ['4 [% -o.os_ ,% ,% [, ,%

(a) v = O.04

Figure 66. 2-D pitch oscillation data; no BL-trip; c_= 13 +_4 deg.

290 1.4 _/Y - 0.263

1.2 iI

0"05 1 11 x 1.0

_ O. O0 ]

0.0

0.8 8 xh t'2 ?4 t_ lh e ?o I'2 l'_ I; ]'o

1.6- y/Y - 0.500

L.4- 0.05 ¢

I 11 O. 15 - 1.2 / 0.00 d

1.0 0.20 - /)1/ _ 0.10- -0.05 -

I t 0.8 ______- 11 0.05" -O,lO-

0.6 ) 0.00 I -0.15 1 8 I; 12 1'4 16 10 I'0 [12 I'4 IB 18

(31

0.10

1.4- 0,05

1.2" 0.00

£_3E DoLoPoLnLID: 2DPOTN.R0675 r__ l.O -0.05 I

O.B _ j = 12.94± 4.20 De9. -D.10-

0.5 Fneq, - |0,05 cps -0.15 8 ,b 1'2 ?_ 1_ 1_ u - 0.095 Cu VeL. - 333.! £ps

1.4- Mn - 0.290

y/Y - 0.9_ Re - 1.9460_I0' 1.2

I 0.05] . .-- ____ U t.O / / C3 s 0. O01 j/ 0.8

-0.05 ] ',\ tl 0.6 -o.]o! ,b t'2 I', ,_ 8 1_0 1'2 1'4 1;

(b)v=O. lO

Figure 66. Continued.

291 1.4- 0. I0-

0.05 1.2-

c__ 1.0 E 0.00-" \ i j I . \ / ¢ ",, / O.B / -0.05 - / " \ ! . /

0.10 O.G - "T T- _T I0 12 14 16 8 ,'o I_ I_ ,'_ I'8

0.25 - L.6 y/Y - 0.500

0.05 1.4 0,20 sQ : \ i f t

1.2 J / 0.15 ;" _l 0.00 \ I k d J x I x t \ 1.0 0.I0- / k 1 \ / \ / 0.05 - -0.10 O.B _ -0.05 / /

-0.15 0.6 0.00 10 112 114 116 lIB B ii0 1u2 lU4 116 lib IrO 112 114 16

O_

1.4- _/T - o.842 /-'q

0.10" 1.2- /11 i

/ 0.05 - I.O- f ! OatoPoLntID: 20POTN.R0676 y / , d

0.0- / O. O0 n / \ I / - 12.93± 4.34 De9. x l -0.05 - " I 0.6- \ Freq, - 14,03 cps \ I J

-0.10 0.4 - 0.132 i_O it2 in4 ii6 8 1'o 1'2 1'_ _;

VeL. - 334.B Fps

Nn - 0.291

1.6- 9/Y - 0.947 Re - 1.9490ML0B

1.4- 0.10-

0.05 - 1.2 / d 00 1.0 // \ I f ! , 0.8 -0.05 - i/ / " \ \ / % // -0.10- 0.6 10 12 114 16 118 8 l'_ 1'2 1'4 1'_

Cl

(C) v=0.14

Figure 66. Concluded.

292 1.4 y/Y - 0.253

1.2

1.0-

0.0- o.o,]

0,6 i -o.1o/ i 10 10 1'2 1'4 1; 1@ 2o

0.20 -

0.15- // 0.05 7 1.2 0.10- / d t.O 0.05 - O.OOJ _0.051 0,8I/YO ) 0.00 I I0 Ii2 I)4 1'6 I)8 20 10 I12 1)4 16 118 2'0 -0. ]01113 ii 2 114 ii 6 110 2O C( (3(

0.05 -

0.00 -

J -o.os- d OotoPobntID: 2DPOTN.R0678 1.0 -0.10-

- 15.04± 4.06 De 9. 0.0 _ .... " -0.15 i 1o 12 14 16 18 210 Freq. - 4.02 cps 10 ,'2 l'S I'_ 1_ 2O

v - 0.038

VoL. - 333.0 rps

Mn - 0.290

Re - 1.9460_I0'

1.2 d 1.0 1"41 9/Y = 0.94 i;t 0.8 -0. I01 10 12 114 I)fi 18 2'O 1o 12 1'4 i'6 1)8 2'O

(a) v = O.04

Figure 67. 2-D pitch oscillation data; no BL-trip," a = 15 +_4 deg.

293 1.6 y/T - 0.263 0.05 -

1.4 O. O0

\t

[.2 -0.05 -

d fie

1.0 -0.I0-

0.0 -0.15 -

0.35 + 0.6 -0.20 I0 I)2 ['4 I'6 I)8 2'D 10 1'2 :4 l'+ ,'8 2%

0.30 -

1.6 0.25 - 0.05 -

1.4 0.20 - 0.00 •

1.2 0.15 -0.05 J ]/ 1.0- / 0.10 J -0.10 0,8- 0.05 / -0.15 +

0.6 , 0.00 -0.20 I0 ,'+ ,'4 ,'6 ,'+ 21O I0 ,'_ ,'4 ,'+ ,'8 b I0 112 I'4 1'6 [8 2'0

@ O'

|.6q y/Y - 0.842 0.05

1.4- 0.00 -

[.2- -0.05 DotoPoLnt[D: 20POTN.R0679

1.0- -0. lO a - 15.02_ 4.17 De9.

17.8- -0.15 Freq. - 10.05 cps

0.6 - 0.095 -0.20 10 lO ,'2 ,'+ i'+ ?,+ :+t, Vet. - 332.4 £ps o+

Mn - 0,289 1.6 0.05 -

Re - 1.9390.t0 B

1.4 0.00 -

1.2 -0,05 - U it

l.O- -0.10 -

9.B- -0.15 -

0.6 -0.20 I0 t'2 :,_ _'+ ,'_ ++o I0 112 11'1 [16 18 20

ol

(b) v =0.10

Figure 67. Continued.

294 1.6

L.4 0.05 -

L.2- 0.00 -

I.O" ,,,q/_ - 0.263 -0.05 J O.B -0.10

0.6 -0.15 -

0.4 -0.20 I0 1'2 1'4 1'6 i'8 2_0 0.40 - 10 t'2 h i% L'6 2'o @ 0.35 -

0.30 - 0.05 -

1.6- 0.25- 0.00 -

1.4 r__ 0.20 -0.05 - r"

1.2 0.15- C_]z -0. I0 J 1.0 0.10- -0.15

0.8- 0.05 - -0.20 -

0.6 I0 2_3 0.00 10 2,O -0.25 10 @

1.6- .y/Y = 0.842 0.05-

1.4- 0.00 -

1.2- -0.05 -

OotoPoLnt [D: 20POTN.R0680 (j_ 1.0- c_ _ -0.I0-

0.8 -0.15 - 15.024-4.31 De9.

0.6 -0.20 Freq.- 14.04 cps 0.4 - 0.132 -0.25 10 1_ h 1'6 _'8 2; 10 ,'2 L'4 L'6 l_ 2'o

VeL. - 333,3 fps

Mn - 0.290 1.8- y/Y - 0.947 Re- 1.9410-100 1.6 O. 05 -

1.4 0.00 -

1.2 -0.05 - d' 1.0 NOTE: r.__E -0. ]0 - Y-ScaLe Reduced by 20Z 0.0- -0.15 -

0.6 -0.20 - I 0,1 -0.25 I0 ,_ h 1'6 L'8 _o 10 _'2 h i'6 _'8

(c) v=0.14

Figure 67. Concluded.

295 _J rl ioiJYo26 _.ii;°°'I_1 , O.lO/ T'4 I'6 ); 2; 2_ ,2 _'4 ,'6 _'8 2'0

0.25 -

1.2 0.20 - .ylY O0

1.0 J 0.15- 0.050.00 d

O.B 0.10- r/ _ -0.05 O.B 0.05 i 12 22 12 ,2 i'4 1'_ 1'o 2'0 22

oc

0.05 l | _.

DotoPoLnt[D: 20POTN.R0682

l.O- ,to8, JY - 17.10+ 4.06 Deg. O.B -0.101 12 It4 I'6 l; 2; 212 Freq. - 4.03 cps ,2 1_ _'B i; 2;

u - 0.038

VeL. - 331.2 £ps

Nn = 0.289

1.4- y/Y - 0.947 Re = 1.9450_10'

1.2- 0.05

c.) l.O- 0.00 J O.8- -0.05

U. 6 -0.10 12 12 I'4 16 I'8 2'0

@

(a) v = O.04

Figure 68. 2-D pitch oscillation data; no BL-trip; c_ = 17_+ 4 deg.

296 1.6 0.05 y/T - 0.263

I_4 0. O0

t.2 -0.05

c5" J 1.0 -0.10 -

o.o -0.15 -

0.40 0.6 -0.20 12 1'4 I'6 1'0 2; 2? 12 h t'_ G 2'o _2

c_ 0.35 -

/ 1.0- ,y/Y - 0.500 0.30- // 1.4- O. O0 - J /,/ 1.2- 0.20 - -0.05 - d 1.0- 0.15 r_3e -0.10 - 0.25 -

0.8- 0.10 -0.15-

0,6- i -0.20 12 114 116 lib 2; 2? 0.05 12 1'_ 1'_ 1'o 2'0 22 12 1'4 1'6 ,'0 2'0 o_ oc

1.6- 0.05 - .y/T - 0.842

1.4- O. O0 -

1.2- -0.05 J BoLoPoL nLI D : 2DPOTN. R0683 J 1.0- -0.10

c,- 17.09+ 4.17 Beg. 0.0- -0.15 Freq. - 10.05 cps

0.6 u - 0.096 -0.20 12 ,'_ ,'6 1'0 2'0 12 ,'4 1'6 l'_ 2'0 2'_

c_ VeL . - 330.4 f'ps

Mn - 0.288 1.6 0.05

Re- 1.9350_10 s

1.4 0.00

1.2 ylT - 0.94_ -0.05 J 1.0 -0.10

0.0 -0.15 -

0.6 -0.20 12 ,'4 ,'6 _'0 2'0 _'2 12 ,'4 ,', G 2'0 2'_

ot c_

(b) v = 0.10

Figure 68. Continued.

297 t.B y/T - 0.263

L.6- 0.05

1.4- O. O0

1.2- -0.05

/ f -0.15- 0.0 _ / J 0.55 0.6 _ 0.20 -

0.50 0.4 ' -0.25 114 116 210 ;_2 12 IT4 ['G LIB 210 2_2 12 II8 0.45 Oc

1.0- 0.40 0.00 - ylY - 0.500 1.6- 0.35 -0.05 -

/ - 1.4 J 0.30 -0. I0 "x //

L.2 0.25 -0.15 - f//

L.O" O. 20 -0.20 -

/ / 0.B- 0.18 0.25 -

0.6- 0.I0 -0.30 -

0.4 -0.35 2_2 0.05 12 12 I'4 116 18 20 2'2 12 ,'4 (6 ,'0 _'0 _;

l.B- 0.05 •

1.6- 0.00 -

1.4- -0.05 - ylT -

1.2- -0.10- DoSoPoLnLID: 20POTN.RO68d C3 _ -13.15 - = ]7.08± 4.28 De 9. 0.B- -0.20 - Freq. = ]4.05 cps 0o6- -0.25 - - 0.]33 0.4 -0.30 12 114 [_6 [18 210 212 12 VeL. - 332.2 fps

2.0 Hn - 0.289 0.05 - ylT - 0.947

1.8- Re - ].9410_10 e O. O0 -

1.g -0.05 -

1.4 -0, lO -

1.2 NOTE: -0.15 -

1.0- T-ScaLe Reduced b_ 20X -0.20 - t / 0.8- -0.25 -

0.6 -0.30 I'4 tr6 20 2'2 12 1'4 ,'6 1'8 2'0 2) 12 l'O

£k (_

(C) v=O. 14

Figure 68. Concluded.

298 [.4- q/T - 0.263

1,2- 0.05 q - -

¢.)" I. 0 -

0.8-

0.6 -o. Ioi I'5 I_9 1'I 1'3 1'5 I'7 I_ 7 g I'1 ['3 1'7

ioi

0.20 - 0.05 -

1.2 _ 0.10 __3e -0.05 - U 0.00 - -0.10 - 1.0 _ 0.05

0.8 i i 0.00 -0.15 7 9 II 1'3 t'5 I_ 19 Ill 1'3 115 1'7 119

0

1.4-

1.2-

OotoPoLnt[D: 20POTN.R0686 c3_ 1.0

0.8- oo5l - 13.01± 5.06 De 9, S1

0.6 -o._o/ I'1 1'3 t_5 1'7 19 Freq. - 4.00 cps 7 ; ,'l h t's 77 1'_

u - 0.038

VeL. - 331.7 rps

Mn - 0.289

Re = 1.9460_I0 a 1.4-y/Y- 0.947

0.05

0.00 (j 1.0 / C.DE

0.8 -0.05

-0. 0 0.6- 1 i l 9 Ill 113 t'5 1'7 Ig 7 9 I'1 I'3 t's t'7 19

(a) v =0.04

Figure 69. 2-D pitch oscillation data; no BL-trip; a = 13 +_ 5 deg.

299 I. 6 - 0,10" y/T - 0.263

[.4- 0.05 "

1.2- 0.00 " C 36 1.0- -0.05 "

0.6- -0.10 -

0.6 i i r -0.15 9 I [ I13 115 I_7 1 g ,', 1'3 ,_ _'_ ,'9

0.30

1.6 I;

1.4 y/T - 0.50_ 0.250.20 - / 0.00 1,2 J / _ o.15- e -0.05 - 1.0 i 0.10-_ _j -0.100.05

0.8- J . _ 0.05 -0.15. 0.6 -0.20 i i ; I', h 1'_ l'_ 1; o.oo 11 113 [15 117 19

0.I0-

1.6- ylT - 0.8'12 0.05 -

1,4 O.O0

1.2 e -0,05 - d OotoPoLntIO: 20POTN.R0687 1.0- -0.10 - 7 ' e - 13.01i 5.22 Oe 9. 0.8- -0.15

0.6 Freq. - I0.01 cps -0.20 I'I I'3 I'5 It7 1'g - 0.095 @

VeL. - 332.0 £ps

Mn - 0.289 1.6 ylT - 0.947 Re - 1.9420_I06 1.4 0.05- .'---_-

1.2

1.0 j-- I / e -0.05 - / , 0.00- _ "_I 0.8. -0.10-

0.6 I i I -o.ls ; ,'It'_1's,'7_'9

c_

(b)v =0.10

Figure 69. Concluded.

3O0 ].4 _/Y - 0.263

1.2 0"00 1 _t_~v_ _ o' 1.0 1 £.;,E -0.05 1 O. 8 -0. I0 1 U.6 1 113 1r5 It7 1_9 211 _3 -0.15 11! 1_3 I'5 1t7 1'9 2'1 2'3

o

0.30

0.25

0.20

c7 0.15

0.10- cS _ /_ E _0.05 1

0.0 _- ...... O. 05 - -O.lO 7 0.00 0.8 I I 13 ll5 117 1'9 21_ 21_ , 13 15 l'7 ['g 2'1 23 -O" 15 ,Jl ,3 1'5 1'7 1'g 2'1 23

0 o

0.05

0.00

1.0- OotoPoLnt[D: 20POTN.R0689 E-o.o5

0.8 -_ ...... -- i 0 _ _ 0 - 17.27+ 5.05 De9.

-0.15 0.6 II 113 115 .tt7 119 2Jl 213 Freq. - 4.00 cp9 1 113 1'5 117 tl9 2ri 213 0 u - 0.038

VoL. - 332.2 fps

Hn - 0.290

Re - 1.9520M;0 e "1 ,.o/ ,,_ "_ i:iio°,tl

11 13 15 17 19 21 23

(a) v = 0.04

Figure 70. 2-D pitch oscillation data; no BL-trip; a = 17 +_5 deg.

301 I.B- yly_ 0.263

0.05 -

0.00- 1,4

-0.05 - 1.21.6 / -0.10-

t 1.0- / / -0.15- 0.8 L _ z°

0.50 - -0.20 0.6 \, I- --_

0.45 - -0.25 i i i 0.4 i i I i L9 I ! 13 15 I17 I_9 211 23 11 13 15 17 21 23 O. 40 - @

t 0.35 - 0.05- 1.8- ylY - 0.500 f / 0.30 / 0.00- / i r_ -0.05- ______(__ 0.25

1,4- / O. 20 -0.10- 1.2 / F_P U '° ¢ 0.15 / -0.15 1,0 / / / 0.8- l / 0.10 i -0.20 -

\% _f _ -,/ -0.2S - 0.6- X _ 0.05

-0,30 11 13 1'5 1'7 1'9 2'1 23 O. 4 11 1_3 I'5 I'7 1'9 2'I 2'3 0"0011 13 1'5 tl? [19 21] 2_

cq @

u.a- y/Y - 0.842 0.05 - . \

0,00 - \ x 1.6 - //-\ -0.05 - \ \

0.10 U OataPoLnt[O: 20POTN.R0690 _" 0.]5 1.21.4t.O / / _ - 17.26_ 5.17 0e 9. -0.20 0.8 I - _ Freq. - 10.04 cps 0.6 _- -0.25 u - 0.095

-0"3011 1; 1; 1'7 1'9 2'1 23 O. 4 I I /3 1'5 1'7 t'9 2+1 23 VeL. - 33],9 Fps

Mn - 0.289 0.05 -

Re - 1.9460-10' 0.00 - 1.0"

0.05 - 1.6- 31Y - 1.4- O. lO" J 0.15- _ t .2

1.0 0,20

0.8- O. 25

0.6- I I 113 {5 {7 {9 2_]

(b)v =0.10

Figure 70. Concluded.

302 The next figure series begins on page 304.

303 1.2 _/T - 0.25O i .[1

0.8

0.6 J 0.4

0.05 7 0.2

9.0-

-0.05| r , , , , , , _ _ , -0.2 r i f ! I 1 _ 5 7 9 II 1'3 |; [17 I r9 211 -I I 3 5 7 9 ]l 13 [5 17 19 2] 0

].2-

l.O

0.20 - O.8-

0.15 - O.fi

CD 0.I0- 0.4- Q3 0.05 - 0.2- 0"05 l

0.0- 0.00 -

-0.05 _ i i l ; i , I , I , , -0.2 T I r 1 -0.05 I r i I -[ l _ 5 7 9 ]'] ]i l; [17 ]19 2'i -] ] ; 5 7 9 I'I I; I'5 1'7 l; 2'I -1 l 3 5 7 9 II 13 15 17 t9 21

0 c_

1.2

1.0

0.8

0.6 DotoPoLntlO: RTOSTN.R0483

0.4

0.00 0.2 o _ I0.02± 10.14 Dog. J - 0.05 0.0 Fneq. - 0.00 cps

-0.2 - 0,000 -0.10 i I , I i I i i , 11g 21l -,I _ _ _ _ Ah,'5_'_,'_'_ -I 1 3 5 7 9 11 13 15 17 0 VeL, - 33],5 £ps

Hn - 0.290

1.2 - y/_ = 0.900 Re - ].9820-10' 1.0-

0.8

0.6-

cj _ 0.4-

0.2- 0.05 7

0.0-

-0.05t , , , , , , t , -7 -0.2 ; r -11 ; ; _ _ Al'3t;l_l;2'l l I 3 5 7 9 11 13 15 17 19 21 @

(a) Repeat no. I

Figure 71.3-D round tip quasi-steady data; no BL-trip; 0 _

3O4 0.15

o.Lo 0.05] 0.05 _" o.oo] ,_

0.00 I I ! I I P P I F I t -0,051 , , , , , , , , , , , -I I 3 5 7 9 Ll 13 15 17 19 21 -I 1 3 5 7 9 11 13 15 17 19 2]

o o

0.8 9/T - 0.986

0.6

0,4 0,15 J 0.2

0,0 °.'°10.05 1 c___ 0.00 -0,2 f j i 0.00/ , , , -0.05| i _ , l , , , , , , , -1 1 3 ; 7 9 1'1 t'3 15 1_ 1'9 2'] -1 1 3 5 7 9 11 13 15 17 1'9 21 -1 1 3 5 7 9 11 13 15 17 1,9 21

0.45

0.40

0.35

0.30 0.05 - , j

0.8- 0.25 0.00 J O,6- 0.20 -0,05

d _ 0.4 0.15- 0 _ -0,10

1.0-_ 0,2 0.[0 - -0.15

0,0 0.05 - -0.20

-0,2 _ T , 0,00 f m -0.25 t i i i I i i i _]- "7 1 1 3 5 7 ; 1'1 1'3 I_5 1'7 1; 2'1 -i I _ _ _ 9 _11'3751'71%2'i -1 I 3 5 7 9 11 13 15 17 19 21

OI

(a) Repeat no. 1. Concluded

Figure 71. Continued.

305 1.27

1.0-

0.8-

0.6- d 0.4

0.2 0.05 7

0.0

-0.2 -0.051 l r J _ , ) , , , _ -t -I 1 3 5 7 9 II 13 15 17 19 2]

O

1.2-

1.0-

0.8

0.6 d 0.20 ] 0.4 0.15 I 0.2 J 0.101 j j 0.0 0.00 0.05 1 -0.2 o.ooi -0.05 -I I _ _ _ _ i'] i'3 i's t'7 i'9 2'i -1 1 3 5 7 9 l] I3 15 17 19 21 -1 1 3 5 7 9 II 13 I5 17 19 21

1.2

1.0

0.8

0.6 d OotoPoLnt[O: RTOSTN.R0484 0.4

0.2 o - 10.02± 10.16 De 9. 0.00 _3 E O.O Freq. = 0.00 cps -0.05

-0.2 o I ) i i T l I ) T_ - 0.000 -1 1 3 5 7 9 I1 13 15 17 19 21 -O']O-I 1 3 5 7 9 II 13 15 L7 19 2'1

C_ VeL. - 331.7 Cps

Nn - 0.290

Re - 1.9770x10" 0.8-

0.6-

d 0,4-

1.0- 0.2

0.0 E o.oo _-"_""_"-_ 0.05 ]

1 3 5 7 9 11 131'51'71921 o.o5) ; _ _ 7, 9, 1'1t'_15,'7i'_;1

(b) Repeat no. 2

Figure 71. Continued.

306 1.0- y/Y - O. 966

0.8-

0.6 0'20 l 0.,I °"I // 0.2

0.0

0.2 • - ) , _ _ , -0.05 _w- , , r , , r ) r 5 7 9 lrl 1)3 I5 17 19 21 -1 1 3 5 7 9 I! 13 15 17 19 21 1 1 3 5 7 9 I1 13 15 17 t9 2)I

0.1]- 9/'( - 0.986 0.6 °'l 0.4 d 0'51 / 0.2 0.0 o0,oo511 i..- o 0.2 --T_i • - - • i 1 I l [ I I i i l -I I 3 5 7 ; l'l 1'3 1'5 117 19 21 ooo)1-i_ _ _' ; 4,'31's,Y/gZ oo5.-1 1 3 5 7 9 ]] ]3 15 ]7 ]9 21

C_ @ 0

0.45 -

0,40 -

0.35 -

1.o 9/T = 0,995 ._,,.,.,,,_ 0.30 - J 0.05 - !

J 0.25- ,,/; 0.00- 0,6- 0.20 -0.05 -

J 0.4- O. 15 C_)E -0.10 -

0.2- O. 10 -0.15 - I

0.0- 0.05 - -0.20 -

-0.2 0.00 , , _ -0.25 -1 l 3 5 _ ; 1'1 1'3 1'5 1'7 I; 2'1 -1 J 3 ; 7 g 11 1'3 1=5 117 ]'g 2'1 -] i _ ; _ ; /11'31'51'7]'92'] ot

(b) Repeat no. 2. Concluded

Figure 71. Continued.

307 _.2- yl,f = 0.250 ._

0.B-

0.6- d 0.t-

1,0- __ 0.2-

o.o-

-0.2_, i ; ; _ _ 1'11; l's b 1; 2'1 -1 1 3 5 7 9 11 13 15 17 19 21

1.2-

1.0-

J

0.00'20"0"6 4 _0.8-

-0.2

1.2-

1.0-

0.8

0.6 d OotoPoLnt[O: RTOSTN.R05!I 0.'1

0.2 a = I0.081 lO.t7 De 9, J 0.0 Freq, = 0.00 cpe

-0.2 - O. 000

VeL.- 327.8 fps

Mn - O. 288

Re- 2.0080MtO'

d

10.20-0"8.'0-6-0.0_10"

C_ F _0.050.000"05] _

-0.2, '1 _ ; ; ; 1'11; ,; 1; ,'__'1 -1 1 3 5 7 9 11 13 15 17 19 21

£1

(c) Repeat no. 3

Figure 71. Continued.

308 1,0- y/¥ - O. 966

0.6-

0.6-

c_ _ 0."1

0.2

0,0

-0.2 -1 I _ _ ; _ ,', l'_ l's 1'7l'g 2'1

0.8- 9/¥ - 0.986

0.6-

0.4- 0.15 d 0.2- OlO °.°5] 0.0- 0.05 0.001 -0.2 l _ J _ f i 0.00 I I T J I I _ i I i I -0.05 i -1 ] 3 5 7 9 11 I'3,'51'71'_2'_ -1 1 3 5 7 9 II 13 15 17 19 21 -I 1 3 5 7 9 11 13 15 17 19 21

o O( 0

0.45 -

0.40 -

0.35 -

r 0.30 - 0.05

1.0- _/Y - 0.995 0.8 0.25 - 0.00 J 0.20 - -0.05 -

0.15- C, E -0.10 -

0.60.2 0.10- -0.15 -

0.0 0.05 - -0.20 -

-0,2 - , 0.00 , -0.25 i i ] , i i i i i -r_ I , 3 ; _ ; 1',1'31'5 ,'71; 2'1 -1 1 _ _ _ _ 41'3,'51'71;2'1 -1 1 3 5 7 9 11 13 15 17 19 21

0

(c) Repeat no. 3. Concluded

Figure 71. Concluded.

309 0.6- y/¥ - 0.250

0.4 0.05

,<

0.2 / E O. O0

0,0 -0.05 - i i 3 5 7

c_ o[

0.6

0.4 0.05 - 0.05 -

d

0.2 O. O0 - r._)E O. O0 -

o.0 , -0.05 i i i i 7 3 5 :_ -0.05 3 s

0.6

0.4 0.05

d OotoPoLnt ID: RTPOTN.R0382

0.2 ¸ a - 3.99± 2.00 Deg. _3 E 0.00

Freq. - 4.01 cps

0.0- u - 0.038 -0.05

VeL. - 328.5 £ps

Mn - 0.289

0.4- 0.05 - ylT - 0.900 Re- 1.9990_10'

d 0.2 o m 0.00-

0.0- --- v i i 0.05 - v i i 3 5 7 3 5 7

(a) v = O.04

Figure 72. 3-D round tip pitch oscillation data; no BL-trip; a = 4 +_2 deg.

310 0.4 9/¥ - 0.966 0.05 - 0.05 -

d 0,2 0.00 - 0,00 -

0.0 i i -0.05 -0.05 3 s

0.4 y/T - 0.986 0.05 - 0.05

0.2 f 0.00 0.00 J J

0.0 ; i I -0.05 i l i -0.05 r i i 3 5 7 3 5 7 3 5 2 o_ o_

0.4 9/T - 0.995 O. tO- 0.05 -

c__ O. 2 0.05 - c3E 0.00-

f fJ

0.0 0.00 l l i r -0.05 i i i i 3 5 3 5 7 3 5 7

(a)v = 0.04. Concluded

Figure 72. Continued.

311 O.B- y/Y - 0.250

11 1 0.05 - 0,4

d

0.2 Y 0.00 -

-0.05 I l i 0.0 i i l 3 5 7 3 5 7 o C_

0.05 0.6 y/_'- 0.475 0.05 -

d 0.4 J 0.00 c_e O. O0

7 0.2 i l i -0.05 i i i -0.05 3i _ 7i 3 5 7 3 5 7 L_ o4 c_

o.e, yi¥_ 0.800

0.05 - o.4- OotoPotnt[D: RTPOTN.R0383 d

0.2- J o4 - 3,97± 2.05 De 9. C__e 0. O0 -

Freq. - 10.02 cps

-0.05 o.o i i - 0.096 "_ 5 7 VeL. - 327.5 rps

Mn - 0.288

Re - 1.98¢0_10 _ 0.05 -

E 0.00 -

0,0 0.05 5P .... 3 5 O4

(b) v = 0.10

Figure 72. Continued.

312 0.4- 0.05 - 0.05

d o.2 c__ 0.00 - r..)E 0.00

0.0 i i 3 5 -0.05 -0.05

o{

0.4- 9/Y - 0.986 0.05 0.05

C3" 0.2- J 0.00 c.3E O, O0 -

0.0 -0.05 i i ,_ -0.05 ; 7 ot

o.t 0.I0 u/Y - 0,995 0.05 -

d 0.2 0.05 F_)e 0.00 -

o.o i i l 0.00 I -0.05 i i f 3 5 7 3 5 7 3 5 7 oc

(b) v = O.10. Concluded

Figure 72. Continued.

313 0.6- _/Y - 0.250

0.4- 0.05 - /

d _ - .... -) t 0.2- 9 Cj e 0.00 -

0.05 0.0 1 i 3 _ 7 5 7

0.6 y/I - 0.475

0.4- 0.05 0.05 -

d

/ t 0.2- J 0.00 - rj E O. O0 -

0.0- ) i , -0.05 , , l i r -0.05 3 5 7 3 5 7 3 5

0.6-

0.4- O. 05 -

d DotoPoLntID: RTPOTN.R0384

0.2- o = 3,95± 2.13 De 9. J o.0o-

Freq. - ]4.03 cps

0.0 u - 0.]34 -o.05

@ Vet. - 329.5 rps Mn - 0.289 0.4 O. 05 - 9/Y - 0.900 Re - 1.9910xi0"

0.2 CD i O.O0 -

0.0 -0.05

(_

(c) v=0.14

Figure72. Continued.

314 0,4 0,05 - 0.05

0,2 c__ 0.00 - 0,00

0.0 -0.05

ot oc c_

y/Y - 0.986 0.05 0.05 -

d 0.2- 0.00 J 0.00 -

0.0 i i _ -0.05 v f i -0.05 I l i 3 5 7 3 5 7 3 5 7 oc o_ o

0.4- y/T - 0.995 0.I0- 0.05 -

d 0.2- 0,00 -

"_s" _ J o.os

0.0 , _ , 0.00 i i , -0,05 I 3 5 7 3 5 7 3 5 c_

(c) v = O.14. Concluded

Figure 72. Continued.

315 [}._- ylT - 0.250 /

0.05 - 0.4-

o_

0.2 0.00

0.0 0.05

0.6 yll' = 0,475

0.4 O. 05 0.05 -

c_ z 7 "i

0.2 c_m 0.00 r_)E O. O0 -

0.0- i -0.05 -0.05 - 7 s s } 3 5

0.6- ylY - 0.800

0.4- O. 05 -

.- / d DotoPotnt[D: RTPOTN.R0385

0.2- o - 3.93± 2.26 De 9. O. O0 -

Freq. - 20.08 cps

-0.05 0.0 i i v - 0.191 5 7 O_ Vet. - 329.7 Fps

Mn - 0.289

0.4 0.05 ylY - 0.900 Re - 1.9870_10'

f ,-_,___ 0.2 c_)_ 0.00

-0.05 0.0- i i 3 5 7

c_

(d) v = 0.20

Figure 72. Continued.

316 0.4- _/Y - 0.966 O. 05 -

Ld_

rj _ 0.2- 0.00 -

0.0 , -0.05 - , -0.05 i f i 7 3 5 3 5 7 3 5 7

o_ o c_

0.47 _/Y - 0.986 0.05 - 0.05 -

d 0.2- c3_ 0.00 - (.3 _ 0.00

0.0 i 1 I -0.05 -0.05 3 5 7

0.4 9/Y - 0.995 0.10- 0.05

0.05 - r___ 0.00

cY 0,2 J

0.0 I i 0.00 i -0,05 i r i 5 7 3 3 5 7 3 5 7 Oc

(d) v = 0.20, Concluded

Figure 72. Concluded.

317 1.2- _/T - 0.250

1.0 0.05

()

0.8 (3E 0.00

-0.05 0.6 6 _ l'O G

c_

1.2 H/T - 0.475

1.0 0.05- 0.05

d

0.8 J 0.00- r_3E O. O0

0.6 , -0.05 -0.05 6 @ ]'0 12 6 ; 1'o 1'2 _ 1'o @

O.B O.05

DotoPotnt[O: RTPOTN.RO3BZ d 0.6 J O, O0

- 8.97± 1.99 De 9.

-0.05 0.4 Freq. - 4.0I cps 6 8 1'o 12 C_ - 0.038 Oc

Vet. - 330.2 fps

0.8 Mn - 0.289 O. lO

Re - 1.9860_I0'

d 0.6 o e 0.05

0.4 O.O0 6 _ i'o 1'2 6 _ ;o ?2

c_ o_

(a) v = O.04

Figure 73. 3-D round tip pitch oscillation data; no BL-trip; a = 9 +_2 deg.

318 0.6 0. I0- 0. I0

d 0.4 0.05 - c__ 0.05

=_ .... ---

0.2 i 0.00 0.00 6 8 I'O in2 12 I'O 112 C_

y/Y - 0.986 0. I0 0.05 -

0.4- o _ 0.05 / 0.00 / / / / /I // 0,2 l 0.00 w 12 6 I'o 12 cw

0.20 - 0.00

O.G y/Y - 0.995 O.I5- -0.05

J CDe d 0.4 0,10- / -0.10 -

0.2 0.05 -0, 15 13 I'o I._2 8f 10r 1'2 oq ol ol

(a) v = 0.04. Concluded

Figure 73. Continued.

319 1.2- y/Y - 0.250

1.0- 0.05 -

d Lf j 0.8 j cj E 0.00-

0.6 6 _ ,'o ,'2 0.05

1.2- ylT - 0.475

1.0 0.05- 0.05

d

0.8 O. O0 - _js 0.00 j /: f

0.6 _ -0.05 j -0.05 6 8 I; I'2 6 8 i0 1'2 6 _ ,b G

0.0 0.05

OotoPotnt I0: RTPOTN.R0388 O.OO (j_ o.6 r._)E

a- 8.95± 2.04 De 9.

-0.05 0.4 Freq. - tO.O0 cps 6 8' 1'o 12' 8 l o 12 u - 0.095 0¢

Vet, - 330.5 £p8

0.8 Mn - 0,289 O.lO

Re- ].9790Mt0"

d 0.6 C.3E O, 05

0.4 0.00 I'o G

(b) v =0.10

Figure 73, Continued.

320 0.6- y/Y - 0.966 O. tO- O. lO-

C__ 0.4 J 0.05 - coE 0.05

0.2 l i I i f 0.00 tl2 O. O0 ; 6 0 I0 8 I0 [2 6 8i 10w 112 o (_ ot

0.6- 0.[0 0,05 - y/Y - 0.986

0.4 0.05 C.._E O. O0 -

jJ J J 0.2 r n 0.00 -0.05 I 1o 12 6 12 o_

0.20 - 0.00 -

0.15- -0.05 -

J d o610.4 o990.10- -0. tO - 0.2 i 0.05 -0.15 6 8 I_0 l J2

(b) v = O.I0. Concluded

Figure 73. Continued.

321 [.2- y/Y - 0.250

0.05 - 1.0

d i _ j_

cj e 0.00 0.8 j/ J -0.05 0.6- ! I'0 I'2 B l'o i12

C_

|.2- y/Y - 0.475

O. 05 - |.0-

f_J 0.10]

(-3_ O. O0 0.8- " J o.o5 / o.00] .> -0.05 0.6 ; ,'o h 6 i_2 lrO lW2 Oc o{ c(

0.05 - 0.8"

OataPotntID: RTPOTN.R0389 (.3_ 0.0 0 • d 0.6-

- 8.93± 2.11 De 9.

-0.05 0.4" _, _'o _'_ Freq. - 14.06 cps 6 i'o i'2 (_ u - 0.134

VeL. - 330.5 rps

Nn - 0.269 O.]O

Re - 1.9760_i0'

e 0.05

O. O0 0.4 I'(3 I'2 I'0 I'2

c_

(C)v=0.14

Figure73. Continued.

322 0.6- _/f - 0.966 O. IO-

_J 0.4- c.3 e 0.05 -

0.2, i i i ) 8 IO 1_2 O, O0 6 lj2 O.O0 I 8 LO 12 o_

0.6 O.IO 9/T - 0,986 0,05

£jJ 0.t 0.05 - O.O0

0.2 ) r -0,05 6 ll2 O.O0 • 1 12

c_

0,20 - 0.00 -

0,6- 9/T - 0.995 O.15- -0.05

J J

0,4- O,IO- -0. IO-

0.2 i 0.05 -0.15 • a i'o t)2 6 if{] 112 L_3 It2

Ot

(c) v = O. 14. Concluded

Figure 73. Continued.

323 [.2- j/y - 0.25o

0.05 |.0

d

Cj E 0.00 0.8 J -0.05 110 ii2 0.6

9/y = 0.475

0.05 - t.O

0.05 1 - - - ()

/ C_) O. O0 - 0.8 j J °'°°1 f- 112 i ]12 0.051 8 8, I'0 _2 -0.05 8 i'o 0.6 6 B' I'0

o

0.05 0.8

OataPotntID: RTPOTN.R0390 0.00 _' 0.6

a - 8.921 2.24 Oe 9.

-0.05 t 110 112 0.4 Freq. - 20.05 cps 6 8

cI - 0.19[

Vet. - 330.6 £ps 0.0 - ylY - 0.900 Mn = 0.289 Re - 1.9750_10' 0.10- O.G-

J

0.05 0.4

0.00 llO 112 0.2 o(

(d) v =0.20 Figure 73. Continued.

324 0.6 .y/Y - U o966

0'10-1 0.10

co _ 0.4 °°51 j 005 0.2 0.00 I , i 0.00 112 6 8 I 0 112 I'O I12

0.6 - ylY - 0.986 0.10 0.05 -

r_ _ 0.4 r_ _ 0.05 -

__._.._._._.__ r_jE 0.00

0.2 O. 00 i -0.05 12 6 8 lO ll2 I

0 0¢

0.20 O. O0 -

0.6 _/Y - O. 995 0.15-

J £.Jt

0. I0- d O.4 -0. lO - " -0,05 -

0.2 0.05 6 _' i'o 1'o L'2 -o._5 o o (d) v = 0.20. Concluded

Figure 73. Concluded.

325 0,I0- [.2- y/T = 0.250

cj E 0.05 L_J I.0

/ 0.00 - 0.8 114 8

0.10 - --7

( )E ( ) 1.0 / -0.051 1'o :2 /4 I'0 I'2 1_4 8 O. 8 B 1'0 1_2 c_

|.0 y/T - 0.800

o°B-

DataPotntID: RTPOTN.R0392 U 0"I01

0.6 - 11.00± 1.99 De 9.

Freq. - 4.00 cps r.._E 0.05]

0.00/ l "l - 0.038 1,0 If2 14 0.4 i'o I_ 14 @

(_ Vet. - 330.9 fps

Mn - 0,289

Re - 1,9800 *t0B 0.I0 ylf - 0.900

J 0.05 d 0.810.6 0.00 3 0.4 1'o 1'_ 74 @ ]l0 112 14 8 C_

(a) v =0.04 Figure 74. 3-D round tip pitch oscillation data; no BL-trip; _ = 11 +_2 deg.

326 0.6- 0. I0- O. IO-

(jJ 0.4 O.OS - c3 e 0.05-

0.2 i 0.00 0,00 @ 10 12 1'4 1; ]'2 I14 8

0,6 y/Y - 0.986 o.to- 0.05 -

r_3J O. t J o.o_ J r_3_ O. O0 - /

0.2 0.00 -0.05 _ v l_J lr2 t4 8 lO If2 t'4 I0 [12 14

0.0 - ylT = 0,995 o.zs

0.6 -0.05 - d 0.20 - ,.,..

0.4- 0.15 r.__E -0. ! 0 -

0.2 u 0.10 -0.15 , 8 16 I_ ?4 ,6 l'_

o_

(a) v = O.04. Concluded

Figure 74. Continued.

327 0.10 1.2- y/Y - 0.250

(..3E 0.05 U l.O / / O. O0 - O.B --] i'o i'2 114 1'0 112 14 o( Or

0.05 - 1.2

y/¥ - 0.475 o.lo]

cj" 0.00 U 1.0 J o.os / oooi

0.8 110 12 114 1'0 I'2 I'4 8 i'0 i'2

|.0-

O. lO- 0.8 J OataPotntIO: RTPOTN.R0446

rj e O. 05 - O.G - - 10.97_ 1.99 Be 9.

Freq. - {.00 cps

u - 0.038 0.00 048 1'o 1'2 1'4 l'o ,'2 ]'4 (x VeL. - 329.9 £ps

Mn - 0.287

Re - 1.9500_10' 0.I0 - 0.0-

rj e 0.05 - 0.6-

0.00 0.4 1'0 ,'_ 1'4 @ o_

(a. 1) v = 0.04; repeat

Figure 74. Continued.

328 0.6 0.10- 0. I0-

0.4 ¸ E c_ _ 0.05 0.05 -

0.2 , t 0.00 10 1'2 114 8 0.00 [_4 10 It2

y/T - 0.986 0,I0 0. I0-

_-' O. 4 J 0.05 J / c_ E O. 05 1/

0,2 i i 0,00 8 ['4 0.00 I_ 12 14 8 1_0 I_2 It4

0.0 0,25 -

0.6 0.20 -0.05 -

d J

0.4 O. t5 J -0. tO

0,2 0.10 ,'_ ,'_ 1'4 -0.15 i 8 I0 i12 114 o_

(a. 1) v = O.04; repeat. Concluded

Figure 74. Continued.

329 0.10 - 1.2 y/Y = 0.250

0.05 - U 1.0

./ 0.0- 8 I'0 ]'2 I_4

0.10- 0.05 1.2 91Y - 0.475

_ 0.00 [.0 J 0.05 -

/- -0.05 i 0.8 0.00 I'0 12 1_4 I'4 i'0 i_ 14

[.0-

O.lO- 0.8-

J DatoPoLntlD: RTPOTN.R0393

o _ 0.05 0.6- o - 10.99± 2.04 De 9.

Freq. - tO.O1 cps

0.00 u - 0.095 1'0 1'2 1'4 0.4 0 1'0 ]_2 I_4 c_ VeL. - 33].2 £ps

Mn - 0.290

Re - 1.9760"t06 0.I0- 0.8" 9/Y - 0.9O0

O.05 - 0.6-

0.00 0.4 0 I'0 I)2 114 8 1'0 12 1'4 Oc

(b) v =0.10

Figure 74. Continued.

330 0.6- 0.10- 0.I0-

.y/Y -

0.4- c3_ 0.05 - e c__ 0,05 -

0.2- I 0.00 I0 112 [1t 0.00 i i r I0 12 14 10 I'2

0.6 3/Y = 0.906 0.05 -

d 0.'I. c3 e 0.00 -

0.2 r -0.05 ]0 12 _4 O. O0 I0 12 I)4 8 I)0 i_2 [_I c_ G( Oc

0,8- ylT = 0.995 0.25 -

0.6 0.20

d o / /

0.1 0,15 -0,05 c._ _ -0. lO- f 0.2 1 0.I0 8 /o ,'_ , o 15 oc o_

(b) v = O.10. Concluded

Figure 74. Continued.

331 O. lO- L.2- y/Y - 0.250

E J to Y ca o,o5 -

0.81 0.00 l lO I_2

I..2 0.05 y/Y - 0.475

f_ _e 0.00 [_ 1.0 i :i]

O.B O.OO# -0.05 I'0 I'2 I'4 8 I; 12 1'4 lb 1_ i+

1.0-

O.lO - 0.0-

d DotoPoLntID: RTPOTN.R0447

E O. 05 - 0.{_- a - 10.96± 2.04 De 9. (J

Freq. - 9.99 cps

O. O0 0.4 v - 0.095 8 I'2 1'4 8 I'0 12 I'4 1'0

Vet. - 330.9 fps

Mn - 0.288

Re - 1.9510_t0' 0,8- 0.10- y/Y - 0.900

U 0.8- c3 E O, 05 -

0.4 O.OO 8 ImO 112 I14 8 1TO 112 I'4

oc

(b. 1) v = O. 10; repeat

Figure 74. Continued.

332 y/T - 0.966 O.tO-

0'I0 I

_J o._ 0.05

c_ _ 0.05 1 0,2 i 0.00 o.00 / tl4 8 I'{3 t'2 1.14 Oi

0.6 y/T - 0.986 o.to- 0.10

0._} • c.3E O. 05 - _= o.os

0.2 ' w 0.00 = 0.00 14 ,_ I_ ,'4 o

0,8 y/T - U.995 o.2s

0.6 -0.05 d ////_ J 0.20.

0.4 0.15- ¢_3_ -0. !O.

0.2 O. lO -0. t5 I'0 12 L4 e I'o 1'2 ,'4 i'o ,_

(b. 1) v = O.10; repeat. Concluded

Figure 74. Continued.

333 0.10" t.2 y/¥ - 0.250

E 0.05 • c_ J [.0

J 0.00 i 0.8 ]l0 112 1_4 o¢ C_

0.05

rj e 0.00 - d

1'0 1'2 114

_.0-

O.lO - 0,8- OotoPotnt ID: RTPOTN.R0394 d

J 0.05 0.6 - 10.98± 2.10 Oe 9.

Fneq, - [4.02 cps

0.00 0.4 - 0.]33 ,'o ,'_ ,'4 1'o /2 1'4 ot Vet. - 331.5 fps

Mn = 0.290

Re- 1.9730"10 s 0.I0- 0,8- y/T - 0.900

r.j 0.05 - j 0.6-

O. O0 0.4 ,6 ,'2 ,'4 /o ,'2 I',

(c) v=0.14

Figure 74. Continued.

334 0.6- O. IO- 0.10-

c__ 0.4 J 0.05 0.05 -

0.2 0.00 l 1; 12 I't 10 12 114 O. O0 1'o t2

o_

0.6 - y/Y - 0.986 o.lo- 0.10-

co_ 0. t J o.os E O. 05

0.2 l 0.00 ID 112 14 114 O, O0 l 14

0.8- ylT - 0.995 0.25-

0,6 .¸ 0.20 -0.05 - d J

0.4 0.15- c.nE -0.10

0.2 ¸ i i 1 0.10 r -0.15 10 12 14

c_

(c) v = O.14. Concluded

Figure 74. Continued.

335 0.10 1.2 y/T - 0.250

J 0.05 rj J 1.0

0.00 0.8 "t 1'4 8 llO 112 8 1i0 1i2 14 C_

0.10- 0.05 1,2- y/Y - 0.475

(2 0.05 c_ E 0.00 d 1.0 -

/- _ _ s_ _r_

J 0.00 0.8 I_0 12 1'4 I'O I'2 I_4 0 1_0 1'2

c_

|.0- ylT - 0.800

0.8 OotoPotntlD: RTPOTN.R0448 U f 0"10 1

0,0 o - 10.95± 2.11 Oeg.

Freq. - 13.99 cps J °.°s-I

0.00/ 0,4 v - 0.133 ,'o ,'2 I'4 /o i'2 l', 8 o o VeL. - 330.5 £ps

Mn - 0.288

Re - 1.9470"I0' O. lO- 0,8- ..4/T - 0.900

0.05 U O.B-

0.00 i 0,4 1_0 112 14 110 12 114 C_ o

(c. 1) v = O. 14; repeat

Figure 74. Continued.

336 Q. 6 - O. tO 0, I0-

d 0.4 J 0.05 • 0.05

0.2 0,00 0,00 8 I'O ,'2 t4i 1_ 1_ 1'4 8 1_ l_ 1'4 c_

0.5 _IY - 0,986 O. LO- 0,I0

d 0.4 0.05 - E J rj O. 05

0,2 0.00 0.00 10 i2 114 ,_ _ ,4

0.8- y/T = 0.995 0.25 -

0.6 0.20

d J

0,4 O. t5- J -o.1o-

/_ -0.05 -1 I.

0.2 i 0.10 ) -0.15 / 8 IO I'2 114 I)0 II2 14 8 l_4 ol 0 O_

(c. 1) v = O.14; repeat. Concluded

Figure 74. Continued.

337 0.10- 1.2- y/y = 0.250

c3 E 0.05 d 1.0 /

0.00 I O.B ,'0 ,'_ 14

o_

0.10- 0.05 - 1.2 _/Y - 0.475

r_j e 0.00- C.J' I .U 0.05 -

0.0 _4 O. O0 110 iI2

@

1.0"

0.I0 O.O- OotoPoLntID: RTPOTN.R0395 d

0.6- o_ - 10.954- 2.23 De9. 0.05

Freq. - 20.08 cps

0.00 0.4 I _, - 0.190 8 1o 1'2 14

c_ VeL. - 332. I £p_

Mn - 0.290

Re- 1.9740Mt0 B 0.I0 - O.B Jl" - 0.900

c3 E O. 05 - 0,6

O. O0 0,4 i 110 ]_2 I]4 /0 /2 14

c_

(d) v = 0.20

Figure 74. Continued.

338 0.6- 0. t0 0.10-

d 0.4 C__ 0.05. c3 E 0.05

0.2 0.00 tr4 0.00 I 14 8 1 _O 1_2 t"]

oq

0.6 0.10- y/Y - 0.986 0.10

0.4- 0.05 _,E O, 05 -

0.2

1_4 0.00 I'4 0,00 110 12 114

c_

0._- y/Y = 0.995 0.25 -

0,6 0.20 -0.05 "+2+

J ..//

c_3e -O. lO 1 _ 0.4 0.15 -+

0.2 0,10 8 -o.t5 / i'4 8 1'o 112 114 ot

(d) v = 0.20. Concluded

Figure 74. Concluded.

339 ylT-

J 0.05 1.0

0"I0 1

u.ool 0.8 I0 1'2 1_4 1_6 I'2 I'4 116 I0 o

1.4- y/Y - 0.475

|.2-

d [.0 , 1

-0.05 d 0.8 o.oo/ 1_2 i_4 i16 116 I0 _6 _o

o(

1.2- JY - 0.800

0.10 [.0 ¸ OotoPotnt[O: RTPOTN.R0397 d

o _ 0.05 0.8 - 12.97± 2.00 De9,

Freq. - 3.99 cps

u = 0.038 0.00 I0 112 l'_ 1=6 0.6 !0 1=2 114 l_fi @ O Vet. - 329.7 fpe

Mn - 0.288

|.0- y/Y - 0.900 Re - 1.9630"I0 B

0.8

0 J

r_DE O. 05 0.6

0"I0 1

o.ooq 10 I'2 i'4 I'6 O. 4 I0 1'2 1'4 1_6 ot c_

(a) v = O.04

Figure 75. 3-D round tip pitch oscillation data; no BL-trip; _ = 13 +_2 deg.

34O 0.8- H/Y - 0.966 O. IO- 0. I0-

0.05 0.05 -

0.4- --- o.00 0.00 I0 14 16 I0 ['6 10 i'6

0.6- y/T - 0.986

0'i01 0"05 1

c_ 0.4 -

c_ _ O. O0 ] J °'°s1 / o.oo / -0.05 t I in6 lO 12 114 16 10 ,'2 i'4 16

o_

1.0- 0,30 -0. tO - y/T - 0.995

/

ii 0.8- 0.25 -0.15 -

J J J

0.6- 0.20- -0.20 -

0.4 0.15 I -0.25 I0 1'2 114 116 10 ]12 14 1_8

o_ oc

(a) v = 0.04. Concluded

Figure 75. Continued.

341 0.10- |.29

0.05 • 1.0-

O. O0 t 0 1'2 1;4 1'6 0,8 ]lB I0 ]_2 114 o

[.4- y/T - 0.475

1.2-

J

r_.] 0.05 |.0- J o os ,_ 0"t0 t 0"101

0.001 0.8 12 1'4 16 1'6 o.ooi10 1'2 1'4 1'6 10 l 0 1'2 ]'4 O_ o

_/Y - 0.800

1.O- OotoPotntID: RTPOTN.R0398 d

0.8 - 12.96_ 2.05 De 9.

Freq. - [0.0] cps

u - 0.095 o.ooi 0.6 i I0 1'2 1'4 116 I 0 12 I'4 1_6 Vot. - 330.2 fps

Mn - 0.288

[.0- yll - 0.900 Re - ].9600_I0'

0.I0 - 0.8-

c<

cne 0.05 O.G

0.00 i 12 I'4 I0 0.4 I0 _2 114 16 0 C_

(b) v =0.10

Figure 75. Continued.

342 0. I0 0.10-

d 0.6 c__ 0.05 o [ 0,05 O'e1 3/T - 0.96

0.4 0,00 , 1'6 0.00 10 12 114 t16 10 112 i)4 10 I)2 1)4 1_6

c. o( o¢

0.6 ,.4/¥ - 0.986 o.lo- 0.05

_.-_/ o_ 0.05- d 0.4 0.00

0.2 0.00 -0.05 tO I'2 1'4 1'6 lo 1_ 1'4 lib I0 112 i)4 116

o_

1,0- _/T = 0.995 o.zo- -0, tO -

0.0- -0.1.5 -

J J 0.25

0,6 0,20 - > -0,20

0.4 ¸ 0.15 -0.25 10 12 I'4 1;6 10 ?_ 74 ?e 10 i'2 1'4 ?o O(

(b) v = O.10. Concluded

Figure 75. Continued.

343 0. I0 1.2

J 0.05 d _ l. 0

i_6 0o00 10 1'2 I_4 O.B ;6 o_ c_

1.4 ,.qlY- 0.475

/--)

1.2 # / d

1.0-

o.oo/ 0.0- I_6 10 I0 I'2 I'_

1.2 _I/Y - 0.800

t.8 BotoPoLnt[O: RTPOTN.R0399 0.I0] (]

0.8- f / - 12.95± 2.10 Deg.

Freq. - 14.06 cps c _E 0"05 1

0.00| u - 0.133 I'2 IT4 i_6 10 0.6 I 0 112 If4 Oc O_ Vet. - 331.7 £ps

Hn - 0.289

1.0-- Re - ].9640_t06

0.10 0.8

d

0.05 0.6

0.00 lO I12 ll_ lq6 0.4 10 II2 1'4 1_6 C¢ Oi

(c) v=0.14

Figure 75 Continued.

344 O. lO-

0.6 d O. 05 otJYo960"10 I 0.4 0.00 | j 0.00 lU6 10 ll2 1u4 16 10 ,'_ l'_ ,'6 c_ Oi c_

0,6- 9/Y - 0.986 0.05 -

rj J 0.4 F3 e 0.00

0.2 -- 7- .... 0.00- -0.05 10 12 1'4 ?6 I0 12 14 ['6 10 12 14 16

1.0 0.30 -0, 10 -

x_

0.8 0.25 -0.15 d J ? C_jE

/z 0.6 0.20 -0,20 I/

0.4 O. t5 -0.25 I0 '2 14 1'6 tO 12 1'4 1'6 ] O

(c) v = O.14. Concluded

Figure 75. Continued.

345 [.4 _/Y - 0.250

O.lO- 1.2 z / d

1.0- cj _ 0.05 -

0.00 I0 12 I'4 I'6 0.8 lO 1'2 1T4 116

c_

1.4 ylY - 0.475

1.2

0.I0] 0.10]

_2 o-o51

0.8 0.00| 0.0o/ I0 |12 1'4 1_6 I0 ]'_ _Fd I }; lO ]I 2 }l 4

OI OI

1.2 y/Y - 0.600

O.lO-

OotoPotntID: RTPOTN.RO400 d

cj_ 0.05 - 0.8- o - 12.93_ 2.23 Oeg.

Freq. - 20.10 cp8

0.6 - 0.190 0.00 ]I2 116 1'2 ]14 /6 10 ]1 10 Vet. - 332.4 rps

Mn - 0.290 1.0- B/Y - 0.900 Re - 1.9650"t0 _

0.]0- 0.8-

d

E 0.05- 0.6-

0.4 I 0.00 li2 10 112 I'I 16 I0 1)4 116

O(

(d) v =0.20

Figure 75. Continued.

346 0,8 0.10- y/Y - O, 966 0. I0

c j > 0.5 J 0.05 - C3 E 0,05. Jt /

0,4 I 0.00 ).6 10 I t6 (3( O(

0.6- .y/f - 0,986 0.10- 0.05

U 0.4- 0,05 (.._" 0.00 -

8.2 10 ll6 0,00 10 1_ 2'4 ).'6 -o.o5.1o i'2 1'4 1'8

O( o(

0.35

O. 30 "

1,0- y/T = 0.995 0.25 - J

-0.29 - 0.9- 0.29 - 7 -0.15 - d J 0,6 0.15_ -0,20

0.'1 I0 2'_ :4

c_

(d) v = 0.20. Concluded

Figure 75. Concluded.

347 1.2 0.05 -

d 1.0 0.00

U.8 --0.05 12 1'_ 16 18 12 ll_ 116 O_

1.4 y/Y = 0.475 0.15

1.2 J <_ 0. lo

1,0- 0.05

0.8 -o.o5/ I'4 I'6 12 ?4 1; ?0 ooo 12

91Y- o.8oo °1°1 I d t.o

_(_..,_ DoLoPoLnLID:a- 15,03+ RTPOTN.R04022.00 Oe9, rS o.051

0.8 12 1'4 lib l'B Froq, - 4.02 cp8 o.oo/ 12

c, u - 0,038

VeL. - 332.2 £ps

1.2 - y/Y = 0.900 Mn- 0.290

Re- 1.9670_t0'

I.O O. IO

cJ"

0.0- (_ 0.05

0.6 12 ,'8

(a)v = O.04 Figure 76. 3-D round tip pitch oscillation data; no BL-trip; a = 15_+2 deg.

348 0.8 y/Y - O, 966 0.10 -

d J / E 0.05 - O'G I

0.4 i 0.05 ! 0.00 12 14 16 lJ8 12 l_B 12

Ct O_

0.8- _/Y - 0.986 0.15 0.05 -

d 0,6- 0.10 C_3E 0. O0 -

0.t i 0.05 I2 14 16 lib 12 14 IB t_O -0.05 12 ,'_ ,'6 ,'0 C_ (3( c_

0.40 -0.10

1,2- y/Y = 0.995 0.35 -0, 15 fe

1.0 J o.3n - C3 e -0.20 d J 0.0- 0.25 - /' -0.25 -

0.6 12 I_ ,'6

Ol

(a) v = 0.04. Concluded

Figure 76. Continued,

349 9/T - 0.250

O.05 - 1.2

; ,_s"t.o 0.00

(jE \ II \ -0.05 0.8

-0.]0 12 ]4 1'6 ]B

1.4- 0.15- _/Y - 0.475 t I

0. I0- 1.2- /]1/ J J I f

[.0- / 0.05 - ( / i L I _Z

O. O0 -o.o5! O.B t 1'B 12 1"I I'6 ]'0 !2 1'4 1'6 1B 12 1'4 1'0 O_

0.10- 1.2 _IY - 0.800

OotoPoLnt[O: RTPOTN.R0403 r_ E O. 05 - d 1.0 r f

o - 15.03& 2.04 De 9.

0.8 D.OD Freq. = lO.Ol cps 12 ]w4 1'6 1'o ol - 0.095

1.2- VeL. - 332.4 £ps _/Y - 0.900 Mn - 0.290

Re - ].9630_t0" 0.I0 1.0-

(.3

0.8 J / I 0.05

0.00 0,6 I 12 114 ]16 18 12 ]14 ]16 lB ol

(b)v =0.10 Figure 76. Continued.

350 0"151 0.101 d O.G J

oI o _ o.os 1

0.1 0.00 l 12 I'_ _ _ 12 1'4 16 118 12 118

O_

y/¥ - O. 986 0.15- 0.05 -

0.6 d J 0.I0 f_3 I_ O. O0 -

0.4 0.05 -0.05 114 116 110 12 12 1'4 1'_ t'o 12 1_ 16 1'8

Q ot

0.40 - -0. I0 -

z

1.2- y/T = O. 995 0.35 -0.15

l/f \\

l.O- 3 0.30 o e -0.20 - ii/I J / /

0.8- 0.25- -0.25 / 0.6 0.20 -0.30 12 12 1)4 16 I.'8 12 14 I16 1'8

o(

(b) v = O.10. Concluded

Figure 76. Continued.

351 [.4 y/Y - 0.250

0.05 - 1.2

//

/ / O.O0- \ \ \ / \ / J / / " I J 0.@- -0.05 -

-0.10 0.6 12 I14 I'6 lJ8 12 1'4 1'6 18 c_

0.15- _/Y - O.475

0.10- 1.2- f _, ,,- d J / / 0.05 ] I.O 0.05

J o.oo]

O. O0 O.O 12 I'4 I'0 I18 12 ,'_ ,'6 i_8 -o.05l 12

t,2 y/I = 0.800

DotoPoLntID: RTPOTN.R0404 d t.O

- 15.02_ 2.09 De9. o.o0 / Freq. - ]4.04 cp8 o.o,2 ;4 ,'6 ,'8 12 ,'4 ,'6 6

O_ = 0.133 01

VeL. - 332.4 fps |.2- y/Y - 0.900 Nn - 0.290

Re - 1.9600.10" 0.I0_ [.0 -

d

0.05 0,8- C.j E

0.6 0.00 ,2 ,'4 ,6t 1',, 12 I'4 1_6 I;

(C) v=0.14

Figure 76. Continued.

352 0.8 - 0.I0- y/T = 0.9_.._. o.15

0.6. S_" J o._o ca _ 0.05 -

) 0.00 I0 12 o[ ol C_

0.05 1

j o.6 _ _ o.to °tJY°/f- o5 t J °'°°1 0.1 r 0,05-# 12 I'4 16 _8 12 1,8 -0.05 f2|

0.40 -

# 0.35 - -0. IO - /--'

711

1.2- _/T - 0.995 0.30- -0. t5 J

1.0 0.25 - r_be -0.20 d \1 k x

0._- 0.20 - -0.25 -

°'_12 :_ 1'o 18' °'_12 ,'_ 1'6 ) -0.30 18 12 1', ,'6 t'.

(c) v = O. 14. Concluded

Figure 76. Continued.

353 1.4 y/Y - 0.250

1.2 O.OS /I

iII

0.00 d |.0 11 l/ I \

\ I I

-0.05- 0.@-

0,6 -0.10 12 1'4 ll6 118

@ O_

|.4-

1.2- 0.15" 0.05-

d

I.O- 0.I.- C_)E 0.09- \ 11 \ .../

0.8 0.05 -0.05 12 A 1'6 1', 12 l'_ 1'. _'.

01 Oi

0.10-

OatoPoLnt ID: RTPOTN,R0405 0.0S 1.0-

- 15.00+ 2.23 Oe 9.

0.00 °'0-12 l'_ l_ i'. Freq. - 20.13 cp9 i2 i'_ :'6 l'. v - 0.190

t.2 VeL. - 332.2 rps BIT - 0.900 Mn - 0.289

Re - 1.9560.10' O.lO- 1.0

d

0.0 r_ E 0.05-

0.00 0.6,2 i'_ ,'6 1'. 12 1'4 I;

O,

(d)v=0.20

Figure76. Continued.

354 0,8 0.15- 0,10-

0.6- 0. I0- 0.05 -

i 0.05 0.4 12 114 16 l_ 0.00 12 I 18

o'o51 oLs Ii.,1c3 e O. O0 1 d 0.40.60'8t "Y/Y0.98- J °'I°1 ! i 0.05 ! I 12 /4 16 lib 12 I14 16 118 -0.05 12| 14 16 /8

0.40

t

0.35 - -0.10

//1

1.2- _/¥ - 0.995 O. 30 - -0.15 J

1.0- O. 25 c.)E -0.20 - J

0.8 4 0.20 -0.25

0.6- 12 1'4 1_ ?8 0.15 12 1'_ 1'6 ,'8 -0.30 12 ,'4 I'6 ?8 c¢ c¢

(d) v = 0.20. Concluded

Figure76. Concluded.

355 1.2 0°_ -

d 1.0 f_2_ 0.00 -

0.8 i -0.05 i

c_

1.2- O. 20 - _/Y - 0.475

1.0 0.15 0.00 - i Il/ d / _ 0.I0 - / -0.05 -

0.6 0.05 -O.lO 14 I; I; 20 14 o(

[.2- 0.]0- 9/f - 0.800

OataPoLntIO: RTPOTN.R0407 d 1.0- J 0.05-

- 17.05± 1.99 De9.

Freq. - 4,00 cps 0.00 o._,4 l; 1; 2'0 14 I; I; 2'0 u - 0.038 o¢

VeL. - 331.2 £ps

Hn - 0.289 _I/Y " 0.900 Re - 1.95?0_10'

O.lO]

d 0.8-

°l J o.os] 0.6 i 0.00 1 14 1; 1; 20 14 16 I 20 (_

(a) v = O.04

Figure 77. 3-D round tip pitch oscillation data; no BL-trip; a = 17_+ 2 deg.

356 1.0 u/f - 0.966

0.8 0.15- 0.10

d

0.6 0.I0- 0.05

0,4 i 14 '0 0.00 14 i'_ i'_ 2'o 0o514 I_6 18 2'O

o

0.20 -

0,@- _/T - 0.986 o.15- 0.05 - J

0.10 j- _ 0,6- 0.00 -

O. 4 ,_' i_ 18_ 2oI 0.05 J_ ,'6 18_ _o -0.05 14 i_ I_ 2o

1.2 y/T - 0.995 o,to- -0. t5 -

1.0 ¸ 0.35 /_ 4\. ,.! -0,20 -

d J

/ ] 0._ _ O. 30 -0.25

0.6 I 0.25 , -0.30 14 It6 lmB 20 14 1@ 118 2'0 14 lfi 1 20

(a) v = O.04. Concluded

Figure 77. Continued.

357 0.05 -

0.00

d J

\ / -0.05 0.8- _ i _

o.,o ,_ _'6 _'B _'o O. 25

0.05 - 0.20 L2 y/y = 0.475

0.00 - 1.0 J 0.15 ,./1

J E

- 0._ 0.10 -0.05

0.6 I 0.05 i -0. I0 ,_ ,'6 ,'B 20 14 I'6 ]'8 20 ,4 ,; ,; 2'o

1.2- 0.10 91Y - 0.000

OotoPoLntID= RTPOTN.R0408 d l.O- 0.05

o - 17.05± 2.03 De 9.

O.B l 0.00 Freq. - tO.04 cps 14 116 IB 20 u - 0.095

VeL. - 331.8 £ps 1.2 ylY - 0.900 Mn - 0.289

Re - 1.9540xi0'

1.0 0.10-

0.0- L) e 0.05 -

0.00 o6,_ i_ ,_ 2_ 14 ]'6 l 'B 2'0 o_

(b)v =0.10

Figure 77. Continued.

358 ]°0- y/Y - O. g66

0.8 0.15_ 0.05 J

0.6' 0. I0" E C._ 0.00

0.1 i 14 J_ 1_ 2'0 0.0514 1_6 18 2'0 -0.05 14 l_ 1_ 2'o

O, 20 --

0.8 9/Y - 0.986 o. ls- J Sf///

0.6 ¸ 0.I0-

O. t I O. 05 -0.05 - I 14 1; 1; 20 14 1; 18 2_0 14 I_6 18 _o 0

1.2 _/Y - 0.995 o._o- -0.15

1.0 ¸ O. 35 - -0.20

d J C._ _

0._- 0.30 - // -0.25-

0.6 1! 2'0 -°'_°_4 I_ L_ 2'o

(b) v = O. 10. Concluded

Figure 77. Continued.

359 1.2 0.05

1.0 0.00

d

O.B -0.05 -

-O.lO

°'6h.... 1% l'e 10 O. 25 - 14 ;_ ?8 _o

c_

l

0.20- / 0.05 - 1.2 y/Y = 0.475 /f /

1.0 r__ O. 15 - 0.00-

0.0 0.10 0.05

°'_14 16 ,'8 2'o oo_14 ;6 1'8 _o 0.10 ,4 ,; I_ 2'0

c, c_

1.2 0.10

OotoPoLnt 10" RTPOTN.R0409 d 1.0 r_3e 0.05

- 17.04± 2.09 De 9.

O.B 0.00 Freq. - 14.04 cps

u - 0.133 C,

VeL. - 331.8 Fps 1.2 y/Y - 0.900 Mn - 0.289

Re - t.9520.t0 _

1.0 U j<¢> 0.8-

0.6 0.00 ,4 i; i_ 2o

(c) v=0.14

Figure77. Continued.

36O 1.0

0.8- 0.15 0.05 - d #//

O._i- 0.10. t..._)E O. O0

0.4 -0.05 14 20 O.05 I 14 14 c_

0.20 -

// ylT - o. 986 O..tS- J / ,,,/// 0"05 1 d 0,6 oot 0.10- J c3E 0.00 1 0.4 0,05 i ]4 t4 16 If8 2'0 -o.os I 14 o_

0.45 -

1.2 _/Y - 0.995 0.40 - -0.15 - x J

1.0- J 0.35 -0.20 - U z / CbE

0.8 0.30 IiI -0.25 -

0.6 0.25 - -0.30 14 ]'6 If8 2'0 14

(c) v = O.14. Concluded

Figure 77. Continued.

361 1.4- y/Y - 0.250

O. 05 1.2-

/t

0.00 U 1.0

_3 E I I i 0.05 • 0.8 / 1 0.30 - p i

-0.10 0.25 _0 °'_,, A ,'_ Jo 14

// 0.20 0.00 1,2 y/Y - 0.475 I It / ,'/ -0.05 I.o 0.15 -

c3' C_ F

-0.10 0.8- 0.10 -

-0.15 'i 0.05 0.5 14 IT6 It8 2O 14 I'8 I'8 2)0 14

@

0.10- t.2

Y/¥ =_ OotaPotntID: RTPOTN.R04IO C_ _ 0.05 - r__ _ t. 0 /

- 17.02_ 2.21 De 9.

0.00 o.8i i Freq. - 20.13 cps 2'0 1, I, 16 I'B - 0,]91

VeL. - 331.6 Fps t.2- y/Y - O.gO0 Mn - 0.289

Re - 1.9500.t¢ 1.0-

J

-/ I F r_jE 0.05 0.8- o.1o]

0.6 o.oo I 14 I, I_6 I )8 2_0 cl

(d) v =0.20

Figure 77. Continued.

362 l.O- y/¥ - O. 966

O.B- 0.05

d O't5 I

0.6 0 e O. O0

J °"1° 1

0.1 14 7o o.o5 14-_ _0 -0.05 14

C_

0.20-

/f

y/Y - 0.986 o.15.- ///

• 0"05 1 d o.0 __---'--'"_<< _ o.,o-

c3 0.00 1

0.4 -o.o5 ! 14 ]4 16 lfl 2'o _4

ol

0.45 -

1.2 y/T - 0.995 o.40- -0. [5 jl

it 1.0 -0.20 d _///_f_ _ J o.35 / Cj E

0.8- -0.25 / 0.30- /17 0.6 I 0.25 -0.30 14 1; lib 20 14 l; ,'B

C_

(d) v = 0.20. Concluded

Figure 77. Concluded.

363 D.6 _ y/Y - 0.250

0.4- z z E 0.2- //z 0.05 0.0

O.OD -0.2 / cj E

-0.05 i i -0.4 -J2 0 2 4 -4 _l2 i I -4 Cc cl

0.6 o 31Y - 0.475

0.4-

0.2- z z _

0,0-

0.05 1 0.05 ] 0.2- o.oo] o.oo] -0.4 i i i i -0.05 / i -o.os ! 6 -4 - 0 2 4 -4 -'2 o 2 4 6 -4 '2 _ _ (3(

0,4-

0.2

OotaPoLntID: RTPOTN.R0412 d o.0 0.05 ]

-0.2 - 0.98{ 4.06 Beg. C3E 0.00 1 _ _'_'_'_--"-" Freq. - 3.97 cps -0.4 -u.ub/ . , , , -4 -2 0 2 4 -4 - 0 2 4 u - 0.038 C_

VeL. - 331,6 £ps

Hn - 0.289 31Y - 0.90O Re - 1.9560wt0 s

0.2

O0 c3 E 0.00 _____ o] 0.05 j -0.2 -0.051 -4 _,2 0_ 2 4 -4 - 0 2 4

(a) v = 0.04

Figure 78. 3-D round tip pitch oscillation data; no BL-trip; c( = 1 +_4 deg.

364 0.4 y/Y - O. 966

0.0 J 0.05] J °'21 .__s _ r_3_ 0.00 1 -0.2 i -o.os t -4 6 -4 -o.o5f -4 -2 0 2 4 c_ o_

_/Y - 0.986 / 0.05] j o.o /J- 0.05] o.t J o.oo1 r_3_ O. O0 1 -0.2 I i -0.05 1 -4 2 i i i i i '-0.05 1 - 0 2 4 6 -4 -_ 6 2 ,, 6 -4 o_ of

9/Y - 0.99S

0.05] j o.o°"I / J cnE O.O01 -0.2 i O.oO I -4 -'2 o' _ 4' 6 -4 _i oI 2i -0.05 f -4 - 2 0i 2i 4i @ (a) v = 0.04. Concluded

Figure 78. Continued.

365 0.6 y/Y - 0.250 0.4 / O.2 -/ d 0.0- 0.05 1

-0.2 Y o.°°1 __

-0.4 -4 0 2 -4

0.6 _/Y - 0.475

0.4

// 0.2 J / 11 0.0 0.05 0.05 ] -0.2 - j o.oo] ...... J 0.001

0.4 -'2 _ _ -o.o51-4 ;2 _ _ _ _ -o.05! @

0.4- ylY - 0.800

0.2-

DotoPoLntID: RTPOTN.R0413 0.0-

-0.2 - - 0.951 4.15 De 9. _ 0.00 ]

Freq. I 9.99 cps -0.4 -0.05 /-4 -'2 0' 2' '_ -4 _2 0i 2i 4i - 0.095 o

VeL. - 331.2 fps

Mn - 0.289

Re - 1.9500_[0' O. 05 0.2 c_ O, 00 0.0 J

.41o.9o -0.05 o _ i O. 2 -4 -'2 0' 2' 4i -4 0 (_

(b) v =0.10

Figure 78. Continued.

366 0.05 J o2]0.0 C__ 0.00oI -0.2 -'2 ' f ' , -0.05 | -4 0 2 4 6 -4 - I 0I 21 4i -4 - 2 0i 2i 4i

ol CK

d 0.0 __ _ ooo C3 E O. 00 o2i3/Y - 0.986 o.osl 0.05 ] -0.2 -4 -'2 _ _ _ _ 0.05-4i -o.os-4t _'2 a _ J,

oc O_ @

0.05

/

CD_ 0.0 0.00 0.00 021,__ O. O5 1 -0.2 j -0.05 1 -0.05 -4 _'_ _ _ ._ _ -., -4 _'2 _ _

o_ 131 ol

(b) v = O.10. Concluded

Figure 78. Continued.

367 0.6 y/Y - 0.250

0.4 i z

/ J 0.2 d

0.0

0.05 ] -0.2 7 r ff O.O01 ¢

-0.4 -o.osl -4 -4

@

0.4

0.2

c_ 0.0 -

..q/'["0._- - 0.05 o.os] _ _ ...... 5.>

-0.2 0.00 J o.oo] _------

0.4 , , T , -0.05 i i i ! , -0.05 1 -'2 ' ' ' -i -_2 0 2 4 6 -4 -2 o 2 i 6 -4 0 2 4

0.4- 91Y - 0.800

O.2-

OotoPoLntID: RTPOTN.R0414 J 0.0-

0.05 1 -0.2 - - 0.94± 4.25 De 9.

Freq. - 14.04 cps -0.4 -0.05 t -'2 u - 0.133 o_

VeL. - 331.0 £ps

Mn - 0.288

Re - 1.9460wi0'

c3 E o.o,]0.00 -o.osm

(c) v=0.14

Figure 78. Continued.

368 d o.o J o.ooOOSI ...... J °_o.ooI -0.2 _. , , -4 a 6 2 _ _ -o.os-4u -'2 o' _. 4, 6, -o.os-4| __ 6 _ ;

ot 0

0.05 ] d o-_]_o.o J o.ooo.o51' oo01

-0.2 r 2 i , , , -0.05 | -4 0 2 4 6 -_ -'2 o' 2' 4' _ -o.os-_! -'2 o' 2' _'

Cz

d o_?_.o.o J oo.ooo_I__ J oo.ooo,]_...._...... -o.2 -'2 ' , , -o.osI -'2 , , -o.os -'2 ' ' '

(c) v = O.14. Concluded

Figure 78. Concluded.

369 0.8- ylT - 0.250

0.6-

x/I 0.4- d i 0.2-

0.05 1

0.0- o.oo]

-0.2 -0.05/ -! -1 I' ½ 5' 7, oc C_

0.8- ylY - 0.475

0.6-

0.4 /.z d

0.2 / O.O5 O.05 1 0.0 J oo°1 j oo°1

-0.2 i I i , -0.05 / , , -0.05 / i l l i -! 9 -I [ ½ 5 7 9 -I I 3 5 7

o_

0.6

0.4-

OotoPoLntID: RTPOTN.R0416 cj _ 0.2- 00s] 0.0- - 3.971 4.02 De 9. J o.oo] Freq. - 3.95 cp8 -0.2 -0.05/ t , , , I I I I I [ 3 5 7 9 -I 1 3 5 7 - 0.037

VoL. - 331.9 fps

Mn - 0.289 0.6- y/Y - 0.900

/ Re - 1.9590*I0' 0.4 _

0.2-

0.0- / 0.05

-0.2 -0.05 / 3i 5i 7i 9i --1 i 3 5 7

o_

(a) v = O.04

Figure 79. 3-D round tip pitch oscil/ation data; no BL-trip; a = 4 +_4 deg

370 0,2 0,05

d 0.05]

0"41 9/Y - 0.96_ ] o.o J o.oo] c_3E 0,00 ]

-0.2 , T f -0.05 | -1 i 3 5 7 ; -1 -o.o5 -]/

u 0.2 S_ °.,t _,_-///o.ooo J °.o,o.ooll _ J o.o,o.oo1l O. 0 // -, I _ _ _ ; -o.o5_,t ] 3' _' 7' 9' -o.o5_,/

or

0.995

J o.,o] o.o_] 0.0 / o.2°'41yI¥ - o1 o.oo1 -0.2 -j { 3 ; 7, 9, 0.00-1| 1 _ s, ; 9, -0.05 -I|

(a) v = 0.04. Concluded

Figure 79. Continued.

371 O.B- _/Y - 0.250

0.6- z/

0.4-

0.2- ./ 0.05 1 f J ,.-..__,. 0.0- _ 0.00]

-0.051 -0.2 -I -!

0.B- ylY - 0.475

0.6"

0.4- z z 0.05 l | 0.05 1 0.2- j o.oo] _° oooI --...... 7 -o.o51 -0.05| , , 0.0 -I

c_

0.6-

0.4-

DataPotntID: RTPOTN.R0417 0.2- 0o,] ...... __ o - 3.96_ 4.]2 De 9. 0.0-

Freq. - I0.00 cps -0.051 0.2 v I l -I _ 5 z 9 - 0.095

Yet. - 332.2 fps

Mn - 0.289

Re - 1.9560MI0'

1 J o.oo] -O.OS/-i l, 3, ;

(b) v =0.10

Figure 79. Continued.

372 0.2 O.OS d o.o5] 0"41 9/T - 0.96 ] o.o j o.oo1 c, E O.OO 1

-0.2 , , , , , -O.OS / , -O.OS | , , -I ] 3 5 7 9 -I 9 -1 1 3 5 7

0.05

d o._ _ J o.oo c.3E O, 00 0-4t _/¥ - 0.986 °.°5 t 0.0 -0.05 -I 9 -1 { _ _'

0.05 ] 0,2

d / J 0.00 1 O, 0 _ J 0.05 0't t _/'_ - 0.99_

-0.2 i i i i i l i f 0.001 , , , , -I l 3 5 7 -I l :3 5 7 1 3 5 7 C_

(b) v = O.10. Concluded

Figure 79. Continued.

373 0.8- y/Y - 0.250

0.6-

d 0.4- / // /

0.2 J

0.0 i y , F I -o.os/ -1 -I

0.0- ylY - 0.475 /

0.6"

0.4- 0.05 1

0.2- 0.05 1 J ooo] ooo1 m 0.0 -0.05! , i_ _ O_ ! , , , | 9 -1 I 3 5 7

cc

O.S- y/Y - 0.800

0.4-

OotoPotnt IO: RTPOTN.R0418 r__ 0.2- o.05] _ _ _ _ ......

0.0 a- 3.94i 4.22 Beg. J o.oo]C__ Freq. - 14.03 cps -0.05 ! -0.2 -I - 0,133

VeL. - 331.9 Fps

Mn - 0.289

0.6- ylT = o.go0 Re- 1.9530"10 B

0.1

(j_ 0.2

0.0 O. 00

0.05 t

-0.05 -0.2 1 i i I i i i -1 I 3 5 7 -I

(C) V=0.14

Figure 79. Continued.

374 0.2 0,05 U

0.4] _/T - 0.96 ] J 0.00 o.o _ J o.oo] °'°5t

-0.2 , , _ -0.05 # v -0.05 | -1 i 3 5 7 9 -] 9 -1 3 5 7 o¢

O.2 _ O.O5 d 1 O. 0 __ 0.05 o.oo]

-0.2 f -0.05 | -0. O5 /

0.2 d

0.0 _ 0"41 _/¥ - 0.99 r_ E O. O0 J 0.05°.'°11 -0.2 °°5t , , , , -0.05 | -] 3 5 7 0.00 | 3 5 -! _ 7 9 -I l 3 5 7

(_

(c) v = O.14. Concluded

Figure 79. Concluded.

375 t.2 y/f - 0.250

1.0

/ o.8-

0.6- J 0.00 / 0.05 ] 0.4 -0.05 / '_ ; i'o ;2 _'4

c_

1.2 ylT - 0.475

I.O

d 0.8 0.05 7 .=__ 0.6- J o.oo1

0.4 0.001 -o.05l ; _ ;o 1'2 4 8 t'O 1_2 I'4 4 Oc c_

I°O- ylT - 0.800

0.8-

DotoPoLnt [0: RTPOTN.R0420 0.6-

0.4- - 8.97± 3.99 De 9.

Freq. - 4.00 cp_ c_3e 0.00 l 0.2 -0.05 4 6, o, L'o 1'2 ,'4 - O. 038

VeL, - 331.5 fp8

fin - 0.289

Re- 1.9570_t0 ' 0.8 ylT - 0.900

d 0"I0 I 0.40.6 /_

0.2 , , 0.00| , 6 8 L'o 1_ 4 6 8 I'0 I'2 1'4

(a) v = 0.04

Figure 80. 3-D round tip pitch oscillation data; no BL-trip; c_= 9 _+4 deg.

376 " l l d 0.4 J o.o5 J o.os

o6!0.2 , , lo0.001 , o0.00_Lo1 I14 4 II0 I12 14 4

0.4 0.10 O.OS _o_06111°98 _oo_1 _ o.ooo1 0.0 , _ 0.00| , _ , -0.05 | 4 S 8 I'(3 12 1'4 4 6 B I_0 l_2 14 4

o

0.25 -

0.8 .9/Y - 0.995 0.20-

0.6. J 0.4 -_ 0,10 O,15- J -o.o51 0,2- 0,05 °°°1 -0'I0 1 0.0 , 0.00 ; ,o ,'2 -0.15 ! o{ c_

(a) v = 0.04. Concluded

Figure80. Continued.

377 1.2 y/Y - 0.250

I.O

cY 0.8

o.6 c_e O. O0 z

0.4 -0,05 , , 114 4 6 8 llO 112 if4

@

t.2 - 0.475

1.0

0.0 0. I0 1 O.05J

0.6 r__ 0.05 1 _ r_3_ O.OO]

0.4 1'4 0.00; 8 8 tO L2 114 -0.05;

O_ C_ o_

1.0-

0.8-

OotaPotntlO: RTPOTN.R0442 0.6- 0.05 j 0.4- o - 8.94± 4.02 Oe9.

c_ e 0.001 Freq. - 4.00 cp_ 0.2 -o, 05 ! _ l'o t'2 ?4 4 - 0.038 oc oq VeL. - 328.6 fps

Mn - 0.287

Re - 1.9490M106

0.6- d _e 0.05 080.4 IYo9o/ O']O t 0.2 0,00 / 4 1'4

(a. 1) v = 0.04; repeat

Figure 80. Continued.

378 Lu4

0.4 0. I0 0.05 d o. I t 0.2 _/ _ 0.05 r_je 0.00 I 0.0 _ ) , 0.00 / -0.05 | 4 6 8 lO |2 In4 4 8 I0 L2 l]'i 4 u u u u 6 6 IO 12 i)4

0.25 -

0,8- ylY - 0.995 0.20

O.8- J d 0.4- 0. t0- 0.15.

0.2- 0.05 -

0.0 0.00 n ) 6 8 l() In4 o_

(a. I) v = O.04; repeat. Concluded

Figure 80. Continued.

379 [._ y/f - 0.250

l.O-

d 0.@- / /

0.6 J o.oo] -0.05| 0.4 4 6 B 1_0 1'2 1'4 8 t=O ]12 ]J4 o{ o¢

|.2- .y/Y - 0.475

[.O-

d O.B- O.lO 1 0.05j 0.6- o.oI oooI o.oo/ - - -o.o5, 0.4 ; ; I'o i'2 ;4 _ _ _ (o ,'2 ;4 4

[.0- y/Y - 0.800

0.8"

OotoPoLntID: RTPOTN.R0421 0.6- 0"101

0.4- o - 8.95± 4.09 De 9.

Freq. - lO.O0 cps , , 0.2 O.O0 | 4 6 8 l'O [2 I'0 I'4 4 8 I'2 u - 0.095 o_

Vet. - 332.1 fpB

Mn - 0.289

Re - 1.9540_t0' -- °

0.6 d 0810.4 o.oo/ 0.2 , , 1'4 _ I'o 1'2 ,'4 4 6 8 10 12 6( o¢

(b) v =0.10

Figure 80. Continued.

380 °.,°1 °.,°1 0.4

0.2o6t oos1_ _,o._1 0.00 1 , _ 0.00 e , i ! 4 6 8 iO 12 1'4 4 6 8 I0 1'2 I'4 4 6 8 IO L2 1'4

0.4 d °"°] °'°_l o0.2 ljog 0.0 f l 0.00| , , , -0.05 ! i I , 1'4 4 6 15 I0 li2 I14 4 6 8 10 112 1'4 Q

0.25 -

0.8- u/T - 0.995 0.20 -

0.6- 0,15 J 0.4- 0.10 -0.05 J 0.2- 0.05 - -0. tO

0.0 0.00 -o.ls/ 14 t'4 4 ; ; _'o I'2 o_

(b) v = O. 10. Concluded

Figure 80. Continued.

381 [.2- _/Y - 0.250

l.O-

d 0.6- // 0.os]__

0.6 .f 7 (_E 0.001 -0.051 , , 0.4 6t ei L; G 4 6 8 liO 112 ou

1.2 - _/_ - 0.475

l.O- >,-"

d 0,0 O. lO 0.05]

0.6 / 0.4 i _ , 0.00/ , , -O.05q , , 114 6 8 liO I12 /4 4 6 8 110 {2 ]'4 4 6 8 I'0 I_2

@ @ @

[.0- g/T - 0.800

0.6-

OotoPoLntlO: RTPOTN.R0443 0.6-

- 8.92± 4.16 De S • (.._" O. O0 0.4 J 0.05 t Freq. - 10.02 cps -0.05| 0.2 8 ; 1'o 1'2 _ _'o t'2 I'4 - 0.095 @ Vet. - 330.2 fpe

Nn - 0.280

Re - 1.9530-10'

d 0"I01

[hO0 I 6 _ L'o _'2 4 6 8 10 12 14 o_

(b. 1) v = O.10; repeat Figure 80. Continued.

382 E 0.10] J 0.4 J o.05

°' oio C._ 0-05 1 .--______...... 0.2 , , 0.00 | , i , I'4 0.00 #4 6, 8, I0, I'2 Ii4 Cc

d 0.10] 0.2 0.40"e1 _/¥ - 0.98 _ 0.00 0'05 t _ ...... 0.0 ! I o . i'o ,3 ,'_ 0.00 |4 6 . ?o ,'_ -0.05 _ , t'4 4 6 8 1_0 12 1'4 o

0.25 -

0.8- 9/Y - 0.995 0.20 -

0.6- 0.15 J 0.4 0.10.

0.2 0.05 -0. tO

0.0 -O. IS J 0.00 i i 6 _ ,'o ,'2 ,'_ 6 8 I'(3 I12 114 4 6 8 lO 12 L'4 0

(b.1) v = O.10; repeat. Concluded

Figure 80. Continued.

383 [.2- y/T - 0.250

l.O-

rj _ 0.8 0.05 1

0.6 c_Jm_ 0.00 1

1'4 0.4 ld4

04

1.2 3/'[' - 0.475

1.0

0.05 d o.8 l 0"101 | _____ i.

0.6" / J o.oo]- -o.osl 0.4 0.00-_ , , 3'4 4 _ ; _'o t'2 I'4 i i 114 t 6 @ IIO 112 4 6 8 lwO 112 o_ o_ C_

|.0- y/T - O.BO0

O.8-

OotaPoLntID: RTPOTN.R0422 r__ 0.6- 0"10 1 - 8.93± 4.19 Oe 9. 0.4 rj e 0.05 1 _ Freq. - t4.03 cpg 0.00/ , , 0.2 G G ,'o ,'2 I'4 4 6 @ 1'0 1'2 - 0.133 01 c_ Vet. " 332.0 fpe

Hn - 0.289

Re - 1.9510.10"

0.6 d O'lO 1 J 0.4 -¸ 0"05 1 O.OOl 0.2 4 6 0 l'O I'2 I_4 4 o¢

(o) v=0.14 Figure 80. Continued.

384 d 0.4 _ oo.o5oI J oo.osot ...... O. 2 , , 0.00 | , _ , 0.00 | , , i 4 f:] @ tVO 12 L'4 4 6 8 tO 12 1', 4 6 8 1'(3 12 14

0.4 d °'°I °°_I O. 2 _._-__ O'S 1 _/¥ - 0.98 oo51___ _.oool 0.0 I I 0.00 H , -0.05 | _ , 1'_ 4 _ _ io ,'2 /4 4 _ 8 io i'2 i

@

0.25

0.8- 0.20

0.6 0.15- J

Cj_ 0.4 0. I0- -0.05

C.__

0.2 0.05 - -0.0'00[0 1 __

O.O l i 0.00 i -0. L5 | . _ 1'o 12 _ ,'o ,'2 1'_ 4 _ 8 /o I'2 I'4

o

(c) v = O.14. Concluded

Figure 80. Continued.

385 1.2 y/T - 0.250

1.0

0.8 _ 0.05- D.6- / _, o.oo ,C_-_

0.4 -o.o5/ I'4 4 ; G ,'o ,3 ;4 ,, ; G l'o l'2

[.2- y/T - 0.475

t.O-

(5' O.@- ...... Jo._ _--- 0.6- / J ooo]f l 0.4 , , -o.05/ , -o.o5 , 6 8 ['0 L2 ]'4 4 ; ; I'0 t'2 ]4 4 5 8 X'O L'2 ]'4

1.0- 91T - 0.800

0.8-

c__ 0.6- DotoPoLnt ID: RTPOTN.RO4't4 o.os] _

0.4- ,'_> o- 8.90± 4.27 De 9. c]" 0.00"1 r-_- -'-_'-_'_

Frog.- 14.01 cps -O.OSlI , 0.2 G G ,'o ,'2 ;,, ,, G B ,'o ;2 ;4 - 0.133 o_ oc Vet. - 330.7 fp8

Mn - 0.288

Re- 1.9530"10'

0.6 - 0,05 - d o810.4 _._..o9o J ooo I 0.2 , _ ,'o ,'2 ;4 -0,05 #_ 6, e, i'o ,'2 i'i

(c. 1) v = O. 14; repeat

Figure 80. Continued.

386 O. lO] d oo4 J o.o5 o6t oo1 r3 _ 0.05 ] ...... 0.2 , i , 0.00 | i 0.00 | tl4

0.4

d 0'I0 1 0'05 1 . - ...... O.2- 0"61 _IY - 0.98

0.0 f I 0.00 | , , -0.05 | , 4 6 8 ,'o 1'_ L'4 4 6 8 110 I'2 I'4 4 ; 8 I'0 I'2 114 c_

0.25 -

0.8 H/¥ - 0.995 O. 20 - /

0,6 0.15- J d 0.4 0.I0 -o.o5-1

0,2- 0.05 / -o.LO,,1

O.O 0.00 ; _ ,; 1'2 l'_ -0.15 14 ; ; z_ 1'2

(c. 1) v = O.14; repeat. Concluded

Figure 80. Concluded.

387 [.4- ylY - 0.250

1.2-

d L.O-

0"10 1

0.8- / J o o_] .=----_

0.6 ; ;o L'_ ,'4 I'6 o.oo/6 B, t_O tl2 1'4 ,

c_

1.0 0.10 0.05 o 1 ooo 0.6 0.00| , -0-05 61 6 8 1'0 t'2 1'4 1'6 6 8 10 12 14 1_6 8 1'0 12 1t I'6

[.2 H/T - 0.800

t.O

O.lO-

OotoPoLntID_ RTPOTN.R0424 1 0.6 c, - 11.01+ 4.00 De 9. J 0.0,5

Freq. - 3.99 cps o.oo/ 0.4 I'o ;2 1'4 ,'B 1'o ;2 A _6 ,,- 0.038 6 @

VeL. - 33].4 rps

Hn - 0.289

Re- 1.9540_I0 i

0.I0 O.@- d

O.fi 0.05 l-O t ,_/'f - 0.90 / 0.00 I'0 I'2 I'6 O. 4 6 8 ['0 1'2 1T4 1'6 ['4

(a) v =0.04

Figure 81.3-D round tip pitch oscillation data; no BL-trip; ct = 11 +_4 deg.

388 0.6 £,._> 0.[0] 0.4 i_i_t _ olyo9 c._E O. 05 1 ...... 0.2' i 0.00 I 6 8 10 12 1'4 i 0.00 # LI6 o

0"[51

d °"0.'1 t J °'°0.05 11 E 0.001 0.2 _ , 0.00 | _ _ -0.05 I I I 6 8 lO l_2 l'4 IT6 6 B lO l_2 1'4 1'6 6 8 1o ,'_ ,'., Oc Oq

0.35

0.30

|.0- 9IT - 0.995 0.25 - -0.05

0.8- J 0.20 - -0. tO

r___E d o.s- 0.15 -0.15 - ,/_/z O. O0 -

0.44 0.[0 -0.20 -

0.2 -0,25 _ 1'o i'2 1't 1_6 0.05 i i ; ,; ,'2 1'_ ?_ 6 8 I0 I_2 If4

(a) v = O.04. Concluded

Figure 81. Continued.

389 L.4 ylT - 0.250

t,2

/// d i.o- O.lOj J 0.8

0.00/ 0.6 I 6 @ lUO tn2 lu4 in0 in2 tu4 16 01

L.'_- ylT = 0.475

1.2-

d 1.o O.lO 0"I0 1 j o.os] J o.os 0.8

, 0.00/ , o.oom 0.6 ,'_ ,'2 1'4 16 6 8 1'o L'2 1'4 1'6 6 10 LI2 1v4

01

1.2- ylT - 0.800

l.O

I f OotoPoLntIO: RTPOTN.R0425 0.8 O'IO 1 a - ]0.96± 4.09 De 9. 0.6 / J 0.05] Freq. - 10.02 cps o.oo! 0.4 I'0 ,'2 I'4 l'O I'2 I'4 1'6 6 - 0.095

Vet. - 331.4 fpe

Mn - 0.289

Re - 1.9470"106

0.8 d 0"I01

0.6 c.2E 0.05 1 I j_ o.9oiY_ o.oo/ 4 O. 6 I'0 112 I'4 ,'6 8 l'O I'2 I'4 ,'6 c_

(b)v =0.10 Figure 81. Continued.

390 0.8 O. 10 O. 10 d O.0'814 y/'f._-'_ - o,96 I l

0.2 i 0.00/ , , 0.00/ 1 i 6 6 ,'o ,'2 ,'., t'6 6 6 1'o ,_2 t'4 16 6

c_ o_

0.15]

0101

d 0.4 r._:,_ O. O0 06 t _/¥- 0.98 J ;ol-- °°51 __ ...... 0.2 r -o.o5 / 6 8 /0 /2 14 t'6 6 t_0 ]l2 114 1.16 6 @ /0 I'2 1.14 1'6

Oc Oc

0.35

0.30

1.0- 0.25 -

/ Z 0.8 0.20 -

r_S O. 6 0.15-

0.4- 0. I0- .11

0.2 0.05 6 ,_ 1_ ,'4

(b) v = O. 10. Concluded

Figure 81. Continued.

391 |.4- y/f - 0.250

1.2" / /

1.0- 0"]0 1

0.8 J 0.05 . _ / 0.00t 0.6 i , 1'0 {2 It4 8 1'0 lJ2 1'4 6 0¢ Ot

|.4"_ y/Y - 0.475

1.2- //

d l.o 0"]01 0.I0] 0.8- / 005 .... / I 0.6 0.00 / , 0.00t , 1'6 8 I14 16 6 6 llO 1=2 114 t6 6 ['0 I12 114 6 rio 1=2

1.2- y/I - 0.800

l.O-

OotoPoLntlD: RTPOTN.R0426 o _ 0.8- 0.I0]

0.6- - 10.95± 4.25 De 9. o"

Freq. - 14.01 cps o.ooi 0.4 6 8 lrO 1'2 1'4 ,6 i)0 if2 ill 116 6 - 0.133 O_ @ Vet. - 331.2 fpe

Mn - 0.288

Re - 1.9440"10' y/'/ - 0.900

0.8- d 0.6 o] 0"]0 t 0.4 0.00 l 8 8 lid 112 I)4 6 {0 I'2 I'4

(C) v=0.14

Figure 81. Continued.

392 0.6- d

0.4 _/_ _ _ 0"81 .y/Y- 0.96_ °"°l

0,2 l O,OO l , _ 0,00 l I 16 6 _ ,o ,'2 i'_ 16 6 ; 1'o z'2 ,'_ 18

oc r_

0.15] 0.6 0.05 1 ...... -

_/Y - 0.906_ C3_ 0"I0 1 c.__, _ z..__ 0.4 J 0,00

0.05 1 0,2 6 8 10 12 1'4 i_6 -o.o5 / o_ 1o ,_ t_

0.35 -

0.30 - 0.00 A

/z 1.0 ,y/Y - 0.995 o.25- -0,05

0.8 -0. tO - J rj _ 0.6- />' 0.15 -O,L5- J 0.20 0.4- 0.I0 -0.20 -

0.2 0.05 -0.25 114 8 110 112 115 6 110 112 tJ4 116

0

(c) v = O.14. Concluded

Figure 81. Concluded.

393 1.4-

t.2"

[]. O0 -I 1.0- o.o5]/ 0.8- J -o.o5]

0.6 -o.,o; ,'o ;2 ,'4 ,; I18 8

d J 12°o rj e o.o5]O. O0 I'8 o.,_8 1'o ,'2 I'4 l; l; 0.00 18 I_0 [_2 I'4 1'6 I; 0.05 8 lwO ['2 I'4 I; o_

OotoPoLnt[O: RTPOTN.R0428 d J 1.0L'21YlY - 0.80 O'lO0.05 t ...z__-_ 0.8 /._i - 13.00_ 4.08 Oe 9 . o.oo!8 l'o ,'4 i; I; 0.6 8 1_0 I'2 I'4 I; Freq. - 3.99 cp8 ;2

c¢ " 0.038

Vet. - 333.2 rp8

Mn - 0,290

Re - 1.9590Mt0 s

0.8

O.lO]

0.8 I-01 _qlY - 0.90 rj e 0,05 ] ....___ _ r - ...... o.ooi 1'4 O. 4 8 llO lr2 1'4 116 8 l'O 1'2 L; o¢

(a) v = O.04

Figure 82. 3-D round tip pitch oscillation data; no BL-trip; a = 13 +_4 deg.

394 0.6- O. iO- 0.10 d J 0.4 /_ 081 Y/Y O.15j i _ 1 o.o5 j o.os1 0.2 0,00 , 0.00l lib 8 1; 112 I'4 1'6 10 0

0,6 _ 0,10 0.05 d J __

o810.4 J _ °'sl0.05o.9861 .._ ¢.0E 0.00 1 0.2 , 0.00/ I -0.05 # B l; 12 114 l; 10 8 ]lO 1'2 1'4 ]'6 lB 8 ]; 112 ]'4 i; lib

0,40 -

0.35 -

I.O- 0.30 9/Y - 0.995 iii/I -0.05 -

O.B- r_ _ 0,25

I/i / -0. 10 -

cj _ 0.6 _ 0.20 -0.15

/ 0,4- 0. t5- -0.20 NXk\

0.2 0.10 lib 8 lib -0,25

(a) v = 0.04. Concluded

Figure 82. Continued,

395 1.4- y/Y - 0.250

t.2-

/ j

fj_ 1.0

0.05] , - - - - o _ o.oo "--_--_-_-_--_--_ / 0.0 /

"x. -- ii I

-0.05 / 0.6 I'4 IO 1)3 |14 116 18 8 1'0 1'2 [@

1.4 3/Y - 0.475

1.2

0.15] F"_\

d' 1.0

0-10 1 ." J o.oo 4..___. 0.@- 0.05 1 - - "_\ pl

0.6 I'6 -0. OS If(] !.'6 118 O. O0 l 8 {0 1_2 I14 i16 / 8 I_2 1i4 1'6 1'6 @ llO I)2 I'4

0 O(

1.2 y/¥ - O. 800

1.0 OatoPotntlD: d RTPOTN.R0429

0.8 J 0.05 _ -- _ _ ..... - 12.98± 4.16 De9. 0.10]

0.6 o.0o / l'O 1'2 t'4 L6 l'e Freq. - 10.03 cps 8 ]fo 1'2 I'4 1'6 1'8 - 0.095

Vet. - 332.7 Fps

Mn - 0.290

- O.900 Re - 1.9530_I0'

0.8 0.10 d y/T

0.6 ¢3 e 0.05

0.4 - 0,00 118 8 IO 1'2 1'4 1'6 18

(b) v =0.10

Figure 82. Continued.

396 0,8 S/f _ . . o.[s] 0.6 d oo 0.4 r.3E O. 05 O'tO t

0.2 i 0.00 | 0.00 / 8 ]TO ,'2 l'4 tl6 [8 8 ]JO [12 ,_ 1'6 i_8

0.6 d 1 j °'l° 1 0.05 ] ...... _ _ _ _ _ 0.4 o'e1 y/Y - 0.98 0.05 1 ,..._.I--_ J o.oo1 0.2 o.oo t -0.05 / /o _'2 G ,'6 1'8 8 1'0 12 1'4 1'6 I'8 8 lO I'2 1'4 I'6

oc O_ a

0.40

0.35

ip'* [.0- 0.30 _/¥ - O. 995 _,_/ -0.05-

0.8- J 0.25 -0.10 -

0.6- 0.20 - -0.1.5

0.4 0.15 -0.20 /- 0.2 I -0.25 ii8 O, 1.0

c_

(b) v = O.I0. Concluded

Figure 82. Continued.

397 L.4 y/y - 0.250

1.2 /1

c.5 _ I .O-

0"05 1 _: - "_

0.B- / /

-0.051 0.6 e lO L'2 l'4 L; I'0 1=2 tl4 t 16 (_ Ct

1.6- yI¥ - 0.475

t.4"

// 1.2" d

1.0-

0.0-

0.6 O 1'0 (2 l"t 1'6

1.2 y/Y = 0.800

t.O d

0.8" _ 0.05 _ _ .... OotoPoLntID:- 12.95± RTPOTN.R04304.26 De 9. °'m t c__

O. O0 O.S l'e ,'o ;2 :4 t'o I'0 Freq. = 14,03 cps o to t'2 t'4 1'6 @ v - 0.133

Vet. - 332.6 fps

Mn - 0.289

Re - 1.9470_10'

0.8 d 0"10 1

0.6 J o.as] c'_ ...... 7"-> o1ogo 0.00/ 0.4 ,'o 12 14 _6 8 I'(3 t'2 1'4 I; I'8 O_

(c) v=0.14

Figure 82 Continued.

398 0.15] 0.6 d 0.4 1 C.3m O. 05 - - 0"10 t 0.05] _-<'- _ - _ 0.2 i 0.00 | , 0.00 | 8 llO 1'2 II4 16 18 B 1'0 ,'2 ll4 1'6 t8 8 I'0 I'2 14 I_6

o

0.15

d 0.20.40"St _y/¥__J_- 0.986 .- o.oo°'°s°'m

a i'o i'2 ,'4 1'6 _'e

0.40 -

0.35 -

l.O 0.30 - " J -0.05 - _/Y - 0.995

0.8 J 0.25 - -0. tO -

0.20 - cjJ 0.6 //7 r_ e -0.15-

0.4- O. t5 -0.20 - ,z" 1'0 b _ 1', 0.2 0.1. I'0 1_ /4 ,_ 1'0 I'2 ['4 1'6 I'8 -0.25

(c) v = O.14. Concluded

Figure 82. Concluded.

399 |.4- y/Y - 0.250

[.2-

I.O-

O.B 1:1 J -o.os]

0.6 12 I'4 I'B Z'B 20 2'2 2'2

O. 25 -

1.4 O. 20 - • .i/ • y/Y - 0.475

1.2 0.15- J / / /

0.10- C__ 1.0

0.8 0.05 - ,.._c-- oooo],..\ -0.05 ]

0.6 0.00 212 -0.10| f ---I 12 1'4 116 tt8 20 _2 12 lit t'6 lWB 2_0 12 [_4 t_6 lib 20 22

C_ Cq

E 0.00- _ \ _ \

rJ OotoPoLnt ID: RTPOTN.R0432 U -0.05 1.2 t y/Y oot 0.8 - 17.12± 4.04 De 9. -0.10| 12 I'4 I'6 1_8 2'0 2'2 12 1'4 I'6 t_8 210 Freq. - 3.99 cps

u - 0.038

VeL. - 333.9 £pe

Hn - 0.291

Re - 1.9580-t0 B

d O.lO]

O.O1.0-1"2-t Y/Y_ = _-_ 0.90 o.oo/ o.612 I'4 l'e i'o 2'O 12 1'4 1'5 lib 2'0

(a)v =0.04

Figure 83 3-D round tip pitch oscillation data; no BL-trip; (z = 17+_ 4 deg.

4O0 I.o- _ _ , 1 / 0.8 0.15 0.05

0.6 0.[0] l 0.00 1

O. 4 O. 05 # , , -0,05 I 12 1'4 1'6 ,_ _ _2 12 _ ,_ ,o 2'o 22 12 ;_ i'o I_ 2_

ii

/////

d o.G o.lo J _ o.oo "_-'=_-=--- / oI 0.4 , , i 0.05 -0.05 l , ¢'_ l 12 1% 16 110 20 22 12 1% 16 l_O 2% 22 12 1_ 1% 1% 20 22

-0. I0

-0. [5

1.0 I / / r.._ E -0.20" d

O.B -0.25 -

0.6 ] -0.30 12 1'4 I% IB 22 12

(a) v = O.04. Concluded

Figure 83. Continued.

40l 1.6- y/Y - 0.250

0.05 - 1,4-

\ O. 00 - 1.2-

-0.05 - L.O r__ _

! -0.10 O.B

/ -0.15 0.6"

-0.20 0.4 114 lJ6 1'8 2JO 0.35 12 t2 IT4 if6 it8 2_0 2=2

0.30

0.25 - 0.05 - 1.6 y/T = 0.475 / O+ 0.20 - /l O0 - 1.4 J / J z / -0.05 0.15 - t.2 J cj _ d /] 0.10- -0.10 l+O ¸

x / / 0,05 0.15 0.8- \ /

0.00 O. 20 0+6 2'2 12 1'4 1'6 I'8 2'0 2'2 2'0 2'2 12 I'4 1'6 I'8 20 12 I'4 I'6 t'8 ot @

t.4 y/Y - 0.800

t.2 !

DotoPotntID: RTPOTN.R0433 _' 1.0 °°,1 J -0.05 J 0.8- - 17.09± 4.12 De9. 0.00]

Freq. - tO.02 cps -0.101 0.6 12 1'4 [Y t'8 2'O 2'2 2'2 12 I'4 [+6 t'8 2'0 v - 0.095

Vet. - 331.7 £ps

Mn - 0.289 ylY - 0.900 Re - 1.9410_I0 °

1.0 d ,_ 0.05 - - ...... 0.8- 0"10 t

o.oo/ _, 0.6 12 4 1'6 I+8 2'0 2,2 12 I'4 1'0 t'8 2'0 2_2

c_

(b) v =0.10

Figure 83. Continued.

402 O.B U J o.t5] - o.o5

0.6 // _ _ I'° 1 _/Y-_ °'°I °°°I 0.4 j 0.051 , -0.05 l F I 12 _'_ _ l_ _o 22 :2 ?4 1'6 _'8 2'o 22 12

0

1.0- y/Y - 0.986 o.25

0.8_ // 0.05

0.6- O.15-0.20 7 r.)E 0"00 1

0.4 O. lO- _-'" -o.o5] 0.2 12 ,'4 i'6 ,_ _o _2 °°512 ;4 :_ ,_ _o _2 -o.:o_ G ,'6 ,'8 2'0 2'2

c_

0.55

0.50 11 0.45 / 1.4 O._JO - y/Y - 0.995 -0. I0

0.35 - -0. '5 \ f-

1.2 _/f/// 0.30 - -0,20

cY E 0.8 _ / 0.25 1,0 / -0.25 -

/ / t' 0,6 C_ / 0.20 / -0.30 -

0.'1 -0.35 ,2 G ,; ,; 2'o 212 O. 15 12 1'4 '6 18 20 212 12 ,'4 ,_ ,'8 2_ ]2

o 0 o

(b) v = O.10 Concluded

Figure 83. Continued.

403 0.05 1.0-

y/Y - 0.250_ 0.00 1.4

-0.05 1.2 \ \

e..Da -0.10 r._ J | .0

-0.15- 0.8- / / . I ¢ / -0.20 " 0.6- \ /

0.25 0.4 2'2 12 1'4 t'6 I'8 20 2'2 12 1'4 1'6 l'B 2'0 0.45 - cw

0.40 - 1.8- ylY - 0.475

O. 35 - 0.05 - 1.6-

f 0.30 - 0.00 - 1.4 i I / ! x 0.25 - t -0.05 1.2 I / f d I 1.0 0.20 - c3 e -0.10 I il / / i r_ x 0.15- -0. ] 5 0.8 I /J \ f \ ... -0.20 0.6 O.IO I _ Ill ,e I

-0.25 0.'I I_ 1'6 I'8 20 22 2_2 0.05 12 1'4 t'6 1'0 2'0 212 12 12 ,'4 ,'6 1'8 70 O_ ol

1.6- y/T - 0.800

1.4-

/ I 1.2- d DotoPotntlD: RTPOTN.R0434 l.O- - 17.05± 4.28 De9.

O. 05 l _'_---_ O.O- Freq. - 14.02 cps j o.oo1 - -0.05 / 0,6 u 0.134 ,2 ,'4 _'_ ,'8 2'o 12 1'4 1'0 l'B 2b 2'2 VeL. - 329.3 rps

Mn - 0.286

Re - ].9250_t0'

C_)E 0.8 0.05 _ ...... - I.ol'2t y/Y - 0.90 ,-" 0"10 t o.oot 0.6 12 114 II6 lib 2 IO 2'2 12 1'4 1'6 t'B 2'0 2'2 Cl

(c) v=0.14

Figure 83. Continued.

404 1.2- _/¥ - 0.966

l.O-

J 0"20 1 j o.e " " 0.05 J 0.6 J o.oo] 0,4 0.05 ! 12 ,2 ]4 116 '8 2)0 22 -0.05 ]_2

@

0.30 -

|.0- _/Y - 0.986 0.25

0.8- 0,20 // 0.05 J

d 0.6- 0. I5-

0.4 0. I0- 0.00]

-0.05 ] 0.2 0.05 r ) -O. tO | 12 II4 16 18 2'0 2J2 12 I"I I16 ,0 2'0 2'2 12 ]',t I'6 I'8 20 )2 C_ o( Q

0.60 -

0.55

0.50

I

0.45 -

I I

1.4 0.40 - _/Y - 0.995 -0. I0 J I II

1.2 0.35 - -0. ,5 '

//tl / _ 1.0 0.30 - -0.20 -

d //1 CD_

0.8- 0.25 -0.25 -_

0.6- / 0.20 S -0.30 -

0.4 O. IS -0.35 12 i'4 1_ l_ _o _2 12 I'4 I'6 1'8 2_0 2'2 12 1'4 ]r6 i)8 20 22

c_ c_

(c) v = O.14. Concluded

Figure 83. Concluded.

405 1.4 _/Y - 0.250

1.2 d t.o- o'o5-I 0.8 _ 7 ZI 0.8 :I 1'31'st'7I'9 -o.Ioi7 G Ii :3 t; i'716

1.4- 0"20 7 1.2-

d io _/ -T J 0"I0 7 0.8-

0.8 O.O01 111 I13 115 17 ]19 7 _ I'L,'3:s i'_,'9

|.2- u/Y - 0.800

l.O-

OotoPotntID: RTPOTN.R0439 r__ 0.8- 0"I01 0.6- o - 13.06± 5,07 De9.

0.4 O.O0 l r I'I 113 Ii5 I_7 ]19 Freq. - 4.02 cps 7 9 I'1 1'3 1'5 Ira7 19

" 0.038

Vet. - 332.0 fpe

Nn - 0.288

Re - ].9360Mt0 _

0.8 = " _ d 0.6 L'O 1 _/Y_ cf 0.05 ______z ..... O'lO 1 0.4 _ i l , i 0.00 I 7 9 II 13 15 17 19 7 9 I I I'3 I'5 I_7 l'g

(a) v = O.04

Figure 84. 3-D round tip pitch oscillation data; no BL-trip; c_= 13 _+5 deg.

406 1.0 y/Y - 0.966

0.8 0'15 1 rj _ 0.6 J 0.4 °'°1 / o.o ]_. j o.o ] ...... 0.2 r r i 0.00 1 0.00 | 9 31 13 15 17 I'9 7 ; 1'1 1; iI5 1'7 t'9 7 ; 1'I 1'3 115 117 1'9 oq C_

0.20

o0 J o. to U °°'l 081O. 4 - _/Y- __-_0"986 o.t50.05 /.i _ 0.00 1 I 0.2 , 0.00 , -0.05 | r r 7 9 l'l 1; 1; 1_7 I'9 ; z, ,'3 ,'5 i'_ 19 7 ; f_ i; 15 ,'7 19

O. 40 -

0.35 - ._.

0,30- //

L,0- 0.25 -0,05 - J 0.8- 0.20 -0. I0 -

i/,, / I c__ 0.6_ O. 15 C) e -0.15-

0.44 O. 10 -0.20

0,2 0.05 _ l -0.25 ; 1', 15 fs 1'7 f9 7 9 II 13 I; I'? i'9 ; 1'I 1'3 ,'5 6 t'9

o(

(a) v = 0.04. Concluded

Figure 84. Continued.

407 0.I0-

O. 05 1.4

0.00 1.2 y/Y = 0.2_/ Fj E -0.05

[1.8- -O. lO

-0.15 0.6 I'l 1'3 1'5 1';' 1'9

c_ ()

1.6- y/Y - 0.'175

1.4 ! ) I

1.2- / O. 15 0.05 l i _ _ _ 1.0- J 0.10- ,,y O. 20 - 0.00 l

O. 05 " c3_ -0.05 " I 0.8- ] -, -0.10/ , 0.6 ) 0.00 9 I)1 It3 115 LI7 ll9 7 9 ! 1 1'3 |'5 117 19

[,2-

1.0

OotoPoLntIO: RTPOTN.R0440 d o.e O'lO l

E 0.8- a = 13.04± 5.20 De 9. 0.05 1 _ _ _ - ..... _

0.4 Freq, - 9.99 cp8 i' ,, 1'1 I'3 1'5 1'7 I'9 o.oo_ _ ,1. ,; ?_

ot u - 0.095

VeL. - 330.9 rps

Mn - 0.287

Re - 19240.t0"

- . 11 1 d 0"10 1 o0.6oOl J 0.4 1 0.00/ 7 9 I'l 1'3 1'5 1'7 1_9 7 9 11 1.3 15 17 19

(b) v =0.10

Figure 84. Continued.

408 ].0- y/¥ - 0.966 0.8 ./f 0.15- I 0,6

J 0"10 1 0.4 0.05 ...... o.os] _

0.20

0.[5

0.6 J O.IO 0.05 d q 0.4 / _ 0.05 - O'e 1 9/¥ - 0.98_

0.2 jooo]" 0.00 -0.05 / _ w , 7 ; /I /3 15 1'7 1'9 7 9 11 13 15 17 I.}9

O. 40

0.35 I

0.30 /// 0.00 1,0 _I¥ - 0.995 0.25 - J //// -0.05 O,B 0.20 - -0. tO J d 0.6 O, 15 - -0.15

0,4 0.10- -0.20 -

0.2 i i 0.05 ; 11 ,'3i; i_ tg ; 1'I 13 I'5 I'7 I'9 -0.25 1'1 1'_ 1_ _'_ t'g o oc

(b) v = O.10. Concluded

Figure 84. Concluded.

4O9 1.4 y/Y - O. 250

1.2 C__ 1.0- oo_7 0.8- LII1

0.6 -o.,o:, , ,'5 I', 1'9 2', 2'3 ! I'3 I'5 I'7 I'9 2'1 213 @ O

0.30-

O. 25 - _

0.20- / / 0.05 -] _

J 0.15- 0.00 _ - _

-0.05 \\ _ d

0.8 o.,O-o,o5- J -o.1o]

412oo 0.00 -0.15l I I I'3 t; I'7 |'9 2'I 2'3 11 l; I'5 1'7 I'9 2'I 2'_ 0.6 II 13 I'5 I'7 I'9 2'I 2'3

d DataPotntID: RTPOTN.R0436 00,7_ 1.4]1.01'2ylY - O.BO_: i:iiI o - 17.10± 5.05 De 9.

0.8 11 I'3 lW5 I'7 1'9 2'I 2'3 Freq. - 4.02 cps

U I 0.038

Vet. - 331.4 fp8

Mn - 0.288

Re - 1.9400_I08

d 0.05 ] o.01.01"2]y/y.I_'__-__ 0.90 _. ooo1 __ 0s11 1'3/s I'_1'92'I2; -°"°91'1 h ,'9 _', 1'9 2', 2'_

0

(a) v = O.04

Figure 85. 3-D round tip pitch oscillation data; no BL-trip; a = 17_+ 5 deg.

410 0.8 °'_° 1 d J 0'05 1 o.s ._ 1.o] y/.y_ C.3" 0.00] "_---_ 0"I0 1 0,4 0.05 | "'_ 11 1; 1; 1) I'9 2'1 23 II 1'3 15 17 19 211 2r3

Oi OI

0.8 0.201 " / 0.05-

c__" O. 6 J

I'O1 yl¥ - 0.98 O.O. I0t51-I _ _ / (bE -0.050.00- j.-_ 0.2 o.o51 , -o.to 11 1; 15 lJ7 1'9 211 2_3 11 1; 1; 117 119 2'1 213 c_ Oc OI

0.55 -

0.50 - i

0.45 - II

O. 40 /t /

J 0.35 //I/ -0.[0 1 0.30

d O.B _/ 0.25 - ,"f -0"20 1 \ ir _ 0.61.01'21 YlT,,_ - 0.995__. O. 20 - / C'3" -0.25 1 -_ ,.

0.I 0.15 Jl ,; ,'s 1'7 l; 2'i 2'_ _1 _'3 l; 1'7 1'9 2'l 23i -0.30 |11 3; 1; _'7 l; 2'1 _'3 c_ c_ o_

(a) v = 0.04. Concluded

Figure 85. Continued.

411 1.6- 0.05 -

[.4-

-0,05 - 1.2- 0.00-_ __

(/ ! .0 - c_ e -0.10

0.8- / % / -0.15- 0.6- \ / -0.20 -

0.50 - O. 4 11 1'3 I'5 I'7 I'9 2'I 2'3 -0"25 Zl 1; 1'5 I'7 1'9 2'I 2; 0.45 - o¢

0.40 -

O. 05 - 1.8- y/y . 0.475 0.35 - I 0.30 - ;" 0. O0 -

1.4- J 0.25 - / -0.05 - // 1.2 -0. lO - _ _ d c_.3 0.},5" /" 1.0 -0.]5-

0.8 _ / 0.10 -0.20 - 0.20 -

0.6 _\ ...... 0.05 - -0.25 -

0.4 1 t l; 1'5 1'7 1'9 2Vl 23 O. O0 1! 1'3 {5 {7 1'9 2'1 2'3 -°3°,1 1; ;5 b ;9 /1 2;

cl o_ ot

1.6- 91T - 0.800

1.2 " /" 0.05 d OotoPotntID= RTPOTN.R0437 1.0- O. O0 1.4- / o - 17.09± 5.20 De9. E.._E 0.8- -0.05 Freq. - 9.98 cps -0.10 0.6 II 1'3 1'5 1'7 1'9 2'1 2'3 11 1'3 {5 {7 19 2'I 2'3 m 0.095

VeL. - 329.3 £ps

Hn - 0.286

Re - 1.9200.I0 s 1.0-

d 0.8

0.6 K-_-_ 1"2 t _/_ e O.OS _ - ..... - _ _ 0.10]

0"411 1'3 I'5 I'7 {9 2'I 2; O. O0 11 I'3 I'5 I'7 1'9 2'I 2'3

(b) v =0.10

Figure 85. Continued.

412 ol o ol

0.35 -

0.30 - 1.o| 3/¥ _ 0.986 o.25- / i:i:1 U 0.6 0.15 J 0.20 o" -0.05] 0.4 _ 0.10 0.8- t // -O. tO ] 0.2 I 0.05 -o. 151 11 13 ]; I'7 I'9 21t 23 11 13 1_5 17 l'g 2'1 2'3 11 13 1; 1'7 I'9 2_t 2'3 o_

0.60 -

I 0.55 - /I

0.50 - t/ -0.05 -

0.40O. 45 - // -0.10- - _x\ _.4- ,_q/Y - 0.995 J -0.15- x _ x

// 0.35- ///// 1.0- 0.30 - d 0.8- _ 0.25 - -0.25 - 1.2- J-0.20-

0,6- -0.30 - 0.20- (/,,, ./

0.4 b 11 I; I_5 i) I'9 211 23 °"sll 1'3 1'5 1'7 ,'9 2't 2'_ -0.35 11 II3 115 1'7 119 21 213 C_

(b) v = O. I0. Concluded

Figure 85. Concluded.

413 t.2 3/T - 0.250 _ _

0.6- fjJ 0.4-

°.°-/"0.2-

U.O- cjE 0.001 _ r_"w%_4_ i -0.2 , 0.05 ! t _ , , , , , , , , , -11 _ ; 7 9 1', 1; 1'51'7l; 2', -1 1 3 5 7 9 II 13 15 17 19 21

c_

1.2

1.0

0.0

0.6 0.20 l 0.4 0.2 °'_I,O.IOH "y 0-057 0.0 o.osI o°oooI '_' 0.2 o.o01 ,"T-"-d"T"_r,, , -o.05t , , _ , , , , , , _ , i i _ ; } ;,'1151;I'7,'92'1 -1 1 3 5 7 9 1'1 13 1_5 1_7 1'9 2'1 -1 1 3 5 7 9 11 13 15 17 19 21

Oi

1.2

1.0

0.8

0.6 OatoPoLntlD= STOSTN,R0479 d 0.4 o.os 7 _-.-.-.----"'_,_ 0.2 e - 10.20_ 10.06 De9. oootfs 'I!;i 0.0 Freq. " 0.00 cps J -o.o5] '1 "0.2 - 0.000

c_ VeL. - 331.8 £ps

Mn - 0.291 1.2 9/Y - O.900 Re - 2.0020.I0" 1.0

0.8

0.6 J () 0.4

0.2

0.0 / C3 E .

-0.2 -0.05 | I r I i , _ i t l i i -1 ] 3 -I I 3 5 7 9 II 13 15 17 19 21

ol

(a) Repeat no. 1

Figure 86. 3-D square tip quasi-steady data; no BL-trip; 0 <__ _<20 deg.

414 i.o- _/T - 0.966

0.6- 0.207 d o0.4o- 0.[5 1 / o2- j o,o1 _ oo51 °°i" " °°"1 -0 2 , J i I f i i i , I I O.OOl i i _ , i , I I i ; I -0.05 | i l , I i , I i _ i I -1 ! 3 5 7 9 11 13 15 17 19 21 -1 1 3 5 7 9 11 13 15 17 19 21 -1 1 3 5 7 9 11 13 15 17 19 21

1.o- _/T - 0.986

0.25

0.6- 0.20

d 0.4- 0.15 0.8- 0 0.2- 0.10 0.05] 0.0- 0.05

-0.2 O. O0 i -O.tO| , , ; v , , r _ , , , -, I _ ; _ ;;11'3 ?51_1;2'1 -1 1 3 5 7 ; 11 13 1; 1) 1; 2'i -I ] 3 5 7 9 11 13 15 17 19 21 oc Oc

0.40-

0.35-

1.0 0.30-

0.8- 0.25

0.6- J 0.20 -0.05 - d 0.4 0.15- -0. tO -

0.2 O. tO- -0.15 0.00- 0.0 0.05 - -0.20 L

-0.2 0.00 -0,25 -1 '1 3 ; _ ; 1'1 /3 1'5 1_7 1; 2'1 -1 I _ ; _ _ ?l 1'3,'__'_?__', (_

(a) Repeat no. 1. Concluded

Figure 86. Continued.

415 t.2 y/T - 0.250_

0.8

0.4

1.0 _ _ 0.05 _ 0.2

0.0

-0.2_! 1 3 ; 7 ; ITI 1'3 1'5 l'7 ['9 211 -! 1 3 5 7 9 l] 13 15 17 19 21 @

1.0-

0.0-

0._- d 0.'4- i.2°I j 1.2- 0.2-

0.0

-0.2 , I _, 5_ 7, 9, ;,;31;L'71;2'I

o

1.2

1.0

0.0

O.G" OotoPoLnt[O: STOSTN.R0480 d 0.4- a - I0.07_ I0.08 Dog. O. O0 0.2- J -0.05 0.0- Freq. - 0.00 cps

0.10 v -0.2 i i 1 ; i - 0.000 -l 1 3 ; 7 9 1'i l_ l'5 |17 119 211

VeL. - 331.4 Fps

Mn - 0.290

|.2- ylY - 0.900 Re - 1.9950_10" 1.0-

0.8-

0.6- d 0.4- 0.2- o.o57 0.0-

-0.2 -I I _ ; 7 ; 11] 1'3 i'5 |'7 [_9 211 -1 ] 3 5 7 9 ]l 13 15 17 19 21

Ot @

(b) Repeat no. 2

Figure 86. Continued.

416 1.2- _/Y - 0.966

0.8-

0.6- 0.20'-i d 0.4- / 1.0- 0.2- J o.,oI i/ °'°5l 0.0

-0.2 I , f , , ; . -0.051 J _ , , , , , r , r , -ll 3 5 7 9 1_1 1;3 15 1'7 19 21 -I 1 3 5 7 9 11 I3 15 ]7 19 21 -] 1 3 5 7 9 11 13 15 17 19 21

C, ot C_

].O-

O.B- 0.25

0.6-, O. 20

d 0.1- 0.15 J 0.2- 0.I0- 0.00 0 m 0.05 1 0.0- 0.05 - -0.05 -0.2 ¢ i T I i 0.00 i -I , _ 5 7 9 I', i'3 ,'51'7I'_2'I -I ] 3i s; :,, g,',i'3,'56,'_2',i -0.10 _1 i _ 5i 7i _ fi,':3,5;71'gfi (y

0.45

0.40

- ° 0.35

1.0- 0.30

0.8- 0.25 _ J 0.6 0,20 - -0.05 d 0.'4 0.15- -o. 1o 1.2-_ C_3E 0.2 0.,0- -o. 15 o.oo 0.0 0.05 - -0,20 --

0.2 , , 0.00 i -0,25 ,i _ 5:7 g,', ,'3,'5;7 ,'92', -i , _ _ _ I', ,'3I'51'7,'9fi 1 i _ _ _ ;,'lhz;l'71;2'i o_

(b) Repeat no. 2. Concluded

Figure 86. Continued.

417 _.2- y/¥_ 0.250 _,

0.6- _S 0.4-

0.8-0.2- / _'U_ 0.05 _

0.0- C3 _ 0.00_

-0.2 i i -0.05| i ; i i w l , v t i , -I 1 3 ; _ 9 1'1 '; ]'5 lit l; 2 I' -I 1 3 S 7 £ 11 13 15 17 19 21

o

1.2 y/T - 0.475 _'_ h

0.8

0.6 0.20 1

0.4 0-15 1 o._ _ °"°I _j °°_l o_ , ooo/,,--_,'_-, .... oo5, -' 1 '3 ; 7 ; r| _; |; }T7 |I 9 ;_ -' _ 3 5 7 9 _'I _3 _,S |7 'g 21 1 _ 5 7 ; I'| _; ),T5 |17 |; 2'|

0 O{ O_

1.0

0.0-

0.6- OatoPoLntlD: 5TOSTN.R0481

0.4- 1,2- 0.2- - I0.09_ I0.09 De9. 0.0O C_3E 0.0- Freq. m 0.0O CpS -0.05

-0. I0 i v - 0.000 -I 21

o VoL. - 330,8 Fp8

Mn - 0.290 |.2- y/T - 0.900 Re - 1.9910.10' 1.0-

0.8-

0.6- d 0.4- 0.2- c,°57_ 0.0 E 0. O0 1 0.2- -0.05 _ m T i m , _--T_-q -ll _ ; _ ; A1;l'sl'7/92'l -,1 3 5 7 9 ,,13,5L71921 0

(c) Repeat no. 3

Figure 86. Continued.

418 1.2

1.0 ¸

d

0,05] . ooolT -0.05 | -1 I 3 5 _ ; 1'1 I'3 1'5 I)7 119 2'1

].0- _/Y - 0,986 0.8- 0.25 -

0.6 0.20 -

rj J 0.4 0.15- J 0.2 0. I0- o0.05 l 0.0 0.05 J -o.05] -0.2 I k _ _ _ Al'31'_,'7/_2'_ O. O0 i -0. tO| , , ) , i T i i , ) i -1 _ ; ; _ ; /1 6_;1'_i'921 -1 1 3 5 7 9 11 L3 15 17 19 21 oc o

0.45 -

0.40 -

1.2 0.35

1.0 O. 30

0.8- 0.25 0 0.6" 0.20 - -0.05 d 0.4 0.15 - -0.10

0.2 0.10- -0. L5 - 0.00 __ 0,0 0.05- -0,20 -

-0,2 0.00 i ) i 11 _ ; :; _1'1 t'31; 1'7i'921 -0.25 -1 i 3, ; _ 9h, 1'31's_'71'52'1 o(

(c) Repeat no. 3. Concluded

Figure 86. Concluded.

419 i.2 y/Y - 0.250

0.05 - 1.0

O.B / _)E 0.00 - /

-0.05 0.6 i u lnO 1'2 8 I0 1'2

oc

1.2- S/Y - 0.475

1,0 0.10

0.8 cj_ D.05- J O. O0

0.05 1

0.6 0.00 -0.05 t _ I'o I'2 ]12 G 110 in2

ci O_

O.B 0.05 -

DotoPoLntlO: STPOTN.R0450 00 d 0.6 C.3E 0.

- 8.97± 1.99 De 9.

-0.05 0.4 i Freq. - 4.00 cps 12 ; i'o i'_

O_ u - 0.038

Vet. - 329,3 Cps

Nn - 0.289 0.I0

Re - 1.9950wI0" J o6°1iYJo9o o E O. 05 0. O0 I 0.4 6 'a ]'0 I'2

Q

_)v = 0.04

Figure 87. 3-D square tip pitch oscillation data; no BL-trip," a = 9 +_2 deg.

420 O. IO-

0.05 1

d 0.4 c__ O. 05 - c_ 0.00 J 1 0.2 i 0,00 i -O.OS ! 6 e i'o 0 i'o t_2 6 t_O it2

Cq ol

0.6- 0. I0 0.05 -

.T" 0.,i- 0.05 r_3 e 0.00 -

0.2 i i 0.00 i -0.05 o 1'o 12 6 12 lrO t'2

o( &

0.15-

0.6 0.[0 - 0.00 -

J

d 0.4 0,05 J -0.05 -

0.2 i 1 O. O0 -0. I0 i i 12 1'0 tr2 8 I0

o ot

(a) v = O.04. Concluded

Figure 87. Continued.

421 1.2 ylY - 0.250

1.0 D.05

J ._. I" O.B f J O. O0 f /

0.6 .... i O. 05 0 l'o 112 i_0 112

1.2- ylY - 0.475

1.0 O.lO 0.05

d

0.8- 0.05 r_ E 0.00

0.6 i 6 8 IIO

01

0,_ - 0.05"

DotoPoLntID: 5TPOTN.R0451 c_) _ 0.6 - 0 E O. OO -

- 8.96± 2.06 De9.

0.4 i -0.05 6 B ,I0 ]12 Freq. - 9.99 cps p - 0,095 o(

VBL. - 329.4 £pB

Mn - 0.289 0.10_

Re - 1.9880_10" cj j ooOBI IY°9°c___ O. 05 - _ ,'o O. O0

(b) v=0.10

Figure 87. Continued.

422 0.6 0. I0- 0.05 -

,d 0.4 cn_ 0.05 0.00 -

0,2 -0.05 l [;2 0.00 ; 1; 1'2 8 I*0 1'2

0.6 O. lO- 0.05 ._IY - 0.986

d 0.4 c__ 0.05 - r_, e O. O0 /

0.2 i ! 112 0.00 1'2 -0.05 ,.0 ,2

0.15-

0,8- 0.10- 0.00 -

J

0.4- 0.05 / c.bE -0.05 -

0.2 0.00 i i -0.10 i B 12 o Cw

(b) v = O.10. Concluded

Figure 87. Continued.

423 |.2- 9/Y - 0.250

1.0-

_S 0.05 1 ( 0.8 J J J °'°°1 -0.051 0.6 6 lo _ @

1.2- y/Y - 0.475

0.05 - l.O 0.10-

d

0.@- J 0.05 _= 0. O0 -

O. O0 i 0.6 s l'o 1'7_ -0.05 6 @, 10F i='?

O. 05 - 0.8

OotoPoLnt[O: STPOIN.R0452 c3 E 0.00- d 0.6

- 8.95± 2.13 De 9.

-0.05 0.4 Freq. - 14.00 cps @, 1.O 12' 8 1'o 12 @ Oq - 0.133

Yet. - 329.8 rp8

O.lO- Nn - 0.289

Re - 1.9880MI06

d r._e 0.05 -

O.O0 I.O 1'2 6 8 1'(3 I'2 o_

(c) v=0.14

Figure 87. Continued.

424 0,6 - O.966 O. tO- 0.05 -

Y/Y /

cJ 0.4 c_ _ 0.05 - E 0.00

0.2 T o.ooi 6 8 I_0 8i ] T0 [2i -0.05 6 8v !I0 [2

0.6- y/Y - 0.986 0. I0 0.05 -

d 0.4- ro_ 0.05 _.,,_/ J o.oo

0.2 l -0.05 112 0,00 ; /o ,2 _ ?o 12I

0.15-

0.6- O.lO y/Y - 0.995 J

d O,.i 0.05

0.2 n -0. IO ii2 0.00 ; ,'o ,2

ot

(c) v = O.14. Concluded

Figure 87. Continued.

425 1.2 _/Y - o.25o

t.U 0.05

d

0.8- coe 0.00

-0.05 0.6 110 112 6 8 I0' ]'2 C_

1.2- ylY - 0.475

l.O 0.10- d 1 0.8 r__ 0.05 - E O. O0 I I 0.6 i 0.00 6 8 1.0 ]'2 1'o i_2 -0.05| 6 @, I0, I'2

O.B 0.05 -

OotoPoLntID: STPOTN.R0453 0.6 __- 111111 C2s 0.00

- B.931 2.25 De 9.

-0.05 0.4 i 8 i'o Freq. - 20.04 cps @ I.0 12 C_ o_ u - 0.191

VeL. - 329.8 £pg

0.05 - O.B-I ylY - 0.900 Mn - 0.289

Re - 1.9860_10 e

rj_ D.B" cjm 0. O0

0.4 I -0.05 B J.0 i12 0' ,'o ,'2 c_

(d) v = 0.20

Figure 87. Continued.

426 0,6- 0.I0 0.05 -

y/f - 0.9_ 111 _/

c_T" o.4- 0.05 c3 e 0.00-

0.2 I 0.00 -0.05 B ]_0 1_2 6 6 ,'o I_2 InO Ln2

c_ O_

0,05 0'6 1 y/Y- 0.986 0.10

d 0.4 __ J o.os 0.00 -

0.2 t , r 0.00 I 6 B ]10 [ 2 6 ,'o 12

C(

0._5

0.00 -

j 0.4 0.05 c..3 e -0.05 -

°'6 t _IYj- 0.995 o.lo

g. 2 0.00 -0. lO I I0 I'2 llO 12

C_ o O_

(d) v = 0.20. Concluded

Figure 87. Concluded.

427 1.2 y/Y = 0.250 0. I0

d 1.0 J 0.05

/ 0.8- O. O0 I_ I_ 1'4

O. 05 -

d 0.00 -- I.o __ J o.os- 1.2] .4/y_ 0.475 0.10-

0.0 0.00 1'4 I'4 -0.05

[°2- y/Y = 0.80O

I.O O.lO-

cJ'

0.0" - 10.96± 2.00 De9. _" o.os OataPoLntID: 5TPOTN.R0455 Freq. - 4.0l cps

0.6 J_ 1_ 1'4 _ = 0.038 o._ @ I'D I'2 1)4 Vet. - 329,8 £p8

Mn = 0.289

Re - 1,9880-10 e O.B 0.10-

d 0.6 E 0.05 -

0.4 0.00 I)0 I_2 1'4 10 1)2

(a) v = O.04

Figure 88. 3-D Square tip pitch oscillation data; no BL-trip; a = 11 +_2 deg.

428 0.8 0.10- 0.05 - y/Y - 0.966

c__ 0.6 0.05 _ 0.00-

0.4 i 0.00 , -0.05 10 1'2 I_4 8 I; 12 1'4 1; 12 Oc

0.6 0. I0- 0.05 -

ylY - / (_ 0.4 0.05 u E 0.00

0.2 r -0.05 8 10 12 i'o i'2 ,'4 i'o ,'2 Cc

O. 20 - O.OO -

0.15- 9/t - 0.995 -0.05 - J e d 08o.6 t 0.I0- -0.10 - 0.4 0.05 -0.15 8 lfO 1'2 Lr4 13 13 t'4 0

(a) v = O.04. Concluded

Figure 88. Continued.

429 0.10- 1.2- 91T - 0.250

l.O 0 E 0.05 -

0.8 I , 0._ I0 I12 @ I0 I12 I)4

O. 05 - |.2- 0.]0- _/T = 0.475

O. 05 - _)e 0. O0 d 1.0- J J 0.8 0.00 I0 12 14 8 I'o I'2 ;4

0,8- 0.I0-

cY DotoPotntlO: 5TPOTN.R0456

0,6- o - I0.95_ 2.07 De9. cb e 0.05-

Freq. - lO.Ol cps

0.4 v - 0.095 0.00 o lb 12 1_ t'o i'2 VeL. = 329.6 £p8 o

Hn - 0.289

Re = 1.98]0M10 e 0.0- 0.10-

0,6- r..__ 0.05 -

0.4 0.00 8 llO i_2 I14 ,'o I'_

0 o_

(b) v =0.10

Figure 88. Continued.

430 0.8- _/Y - 0.966 0.10

0"05 1

d 0,6- 0 _ 0.05

J °'°° 1

0,_ 0.00 i -0.05 / 1'4 10 12 1't 8 _b l_ t's oq

0.6 0.I0- 0.05 -

d 0.4 c__ 0.05 - E 0.00-

0,2 -0.05 1'4 O, O0 1; 1_ t't 1; ?2 o

0.20 0.00

o.e- ._/y_ 0.995 0.15 J J

0. I0- -0,10.-0.05 d o.0-

0.05 -0.15 o._ 1'o i'2 I'4 I0 I'2 l'4 B ,_ 1'2 G c_

(b) v = O.10. Concluded

Figure 88. Continued.

431 O.lO- _.2- y/y_ O.250

0.05 • I.O-

0.00 I 0.8 B i'o i_ 14

Oc

0.05 - 1.2

y/Y - 0.475 1 o.]o]

- [.0 r_ e 0.00

J °'°s 1

_ 0.017/ 0.8 -0.05 I'0 I'2 t'4 @ 1'o 1'2 1'4 8 1; 12 14

C_

1.2- y/Y - 0.800

0. I0- |.O- OataPotntlD: STPOTN.R0457 J

0.8 - 10.95± 2.13 Oe9. c_ e 0.05

Freq. - 14.02 cps

O. O0 0.6 - 0.134 _ 1_ 1'4 @ I'o i'2 14 Vet. - 329.8 fps

Nn = 0.288

Re - 1.9770"10' 0.10- 0.8-

E 0.05 - J 0.6-

0.00 0.4 I I_0 12 1'4 110 112 14 8

(C) v=0.14

Figure 88. Continued.

432 0.8- y/Y - 0.966 O.LO- 0.05 -

r__ 0.8 J 0.05- o m 0.00-

0.4 -(3.05 0 1'o i'_ i=i 0.00 ;o i'2 :4 ;o 1'2

0.5 9 O, IO-

i I

0.05 1

d 0.t O.OS -

0.2 , -0._ t4 8 I_0 I'2 Lil

0,20 - 0.00 --

0.8- 0.15 -0.05 - ylT - 0.995 J ,I/2" J

d 0.6 0.I0 / -0.10 J

0.1 0.05 i -0.15 v _; 1'2 8 1'o 1'2 14 8 10 12 I14

04 O_

(c) v = O. 14. Concluded

Figure 88. Continued.

433 0.10- 1,2 _/¥ - 0.250

C_) > 1.0 c:, E 0.05 -

0.8 0.00 ) ]iO I'2 14

1.2- 0.05 .y/Y - 0.475 °"1°I

/

1.0- _ 0.05 / t j o.oo "_/_" " o.ooI 0.8 -0.05 i'0 i'2 ,'4 e I; I'2 1'4 Ib 1'2 14

|.0- y/Y - 0.800

0.8- 0. I0-

OotoPotnt[D: 5TPOTN.R0458 c/

0.6- a - 10.94± 2.24 Deg. rj e O.O5-

Freq. - 20,04 cpe

0.4 u - 0.190 0.(30 8 lb 1'2 3'4 1'o ,'2 i'4 Vet. - 330.8 £p8

Mn - 0.289

Re - 1.9790-10' 0.0 - 0.10-

-- o //

d 0.6- O. 05 -

0.4 ,'_ ,'2 ,,i O. O0 /o _'2 ,,i

oi

(d) v = 0.20

Figure 88. Continued.

434 _l/'f - O. 966 0, I0- 0.05

_-j= 0.6 ot 0.05 - E 0.00

0.4 -0.05 8 1; 12 1',t 1; 12

O,B- 9/Y - 0.986 ,," 0.I0 - 0.05

d 0.4 r_ _ 0.05 - cj E O. 00-

0.2 i_4 0.00

c_

0,20 - 0,00

o.0 ..q/Y- 0.995 O.15- +0.05 - J

0. I0 -0. I0 -

0,4 i 0.05 -0.15 10 1'4 1_ 8 1'0 I_2 1_4 10 I12 114 o_ o(

(d) v = 0.20. Concluded

Figure 88. Concluded.

435 0.10 1.2

ejE 0.05 U 1.0

O.B 0.00 10 1_ 114 16 10 1_2 |14 1'6

CI

1.4 ylY - 0.475

1.2

1.0, J 0.05

0"I0 1

o.oot 0.00! 0.8 10 112 litl ,'6 I0 112 Ij4 16 I0 I12 I;4 I16 El 0

1.2 ylY - 0,800

0.10 1.0

DotoPoLntlD: 5TPOTN.R0460 d

E O. 05 0.8- - 12.94± 2.0i De 9.

Freq. - 3.99 cp_

0.013 0.6 - 0.038 I0 I'2 I'4 10 12 I'4 1'6 Oc O_ Vet. - 330.8 fps

Mn - 0.289

l.O- y/T - 0.900 Re - 1.9620"10 s

O.B

o_ 0"10 i

0.6

J o.os]

o,001 O. 4 I0 1'2 1_4 1'6 10 t'2 1'4 ;6

ol

(a) v = 0.04

Figure 89. 3-D square tip pitch oscillationdata; no BL-trip; a = 13 _+2 deg.

436 0.8- 0.15- 0.05 -

•9/Y -_ t//

c] _ 0.6 0. I0_ r_ _ 0.00-

0.4 0.05 -0,05 I0 I'2 1'4 1'6 10 i'2 1'4 t's I0 i'2 I'4 1'6

c_ o 0¢

0.8 0.05 -

d {3.6 0.00 .

0,4 0.05 -0.05 10 I'2 I'4 t'6 10 12 I'4 16 10 i'2 i'4

o o

1.0- U/T = 0,995 0.25 - -0.05 -

0.8 O. 20 -0. tO -

d J o E

0,6 0.15 / -0, 15 - /

0.4 0.10 -0.20

(a) v = 0.04. Concluded

Figure 89. Continued.

437 0.i0-

c_ 2]1.0 ¢.E 0.05 " O. 8 o. oo I0 J'2 ;,t lo 10 12 l,t o

1.4-

[.2- 0.I0

l.lJ- 0.05 i_ O. 05

0'10 t (-...___/f

0.0, I0 12 I14 i16 0.00 10 I'2 14 l_ 0.00 /10

1.2- y/Y - 0.800

[.O- 0.10 d / OotoPoLnt ID: STPOTN.R0461

0,8 e_ E 0.05 - 12.93± 2.07 De 9.

Freq. - 9.99 cps

0.6 i u - 0.095 O. DO I0 112 114 16

¢1 Vet. - 331.0 fps

Hn - 0.288 [.0- ylY - 0.900 Re- 1.9580_10 D

0.8- 0.10 - d

0.6 C3 0.05 -

0.4 O. O0 IO lm2 i14 15

o Of

(b)v =0.10

Figure89. Continued.

438 YlY -_ 0'15 1

d 0.6 J 0.00

_ CDE 0.05 j

0,4 .... 0,05 10 lO I0 ,'2 14

o

0.8 y/Y - 0.986 0.15- 0.05 -

0.6 ¸ d J 0.10 e 0.00-

i

0.4 0.05 -0,05 lO 112 114 116 I0 I'2 114 116 10 1_2 14 1'6

ol

|,0- ylT - 0.995 0.25 - -0.05 -

0.8 O. 20 7 -0.10

d J z7 _7 (_3E

0,6 ¸ 0.15 / -0. IS - /

0.4 I 0.10 -0,20 10 16 _o 1'2 ,', ;6 I0 12 14 1'6

o_

(b) v = O.10. Concluded

Figure 89. Continued.

439 O.lO

d O. 05

1"2 t "q/Y "_-

0.00 |0 I'2 114 16 O.B I0 I'2 1'4 I_6 c_

1.4 ,_ylY - 0.475

1.2

d

|.0- J

0.00 | 0.00! i ]2 1'_ 16 o.8,o /2 A ,'_ 10 10

[.2- .ylY - 0.800

|.0- 0.I0-

DataPoLntlD: STPOTN.R0462

O. 05 - 0.8 o - 12.93± 2.12 De 9.

Freq. - 14.0t cps

0.6 U m 0.133 0.00 1'2 1_4 10 12 i'4 16 I0 ,'6

Vet. - 330.1 fps

Hn - 0.288

|.0- ylY - 0.900 Re - 1.9490.I0'

0.8 0.10

d

0.6- e O. 05

0.4 [%00 ]0 I 6 1'2 1_ I'6 it2 1'4 I'6

(c) v=0.14

Figure 89. Continued.

440 0.8- O, 15 - 0.05 -

u/Y - O. 9_

d 0.6 O.tO- c3 E 0.00 -

0.4 0.05 -0.05 1)6 10 12 14 1'6 I0 12 1'{ 1)6

d o0.6 t/Y/ogsO.o.*10 t / r.3 E 0.00o.5t 0.4 0.05 J _ -0.05 l 10 1_2 1)4 1)6 I0 3=2 I)4 16 10 112 14 1)6

c_

1.0- 0.25 -0,05 y/Y - 0.995

0.8 0.20 -0. I0 - \\

d J /// J / 0.6 J 0.15- -0,15 /

0.4 O. tO -0.20 I0 12 1'4 I)6 10 1'2 1)4 1)6

c_ c_

(c) v = O. 14. Concluded

Figure 89. Continued.

441 1.4¸.¸ y/T - 0.250

1.2- 0.I0-

o_ i/ /

1.0- J 0.05 -

0.8 10 l J2 ll4

@

1.4- B/Y - 0.475

1.2- // d

1.0 r__ 0.05_ __ e 0.05 0-10 1/ _ O']O t

0.8 1o i'2 h 1_ o.oo,,o 1_ ;4 1_ o.oo,1o _'2 A ,'6

@

1.2 BIT - O.BO0

l.O 0.I0-

J OotoPoLnt[D: STPOTN.R0463

0.8 a - 12.91i 2.24 De9, rj e 0.05 -

Freq, - 20,03 cps

0.6 u - 0.190 I0 It2 14

oc VeL. - 330.7 £ps

Mn - 0.288 l.O Ro - 1.9510.10 B

0.8 0.I0

J

0.6 J 0.05

O._l I I0 12, 14, 15, ooo10 ] , 1,

(d)v = 0.20

Figure 89. Continued.

442 0.8- O.lO- 0.05 - - °

d 0.6 0.05 - E 0.00

O. 4 0.00 10 1_2 I'4 l'B 10 lJ2 1_4

c_ oc

y/T - O.986

d 0.6 ¸ o.1o J 0.00

oj 0'05 I

0.4 0.05 1 -0.05 I0 ,6 ,0 ,12 14 16 ,0 ll2 14 ll6

oc

[.0- O. 25

ylT I 0 i 995

>,1 7;" 0.8- 0.20

II/ d if,.. y_" J //II 0.6 0.15 r..___ -0.10 " \

0.4 I 0.,0 -0.15 lO 12 I_4 lIB I0 ,2 I'4 LT6

(d) v = 0.20. Concluded

Figure 89. Concluded.

443 0.0 y/T - 0.250

0.6

//1 0.4 J 0.2 0.05 1

0.0, ,/

s 0.(301 -0.05 -0.2 i i -I ; k _ } G Ol

0.8- y/Y - 0.475

0.6

0.4 d 0.2 7 J o.oo ._=-_ 0.0 0.00 oo]

-0.2 -O.05t , -0,05t -I ci

0.6-

0.4-

OotoPoLnt ID: 5TPOTN.R0465 0.2- 0.05 1 j ooo 0.0 - 4.00± 4.04 De9.

Freq. - 4.01 cps -0.051 -0.2 -| 3i 5i 7i 9i - O. 038 Oi

Vet. - 329.8 fps

Mn - 0.288 0.5 y/T - 0.900 Re- 1.9560_i06 0.4

0.2 0.05 1

0.0- J 0.o0] -_--_=>" -0.2 - -0-051 -, ; _, 5, } -I ; _ _ _ CI @

(a)v = 0.O4

Figure 90. 3-D square tip pitch oscillation data; no BL-trip; a = 4 +_4 deg.

444 0.05 0.2 - 0.05

J /-- 0.00 o.o0.4] y/_ _ J o.oo]]

0.2 _ _ ) -0.05 | ; ) ; -0.05

o c_

// 0.05 ] d o_ o.oo °_to2_/Y_-0.986 0.05] _" o.oo] _------..... 0.0 , -0.051 -1 1 _ ; ) ; -o.os/-! o

0.1

0.2 d 0.05 ]

0.0 /_ _ 0.05

oot r...JE 0'00 l

-0.2 , 0.00 | , -0.05 / 9 -1 -1

c_

(a) v = 0.04. Concluded

Figure 90. Continued.

445 O.B y/Y - 0.250 0,8 f i 0.4 .Y d

1 0.2- J y 0.0-

-0.2 -0.05 / -! -I

0.8 y/Y - 0.475

0.6

d 0.4

0.05] 0.2- - 0"051 J o.oo] c...__ 0.0 r_.)E 0.00 1 -I i _ _ ; , -0.05/ -0.05 I I 9 -] i 3I 5I 71 9 -1 I 3 5 O_ c_

0.6 ylT - 0.800

0.4

d o.2- OotoPotnt ID: 5TPOTN.R0466

0.0- - 3.98± 4.25 De9. i:iit,...... -0.2 Freq. - 14.02 cps -! -0.05 l - 0.133

VeL. - 330.0 fps

Mn - 0.288

Re- 1.9510_t0'

0"05 1 .....

E moo] ,.-2_ -o.0s /

o_

Figure 90. Continued.

446 0.2 0.05 - 0.05 U o.o /- o_ o.oo _ J o.oo °_ I _IY_ J

-0.2 l , l r -0.05| -0.05 -, J ; _i _ 9i

O. 2 J _ O. 05 O. 05 -o.___ 1 _ ; _ _ -o.o_)_ 1 _ ; _ ; -o.o__tI ...... _ ; i ;

0.2 O, .tO 0,05 J

o.o j o.osl __-----_J _. o.ool --__......

-0.2 , , _ 0.00| , -O.OS | _ , , , ----7

O_ Oi (_

(b) v = O.10. Concluded

Figure 90. Continued.

447 0.8-

0.6-

0.4- d 0.2- 0-O5l

0.0- J- °°°I--o.o51...... -0.2 -! _! ', _ _

Cw

0.8- 9/Y - 0,475

0.6

// z

0.4- 0.05 -

//-"

0.2- _ 0.00

0.0 , , , -0.05 ! 3 5 _ 9 -1

oz

0.6-

0.4-

d o.2_ DataPoLnt ID: STPOTN.R0467

O.O- - 3.98± 4.15 De 9.

o.2J Freq. - lO.Ol cps -I u - 0.095

VeL. - 329.6 f'p_

Mn " 0.287 0.6- _IY - 0.900 Re- 1.9480_10'

0.4

c__ 0.2 0.0 _ii°°5- t -0.2 -1

&

(C) v=0.14

Figure 90. Continued.

448 0.2 0.05 0.05 U

o.o J o.ooI o" o.oo]

-0,2 , , , , -0.05 | , , , , -0.05 | -1 _ 3 5 7 9 -I _ 3 5 7 9 -1 3 5 7

o

0.2 0.05 0.05

°"lo.o t- j o.oo]1 _" o.oo1

-0,2 , , -0. OS / , , -0.05 | i i i r -1 I 3 _ ; 9 -I i _ 6 7 9 -i I 3 S 7

0.2 O.lO-

J 0.05 ] - _ _ 0.0°'41 91Y - 0.99__.,/ 0.05 ] J J o.oo] ......

-0.2 , _ , 0.00 / i i r l , -0.05 I , , , , I 3 5 7 9 -1 ] 3 5 7

0 C_

(c) v = O.14. Concluded

Figure 90. Concluded.

449 1.27 ylY - 0.250

l.O-

L d O.B- J °-°sI 0.6- f J o.oo] 0.4 -0.051 4 _ _ 1'o /2 I'4

|.2-

1.0

(_ 0.8 0.10 1 0.05 1

0.4 ' /4 o.ooi J'4 -o.os-_

@

1.0- ylY - O.BO0

0.8-

DotoPoLnt IO: STPOTN.RO4Gg cj _ 0.6- o.os] 0.4- J o - 9.00± 4.04 De 9. L)e 0.001 Freq. - 4.00 cps 0.2 -0.05m , , 4 6 @ I'0 1_2 u = 0.038

VoL. - 330.8 fpB

Nn - 0.288

Re- 1.94B0-I0"

0.6. 0.10 u 0.40.81 C_ E O. 05 0.2 I I 0.00 4 6 8 l'O 1r2 I'4 8 I'0 I'2 I14

(a)v=O.04

Figure 91.3-D square tip pitch oscillation data; no BL-trip; a = 9 _+ 4 deg.

450 0,8

0,6 d 0.4 J o.os J o.oo 0.10- 0.05 t

0.2 O. O0 / , , -0.05 | , , 4 _ 1'o ,'2 ,4 4 _ 8 lo ,'2 ,4 4 6 8 ,o 1'2 1'4 o_

0.6- d 0.4 °°l _ °°'l O'e1 LI/Y - 0.98_ oo1 / _ ooo1-__ O.2 / 0.00 / , -0.05 | , , 1"1 ,4 6 8 tO 1'2 1'4 4 6 8 1'0 (2 114

0.20

0.15

rj _ 0.10

d -oo510.00 ] 0.05 -

-0"10 1 _. , 0.00 -o.15/ 14 8 1'0 1'2 1'4 4 6 8 1'0 1'2 o o

(a) v = 0.04 Concluded

Figure 91. Continued.

451 [.2- y/Y - 0.250

l.O-

d 0.8-

0.6-

0.4- 0.05 / 4 ; ; I'0 1'2

1.2 .y/l' - 0.475

7/" 1.0

d o.0

0"I0 1 0.05 ] / 0.6 7 0.00 ]

0.4 0.00 = ll4 4 6 8 IwO 1=2 14 -0.05 14 6, 8, l_O 112 14

|.0- y/Y - 0.800

0.8-

cJ 0.6- OotoPotntID: STPOTN.R0470 0.05 3

I 0.4- a - 8.97± 4.16 De 9. roe O.OO1 Freq. - 9.9B cps 0.2 _ ,0 ,2 1', -0.05 / , ; ; 1'o ,'2 i u - 0.095 ]4

VeL. = 330.[ fpe

Nn - 0.287

Re - ].9390_[0 s

0.6 d 0.10] 0.4

roe 0.051 _- _- ...... _

0.00 t , ; ; ;o I'2 ]'4 4 6 8 l_O LJ2 1'4

O_ (_

(b)v =010

Figure 91. Continued.

452 0.6 O. 05 -

0.4 0.05 o E 0.00 0'81 yI¥ 0.96- °iI 0.2 0.00 _ -0.05 | 6 lo 12 1'4 oc O_

0.4 0.05 cS 0.2

c__ 0.051 c_E 0.00

0.0 0.00 1 _ -0.05 | , , r 6 6 i'o ,'_ 1'4 4 6 8 110 1'2 1'4 4 6 8 I0 12

0.8- 0.20 .y/Y - O. 995

O.6- 0,15

cj _ 0._- 0. I0- -0,05

J 0.00 1 "_ / 0.2 0.05 - / -0'I01 0.0 0.00 -o. 15 / 6 6 l'o i'2 t_4 6 6 l'o 1'2 1'_ 4 6 6 l'o 72

cx

(b) v = O.10. Concluded

Figure 91. Continued.

453 ].2- 9/T - 0.250

1.0-

0.8- o.o5].---...... _> 0.8- J o.oo]c__.___ 0.4 -0.05| , , 4 6 8 I_O t'2 1'4

1,2- y/T - 0.475

[.0- 0.8- o.,o] o.o1 _ 0.6- J _

0.4 i y 1_4 o.ooi4 -T--_6 @ 110 [v2 114 -o.os41 6,

|.0-

O.8-

DoLoPoLnLID; STPOTN.R0471 cj_ 0.6

0.05 1 / 0.4- a - 8.96± 4.26 De 9. o.oo] Freq. - 14.00 cps 0.2 -o.os / 4 _ L'o 1'2 1'4 - 0.133 o_

Vet. = 330.1 rps

Hn - 0.287

Re - 1.9350M10 s

m . ////////

0. t0] 0.4 06081 o.05] c 0.2 o.oo / 114 4

(C) v=0.14

Figure 91. Continued.

454 O.B O, 10 - 0.05 - d oo81/yo90.05 t r._m 0.00 0.2 _ _ 0.00t i -0.05 | 4 B 8 l; IS 1'4 4 ; 8 llO 1'2 14 4 ; ; l; 13 1_4

f J 0.05 c.3_; 0.00 _ ...... _ _ _ _

0.2 "" _/'_ _ 0.00| I -0.05|

0.20

0.15

0.10 -0.05

f.2_E 0.05 -

-0'10 7 0.00 -o.x59 ; _ 1'o 1'2 t'4 4 e ; i; x'2 c_ ot

(c) v = 0.14. Concluded

Figure 91. Concluded.

455 d

c3 E O. 05 0.8 0"i0 1 o.oo/ o.60 ; I; t'2 1'4 ]'6 6

1.4- y/T _ 0.475

[.2-

1.0-

0,05 1 0.I0 0.8- 0.05 o.oo] 0.6 -0.05 1 i i I'O 1'2 14 16 0.00 I'O 112 It4 16 6 @ 1'O I12 I14 16

0 C_

|.2 7 ylf - 0.800

l.O-

DotoPoLntlO: 5TPOTN.R0473 d 0.0- 0.10

0.6 o - ll.Ol± 4.05 Dog. ¢j_ O. 05

Freq. - 4.01 Cp8 0.4 i i O. O0 8 1'O ,'_ ,; ,G 6 I'O ?2 ,'4 ,'_ - 0.038 0 Vet. - 330.4 fps

Hn - 0.287

Re - 1.9410MI0 a SIT - O.900

0.8- d

0.6 e O. 05 o] O.lOj

0.4 0.00 ! 6 1'0 1'2 1'4 6 I'0 1_2 L"i ,'6

(a) v = O.04

Figure 92 3-D square tip pitch oscillation data; no BL-trip; c_= 11 +_4 deg.

456 1,0 9 y/Y - 0.966

0.8-

O. t5] d 0.6-

0.4 0.05 1 c..)E 0.00

0.2 , 0.00 | , -0.05 | 6 10 1'2 1'4 1'8 8 ; i0 I'2 1'4 I'6 8 ; 1'0 12 1'4 1'6

0.6 O. lO 0.05 d J

oo._l/y/ 0.051 j o.ool 0,2 _, I'0 ,'_ ,'4 _'_ 0.00/ 6 _ i'0 ,'_ ,'_ 16, -0.05 l6 _ _'0 ,'2 i'4

fiq c_ (_

0.25 -

|.0- 0.20 .y/T - O. 995 7 7

0.8- 0.15 -0.05 - J 0.00 - c_ _ 0.6 0.10- r3 e -0.10-

0.4 0.05 - / -o.15

0.2 i i 6 116 O. O0 ,'0 ,'2 ?4 i_ -o.2o ]'0 112 1_4

C,

(a) v = O.04. Concluded

Figure 92. Continued.

457 t.4 y/Y - 0.250

1.2-

/ 1.0- 0.10

0.8 C]_ O.05 7 I ( 0.6 o.oo /

o o

1.4 ylT - 0.475

1.2

¢j' 1.0 O. 10 - 0.05

0.8 c__ 0.05 t _ c__E 0.00

0.6 , 0.00 | _ -0.05 B lJO i)2 tJ4 I16 6 8 I'0 I)2 I14 lJ6 ) 1'0 I_2 I'4 ]16 Ol

1.2- 91¥ - 0.800

1.0-

BotoPoLntIO: STPOTN.R0474 0.8-

0.10] 0.6- o - ]0.99± 4.17 De 9.

Freq. - 10.01 cps / 0.4 0.00 / 6 IvO I)2 I'4 I'8 8 8 1'0 1'2 t'4 ,'6 - 0.095 o_

Vet. - 330.7 fp8

Hn - 0.287

Re - 1.9360_10 s

0.8-

d 0.I0] 0.6 J J 0.05 ] _ _ ...... oIJY09o o.oo/ _.Z_ 0.4 6 8 {0 I)2 lW4 1'8 6 8 I0 12 t4 1; o_

(b)v =0.10 Figure 92. Continued.

458 - . /f _ 0"15 1

U

O.'B] 0.O5 1 o.5-°8J0.4 N/y_,,..,_ _ oo,1 ooo1 0.2 i 6 B ;o ,'_ ,_t 6 0.00 -_----T-6 8 -- 7 10 1'2 1'I ?6 -0.05 f 6 8; 'JO 1'2 "4

O_

0.8 y/Y - 0.986 0.6 o,s] 0.o5] d 0.,0] 0.4

m 0.2 F _ t -o.o5 ! I ,0 i11 6 12 t6 0.00 / ; I; ,'2 ,'4 t'e 6 ; ]'0 1'2 ,'4 16

o_ o¢ @

0.25 -

l.O- O, 20 y/f - 0.995

O.B- O. t5- -0.05 J

-_ d 0.6 0.[0 -0.I00.00

0.1 0.05 - -0.15-

0.2 i 0.00 i -0.20 ,_ 1'2 1_ 16 ; 1; 1'2 1'4 16 6 ]i0 112 if4 116

(b) v = O. 10. Concluded

Figure 92. Continued.

459 1.4 y/T - 0.25O

1.2 /

1.0 0.10

0.8 E 0.05

O.B 0.00 ol iiO lu2 11t t'O LI2 Iv4 ]16

o

1.4 y/¥ - 0.475

1.2

d 1,0-

0.10 1 0.05 0.8- / J 0.6 vo llO L'2 1u4 1'6 0.00| 6 0l 1_0 tl2 I'4 1'6 -0.05 t'O 1'2 l'l 1'6

Oc Oq

[.2- _IY - 0.800

t.O-

OatoPotntIO_ STPOTN.R0475 d 0.8- 0.]0

0.6- o - 10.97± 4.28 Oe9. o e 0.05

/ Freq. - 14.03 cp_ 0.4 0,00 l'O i'2 t'4 I'6 I'0 I'2 l'4 16 - 0.133

Vet. - 330.6 £ps

Hn - 0.287

1.0 yl'f - 0.900 Re - 1.9300_106

0.8 d

0.6 c je O. 05 0"I01

0.4 o.ooi 6 IVO 1_2 t'4 6

c_

(c) v=0.14

Figure 9,2. Continued.

460 [.07 y/T - 0.966

0.8-

O. t5]

d 0.6

0.05] _ _ ...... _ _ j O'tO- 1 0.4

°'°s 1 ...=..I _- r_3E O,OO 1 _ 0,2 o.oo / I=6 6 8 16 1'2 It4 116 -0.05 | 6 8, 16 1_2 i'4

d 0.6- ..f>- J O.lO 0.4 0.05 °'e t _/T- 0.986 o.t5 C_._E 0.00 t

0.2 , 0.00 -0.05 l 6 8 I0 I12 I'4 l'6 6 6 16 15 G ;6 6 6 16 12 G

0.25 -

],0- y/T - 0.995 0.20 -

0.0 O.IS- _" -0.05 - J 0,00 - d 0.6 0. I0- r..3e -0.10-

0.4- 0.05 - / -o.15-

0.2 0.00 1=6 -0.20 6 16 ;2 ,'4 116

o_

(c) v = O.14. Concluded

Figure 92. Concluded.

461 0.1D-

d ,.o ./f ...... C) E 0.05-

1.2] 3/Y = O_

0.8 O. O0 ! 0 I'2 I'4

[.4- _l/Y - 0.475

|.2- 0.05

d O']O 1

1.0- _..__.._._#. C) E O.O0

_y o.o5]

0.0 o.oot _o i'2 ,'4 I'6 I0 J'2 1'4 1'6 -0.0510 1'2 1'4

o

1,2- y/T - 0.800

I.O

J

0.8 a - 12.95± 1.98 De 9. _ o.os DotoPoLntID: RTPOTN.R0367 °'I°l Freq. - 2.99 cps

0,6 I - 0.028 o.o01 I0 I'2 ll4 16 IO 1'2 ll4 16 o_ VeL, - 330.5 fpe

Mn - 0.289 1.D ylY - 0.900 Re - 1.9680-i0 i

0.8 ¸ O.lO-

d

U.6- C.j _ (]. 05 -

0.4 10 1_2 I'4

(a) v = 0.028

Figure 93. Frequency sweep; no BL-trip; q = 117psf.

462 0.8- y/Y - o.966

O'tO 1 0"I01

J £.DE d o.eI

0.4 IO 10 l_ 1_ 1'6 10 _ 1_ 1'6

0,6 y/T - 0,986 0,15- 0.05 -

C.Y' O. 'I c__ 0.10- 0.00 -

0.2 I 0.05 -0.05 i i 10 16 10 I_6 I0 IT2 114 16

I°0- 9/'f - 0.995 0,30 - -0. tO

/l 0,8 0.25 - -0.15. ///

d J E

0,6. 0.20 -0.20 -

0.4 , 0.15 -0.25 I0 I'2 I_4 116 10 I_2 114 116 1o 1'2 I_ 1'_ o_ ot

(a) v = 0.028. Concluded

Figure 93. Continued.

463 1.2 0.I0-

(._5_ 1.0 C_DE 0.05 -

0.0 ) O. O0 10 12 1)4 16 I0 12 I)4 ]16

1.4- _/T - 0.475

1.2- 0.10- O. 05 -

r / J

1.0 c__ 0.05 - 0.00 -

O.B 0.00 ) -0.05 10 1'2 1_ 1'6 10 1'2 1'4 16 10 G A _6

o_ o_

1.2- 9/T - 0.800

I.O- 0.I0

U OotoPoLntlD: RTPOTN.R0368

0.8 - 12.95± 1.99 De 9. r__e O. 05

Freq. - 3.99 cps

0.6 = 0.038 0.00 lO /2 14 116 lO 112 114 16

Vet. = 329.7 fp8 @

Mn I 0.287 1.0 _/Y - 0.900 Re - 1.9520"10'

0.8 0.I0-

d

0.6 ¸ J 0.05 -

0.4 O. O0 10 12 1'4 16 lO I'2 1'4 1'6

e_

(b) v =0.038

Figure 93. Continued.

464 0.8- 0.10 0.10-

d 0.8- 0.05 cn E 0.05

0.4 l O. O0 16 10 16 0.00 10 1'_ 1'I I'_

0.05 -

d 0.4 06] 0.00

0.2 i -0.05 10 12 I_4 1_ 0.05 i 1o 116 I0 l J2 L_4 L)6

o(

|,0- ylT = 0.995 0.30 - -0. I0

0,25 - -0.15

J J

0,6 0.20 -0.20

0.'1 0.15 -0.25 ] 0 112 14 10 ,'2 ;4 i'6 10 112 lr4 1'6 C_

(b) v = 0.038. Concluded

Figure 93. Continued.

465 1.2- 0.10- ylY - 0.250 _f-_l

1.0- cbE 0.05 -

0.8 0.00 I0 12 1'4 16 10 12 1'4 _8 ol

1.4 BIT - 0.475

1.2 0.05 -

J O'lO i

1.0 O. O0 -

J o'051

0.8 -0.05 10 ll2 It4 I'6 0.00| I0 I'_ ?4 i; IO I_2 I_ I'6

Ot c_ c_

[.2- ylT - 0.800

I.O- 0.10-

d OotoPoLnt[O: RTPOTN.R0370

O.B- o - 12.94± 1.99 De 9. _'_ D. 05 -

Freq. - 4.9B cps

0.6 v - 0.047 0.00 10 1'2 IT_ 1'6 lO Ii2 Ii4 i IG Vet. - 329.2 fps O_

Nn - 0.287 l.O- y/Y - 0.900 Re - 1.9410"10 B

O.@- [I.10 -

d j-

0.6- E 0.05-

0.4 0.00 I0 112 1'4 116 10 12 114 16

oq Oc

(c) v = 0.047

Figure 93. Continued.

466 O.B- 0.10- O. tO

0.6 rj _ 0.05- J 0.05

0.4 0.00 O. O0 Io ,'2 i_ t'6 10 1_2 14 II6 10 6 6 116

0,6- y/T - o.986 0.05 -

d 0.4- J 0.10

0.15] r._)e 0.00

0.2 , 0.05 t , -0.05 i I0 12 114 10 10 12 lr4 16 10 6 1'_ 16 o(

1.0- 9/T - 0.995 0.30 - -0.10 -

z 0.8- 0,25 -0.15 -

y / d J / 7 fje

0.6 0.20' -0.20 J 0.'1 0.15 -0.25 1o 6 ,'4 ;6 I0 f2 f4 6 10 6 L_ 1'6 o_

(c) v = 0.047. Concluded

Figure 93. Continued.

467 1.2- 0.10-

d _ 1.0 - _.3E 0.05 -

0.8 0.00 10 12 I'4 1'8 I0 I'2 I'4 16

o

1.4- _/Y - 0.475

[.2- 0.05 -

d

[.0- J O. 05 r_ E O.O0 -

0"10 t

0.8 0.00| , -0,05 10 1'2 I'4 1'6 10 3'2 I'4 16 I0 I'2 I'4 ,6

1.2- S/Y - O.BO0

1.0-

d OotoPoLnt[O: RTPOTN.R0372 o.10]

0.8-

oFreq.- 12.93±- q.99 1.99cps De 9. E 0.051

0.6 u - 0.047 o.oo/ 10 1'2 I'4 I'6 10

Vet. - 333.0 fps

Nn - 0.290

[.0- Re - 1.9560_10"

0.8- 0.10-

d

0.6_ r_) e O. 05

0.4 I 0.00 i I0 I'2 I'4 16 ,o 12 ,4 ,_

(c. 1) v = 0.047; repeat

Figure 93. Continued.

468 0. I0- 0,I0- d o6°t/o960.05 _e 0.05 0.00 l 0.00 O. i 10 ll2 114 ['6 I0 12 I_4 16 I0 ,3 ,_ 1'6

0.05 y/Y - 0.986 0.15-

d 0.4 rj_ 0.I0-

0.2 0.05 I'2 14 16 I0 It2 I'4 10

-0. I0 1,0- yl_ - 0.995 0.30 -

/

i / 0.8 O. 25 - -0.15

iII J J J

0,0 ¸ 0.20 - -0.20 -

0.4 0.15 -0.25 r I0 1'2 14 I'6 10 13 A 1'6 I0 I'2 1'4 16

c_ o_

(c. 1) v = 0.047; repeat. Concluded

Figure 93. Continued.

469 1.2- 0.10 -

,y/Y - i I

d 1.0- rj s 0.05

O. °" 1o I'2 I'_ ;6 O0 Jo G fi G

o(

|.4-_ 9/Y - 0.475

[.2- 0.05

d

1.0 0.05 cDE O. O0

O.lO{

O.B -0.05 10 116 O.OO/ 10

1.2 ylY - 0,000

l.O

d OotoPoLnt I0: RTPOTN. R0369 0"101

0.8 ¸ - 12.94± 2.00 De9, e 0.051 Freq. - 6.00 cps J 0.6 v - 0.057 0.oo/ 10 10 1'2 1'4 16 Vet. = 329.5 fpe

Mn - 0.287 1.0- y/Y - 0.900 Re- 1.9460.10'

O.B- O.lO d

0.6 c_ e 0.05

0.4 O. O0 ,o G 1'I i'6 10 G 1_ 1'6 c_

(d) v = 0.057

Figure 93. Continued.

470 0.0- 0.10- 0. I0-

d 0.6 J 0.05- z 0.05 -

0.4 0.00 I0 lib I 0 i_6 0.00 I0

0,5 - O. tO- 0,05 y/T - 0.986

d 0.4 0.05 - 0.00

0.2 i 0.00 - -0,05 16 10 16 ]0 12 I14 116

|.0- 0.30 --0.I0-

0.8 0.25 "-{3.15-

d J o"

0.6 0.20 - -0.20

0.4 0.15 i -0.25 I0 10 t6 1o 1'2 L; 1_

(d) v = 0057. Concluded

Figure 93. Continued.

471 1,2- 0.10-

d 1.0- 0.05 -

O.B 0.00 lo 1'2 A I;

oc

1.4 ylY - 0.47_5

[.2 0.05 .J d

1.0 0.05 S,.rw-,---,-' c_ 0.00

0.I0[

0.8 -0.05 I 0 I'2 ]l IB 0.00 1I0 i'2 lid 1'6 I0 ,'2 I'_ _'8

1.2- _IY - O.BO0

[.0- 0.I0

d OotoPoLntIO: RTPOTN.R0373

O.B- o - 12.93± 2.00 De9. (_jE O, 05

Freq. - 5.99 cps

0.@ v = 0.057 O. O0 j I0 11:2 ll4 ]_6 I0 112 I_ 16

0 Vet. = 332.3 £ps

Mn - 0.289 |.0- ylY - 0.900 Re - 1.9440_i0 _

0.0 0.]0

d

0.6 O. 05

O.i 0.00 I0 1'2 1'4 1_6 10 1'2 I'4 1'6

c_ c_

(d. 1) v = 0.057; repeat

Figure 93. Continued.

472 0.8 .y/Y - 0.966 0.10- 0.10-

d 0.6 J 0.05- • 0.05 -

0.4 16 0.00 10 Ii 0.00 I0

o

0,6 - y/Y - 0.986 c_J 0.4 iiil 0.2 I I0 It2 14 16 I0 16

c_

1,0 y/Y - 0.995 0.30 - -0.10 -

0.8 ¸ 0.25 - -0.15 -

d J _Y " J

0.6- 0.20 -0.20- j, o.i1o ,'_ ,'i i_' o.,51o /_ /_ ,'_ -0.251o ,'_ ,'i ,_'

(d.1) v = 0.057; repeal Concluded

Figure 93. Continued.

473 [.2- 0.I0-

y/y -

l.O- f_.)E 0.05 -

0.8 O. 00 10 12 lW4 |6 I0 ,'6

o_

|.4-

1.2- O.lO- 0.05

d

l.O- J 0.05 - c_)e 0. O0

O.B -0.05 I0 I'6 10 ll2 14 16

O_

[.2- 9/Y - 0.800

|.0_ 0.I0

d DoLoPotntID: RTPOTN.R0374

0.8- r) '_ 0.05 a - 12.93± 2.Or Be 9.

Freq. - 7.00 cps

0.6 - 0.066 0.00 _o I'_ I', I_

Cx VeL. = 331.4 rps C_

Hn - 0.288 [.0 Re - 1.9320.10 u

O.B- 0.I0-

d

0.6- _D _ O. 05 -

0.4 0.00 10 I0

ct

(e) v = 0.066

Figure 93. Continued.

474 0.8- jf - 0.966 0.10 0.10-

_F d 0,6- 0.05 0.05

0.4 0.00 10 6 I'4 l_ o.oo10 12, 1_ I'6 10 12 I_ 1'6

0._- 0.15- 0.05 -

d 0.'_- 0. I0- r..3e 0.00-

0.2 0.05 -0.05 ) i lO 12 14 16 I'6 10 112 14 10 1)2 I'4 t6

1,0 ._/_' = 0.995 o.3o- -0. tO -

0.8 -0.15 -

d J 0 e

0.25 - 0,8 0,20 -0.20 -

0,4 J -0.25 10 6 6 _; o.ts,o ?2 ?4 t_ ]0 I_ I_ I'6

(e) v = 0.066. Concluded

Figure 93. Continued.

475 1.2 0.10-

E d 1,0 C_ 0.05 -

/

O.B 0.00 I0 12 I'4 ]'6 1o G A 76

1.4 _/Y - 0.475

1.2 d oo] o 1.0

0.8 o.oo / 10 G G /6 ,o /2 G ]'6 o.os /10

oc

1.2- yll - 0.800

[.0- 0.10-

J OatoPoLntlD: RTPOTN.R0375

0.8- a - 12.92_ 2.01 De9. c3 E 0.05

Freq. - 8.01 cps

- 0.076 0.00 0.6 10 12 I'4 116 ,o i'2 A i'. Vet. - 331.3 fpe o Mn - 0.288 1,0 3IT - 0.900 Re - 1.9300_10 !

0.8

d O.]O]

0.6 ¸

J o.os] 0.4 o.ooI 10 10 I_ A /. Oc

(f) v=0.076

Figure 93. Continued.

476 0.8

3/7 - 0.966 °-t° 1 0'I01 d o"

0'6 t

0.4 o,oo / 10 ]'2 _v4 1'6 _0 12 1 16 10 o Ot

0.6 y/Y - 0.986 0,05 -

d 0.4 E 0.00-

0.2 I -0.05 lO I_2 I_ 116 0.00 I 10 16 10

1,0 91T - 0.995 0,30- -0,10 -

0,8, 0.25 -0, 15 - d J 17V J j." 0.6- 0.20. -'0.20 - /. 0.4 0.15 -0.25 I0 i'2 ,'4 ,'6 10 1'2 1; I0 112 I_4 116 cr

(f) v = 0.076. Concluded

Figure 93. Concluded

477 0,I0- 1.2-

- 1.0- O. 05

O. O0 0.8 iO 1'2 1'4 ]'6

oc

1.2 0. I0- 0.10-

c_-" 1.0 0.05 - cn E 0.05 -

0.8 I0 ]'2 14 116 0.00 10 1'2 l_ 116 0.00 I0

1.2- _/I - 0.800

1.0- 0.I0

d OotoPoLnt[O: RTPOTN.R0377

0.8" - 13.01i 2.01 De9. c3 e O. 05

Freq. - 2.99 cps

O. O0 0.6 I v - 0.041 i 10 112 1'4 16 lo 1'2 i'_ 16 Vet. - 229.9 £p8 Cc

Mn - 0.204

Re " 1.4460_t0" 1.0- 9/T _ 0.900

0.8- 0.10

d

0.6- (_jE O. 05 ..... J

0._ i 0.00 1o 1'2 1_ 16 10 1'2 I'_ 1'_

O_ c_

(a) v = 0.041

Figure 94. Frequency sweep; no BL-trip; q = 60 psf.

478 O.B" 0.10- 0.10 y/Y - 0.966

E 0.05 d 0.6- /./ r_ _ 0.05 - c..)

0,4 0,00 0,00 10 1=2 lr4 1i6 ] 0 !16 ! 0 t_6

,&

y/Y _ 0.986

0"15 7 0,05 1

r_ _ 0.4 J o.,t J °'°° 1

0.2 -0.05 / 10 ]l2 ll4 116 10 116 10 1'_ ,'4 ,'6

0 (3{

0.30 -

0.25 - -0,05 7

/1/ -0. tO 9/Y - O. 995 J 0.20 - J

d o.6 O. t5- -0.15 - 08t J

0°4 O. tO -0.20 10 i'2 A ,'. I 0 1'2 1'4 1'6 I0 I_2 1'4

(a) v = 0.041. Concluded

Figure 94. Continued.

479 0.I0- 1.2 y/T - 0.250

d 1.0 e 0.05 -

0.8 O. O0 10 12 1'4 16 I0 1'2 1'4 16 Of

0.I0- O. 05

ylT-

t.O J 0.05- CDE O. O0

0.8 l 0.00 -0.05 I0 ¢;' lU4 16 I0 12 1'4 16 ,o ,_ 14 ,_

01 @

1,2- ylT - 0.800

1.0- 0.10

cY OotoPotntID: RTPOTN.R0370

0.8- - 13.00± 2.01 Oe9. c__ 0.05

Freq. - 4.00 cps

0.6 - 0.055 0.00 10 1'2 I'4 1'6 Vet. - 230.3 ?ps

Mn - 0.204

1.0- ylY - 0.900 Re - 1.4420_I0'

0.8- 0.I0

d

0.6-_ J 0.05

0.4 0.00 I0 ¢2 (4 16

Oc oc

(b) v = 0.055

Figure 94. Continued.

480 0,8- 0.10-

d 0.6 c.3 E O. 05 -

0.4 0.00 I0 1_6 ] 0 112 li4

0.6- ylT - O. 986

0"15 1 0'05 1

d o._ t J °'1° 1 c__ 0.00 1

0.2 0.05 ! -0.05 1 10 tl6 10 12 1'4 1_6 10 1_ A _'_

O. 30 -

0.25 - -0.05 -

/Y y/Y - 0.995 0.20 - -0. IO-

E d 0.6 I 0. L5 j/ -0.15

0.'I 0.10 -0.20 1o I_ h 1'6 lo 1_2 1'4 1'6 Io I_ tq &

(b) v = 0.055. Concluded

Figure 94. Continued.

481 0.I0- [.2- - 0.250

_/T

d 1.0- c_ a 0.05 -

0.8 0.00 li4 10 ll2 1'4 16 10 112 I'6

1.2 0.05 -

1.0 e_ _ 0.05 _..___ _" o.oo- 0"10 t

0.8 i 0.05 I12 I'4 I0 I'2 fig 116 0.00 /10 16 ll4

cl cl

1.2 9IT - 0.000

t.O

d OataPotntlD: RTPOTN.R0379 °'l° i

0.8 - 13.00_ 2.02 Oe 9. _" 0.057 Freq. - 5.02 cpe I 0.6 I - 0.069 o.0oi I0 ll2 11t lB IO G ,'_ _'_

o_ Vet. - 230,3 £ps

Mn - 0,204

Re - 1.4410_10 ° t.o- ylT - 0.900

0,8

d

0.6 Ej E 0.05

0"10 1

0.4 o.oo/ ,o G A 1'6 1o ll2 I'4 16

@

(c) v = 0.069

Figure 94 Continued

482 0"I0 1

c3_ 0.6 r...)E O. 05 °l°1 0-8 t .q/Y - 0.96 J 0"051

0,4 0.00 l , 0.00 | i I0 I12 I14 116 ]0 16 10 16 oc

O, t5- y/Y - 0.966

0.05 1

d 0,4 0.10- rt3 e O, O0 1 o6t / 0,2 0.05 -0.05 / 1_2 I'4 ['6 10 1_6 ] 0 I'6 I0 (_

O, 30 -

O. 25 - I -0.05 -

#/# 0.8- O. 20 - -0. tO - ,_IY - 0.995

#1 f_jE

-0.15 - d 0,6- 0.15 7

0.4 , 0. I0 i -0.20 1_2 i14 1'6 I0 I12 14 _. ,o 1'2 ,'4 16 I0

(c) v = O.069. Concluded

Figure 94. Continued.

483 1.2- 0.10 _

d t.O" 0.05 -

O.B ,o ,_ A i; 0.00 I0 @ Oc

1.4 9/Y - 0.475

1.2 d °1°1 °051 l.O- J oos1 ooo1 0.8- 0.00 l , -0.05 l I0 ,'2 1'4 1; 10 12 lr"l 116 10 ,'2 1'_ 1; Oc O( Ot

1.2- y/I - 0.800

t.O

DaLoPoLnLID: RTPOTN.R0380 o. lo]

0.8 - 13.00± 2.02 De9. u E °-osI Freq. - 6.00 cpe J 0.6 v - 0.082 o.oo! I0 lo 131 Vet. = 230.6 fps 131

Mn - 0.205 |.0- y/I - 0.900 Re - 1.4420M10 a

O.8- 0.I0

d

0.6 (D O. 05

0.4 I0 0.00 I

Ct Ot

(d)v = 0.082

Figure 94. Continued.

484 0,8- y/'l' - 0.966 0.10- O. tO

d 0.6 J 0.05- c.3 E 0.05 -

0.1 I 0.00 10 _'2 ,'4 t6 I0 1_6 0.00 10 O_

0.15 O. 05 -

d O.'l o6t 0. I0 J 0.00 0,2 ]0 1,6 0.05 I0 116 -0.05 I0

0.30 -

0.25 - - / -0.05 ¢¢ \ -0. I0 -

£_3E

-O. t5-

-0.20 1_6 O. I0 Io I_ _ l's 10 12 L_4 116

o_

(d) v = O.082. Concluded

Figure 94. Concluded.

485 0.10 _/Y - 0.250

d I.O rj_ 0.05

0.8 O.O0 I'2 I'4 10 ,'2 ,'_ ,'6 I0 ot

1.4

0.10- 0.05 -

[.0- J 0.05 - _ ___-_ J 0.0o-

0.8 I0 12 1'_

1.2 y/Y - 0.800

1.0 O.lO -

OotoPoLnLIO: RTPOTI.R0349 d

0.05 - 0.8- o - 12.98± 2.04 De9.

Freq. - 3.01 cps

= 0.041 o.Bio 1'2 1'_ Iie_ 0. O0 I0 I=2 I'4 16, Vet. - 232,7 fp8

Nn - 0.205 1.0- yll - 0.900 Re - 1.4090MI0'

O.O- 0.10

d

0.6- • O. 05

0.4 , 0.00 , 10 I'2 I'4 16 10 I'2 14 16

(a) v = O.041

Figure 95. Frequency sweep; with BL-trip; q = 60 psf.

486 0.8- y/T - 0.966 O. tO- 0.I0-

0.6- 0.05 - (jE 0.05 -

0.4 0.00 0.00 tO It2 14 ['6 10 ,'_ I'4 ,'_ ,o I'_ I'_ ,;

c_

0.15- 0.05 - _/Y - 0.986 d 0.4o.6I J 0.I0- • 0.00- 0.2 0.05 -0.05 10 116 10 I'2 i'4 ;6 1o I'2 I'4

0.30

0.25 -0.05 -

i F

0,8- ylY - 0.995 o _ 0.20- -0.10 - /// v/ o"

d 0.6- 0.15- -0.15 - \ /

0.4 i 0. I0 -0.20 I0 ,'2 i'4 16 I0 1'2 I_4 1'6 ,0 i'2 i'4 i'. o

(a) v = 0.041. Concluded

Figure 95. Continued.

487 1.2- O.lO y/T - 0.250

1,0- cn E O. 05

O. O0 O.B I0 12 114 ]6 I0 IV2 I_4 I_B

oc

1.4- ylY - 0.475

1,2 - 0,05 -

d

|°0- J 0.00 -

O.B O. O0 -O. 05 10 12 114 1'6 tO )r2 l_q l; tO 12 l_q 1;

Ot ov c_

1.2- y/Y - 0.800

[.O- 0.10"

d OotoPoLntID: RTPOTI.R0350

O.B- - 12.90± 2.04 De9. r) E 0.05-

Freq. - 3.49 cps

0.6 ,0 G A i'6 u - 0.047 O. O0 1o G I'_ i; VBL. - 232.7 Fps

Mn - 0.205

|,0- ylY - O.gO0 Re - 1.4080M101

o.B- 0,10-

d

0.6- c_._,e 0.05 -

0.4 D.OD 1o i'2 1'_ J;

c_

(b) v = O.047

Figure 95. Continued.

488 J 0.6 -"" J o.o51 0.[0] J

°'8 t 9/Y- 0.966 °'l° 1 0.05 J

0.I 0.00/ 0.00 1 10 I'2 1_4 t'6 10 10 1.2 1_ l'_

o

O. B _ O. 15 - 0.05 ylY - 0.986

0.4- 0. I0- 0.00

0.2 _ 0.05 l -0.05 10 1.2 114 [6 10 12 114 16 ]O 1.2 ti4 [_6

C_

0.25 - -0.05 -

• / -O. IO - 9/Y - 0.995 0.20- J

d o.6 -0.15- o.8t J o.15 0.4 O.[O -0.20 I0 I'2 1'4 l'e 1o I'2 I'4 t'6 ] 0 1.2 1'4 l_

(b) v = 0.047. Concluded

Figure 95. Continued.

489 0.I0

d E 0.05

t'21 y/]_ - 0.25

0.8 0.00 i ,o i'2 A 10 I'2 I'4 18 o_

1.4 y/Y - O.'175

1.2 0.10 0.05 -

d

[.o. O. 05 c__E O.OO-

0.8 I0 I_ l_ i_ oooio i_ i'4 16 -0.05 I0 12 I_ 16

1.2- y/Y - 0.800

l.O- 0.10-

d DotoPoLntID: RTPOT1.R0351

O.B £ - 12.98± 2.05 Oe9. r;, 0.05 -

Freq. - 4.00 cps

0.6 - 0.054 0.00 1o ;2 1_ l_ I0 1'2 1'4 16

VoL. - 232.7 fps oq

Mn - 0.205 1.0- yl'_- 0.900 Re - 1.4060_10'

O._- 0.I0-

d

0.6 c.3 e O. 05

0.4 0.00 I0 I0 i'2 j'_ J'6 c_ (c) v=0.054

Figure 95. Continued.

490 0.8 O.lO- O. tO-

d 0.6 0.05 - rj s 0.05 -

0.4 0.00 I ] 0 Ir2 ]J4 iv6 0.00 10 12 ln4 1(6 ] 0 12 tJ4 16

0.[5 0,05 -

j o.4 0. I0- r_3E O. 00 -

0"6 t y/Y - 0.98_

-0.05 i 0.05 i 02 _o _'_ _'_ 3.6 ]O 16

0.25 -0.05 -

l

ii

0.20. /// -0. I0

J

r__ 0.6 0.15- -0. L5

0'8 t y/Y - 0.99,

0.4 0.10 -0.20 10 1_2 1_4 1'6 10 l'B 10 lf2 L_4 1'6

O_ O_

(c) v = 0.054. Concluded

Figure 95. Continued.

491 0.10

d 1.0 _ _ J 0,05

t.2] 9/ydS.o,25_

0.8 0.00 ! 0 12 l"t 10 1'2 1'4 I_

1.2 0.I0 -

YlY =_

1.0 ¸ r_3e 0,05 -

0.8 O.O0 i 16 0.00 I0 I0 1'2 ,'_ ]6 10 16 o_

_/Y - 0.800

l.O- 0.10-

d DatoPotntID: RTPOTI.R0352

0.8 e - 12.97± 2.05 Oeg. rj= 0.05"

Freq. - 5.00 cps

0,6 ,o ;2 _'4 16 u - 0.067 0.00 ,o ;2 _'4 18i VeL. - 233.1 fps

Mn - 0.205

].0- ylY - 0.900 Re = 1.4060M10'

o.@- 0.10-

d

0.6- • 0.05 -

0.4 I ,o ,2 ,_ ,_ 0.00 ,oI i'2 ,', 16

(d) v = 0.067

Figure 95. Continued.

492 0.8 0.10- 0.10- y/Y - 0.966

d 0.8 rj _ 0.05 - r..3e 0.05 -

0.4 0.00 0,00 10 1'2 14 1'6 l 0 1'6 l 0 1'2 l'4 1'6

0.15

0'05 1

d o.4 / 0.[0 °'6 t 9/¥- 0.98_ 1 0.2 -0.05 10 1'2 ;4 1'6 o.o5lo ,'2 1',1 1'6 10 1_2 Ll'l 1'6

c_ oc

0.30

0.25 z -0.05 - ]/ \

z// 0.20 -0.10

Cj_ 0.6 0.15- -0.15

O'e t 91_/ - 0.99 _''

0.4 i o. I0 , -0.20 1o ,'2 1'4 16 10 ,'2 1'_ 16 _o 1'2 ,'4 1'8 Cc

(d) v = 0.067. Concluded

Figure 95. Continued.

493 |.2" 0.10-

J 1.0- J 0.05

0.8 I 0.00 ,o 1'2 ;_ 16 1o ,_ ,'t 16I oq

0"10 1 0"I0 1

d 1,0 J

c£ J °'°s 1

0.8 I0 t'2 1_ ,'6 Io 1'6 o.oo tlo 1'2 I'4 1'6

01

|._ - 9/Y - 0.800 0.I0-

d 1,0- OotoPoLntIO: RTPOTI.R0353 rj e 0.05

- 12.97± 2.05 De 9.

0.8 I O. O0 lo 1=2 I=4 16 Freq. - 6,00 cps I0 I'_ ,'_ I'6 O= = 0.081

Vet. - 233.2 rpe

Mn - 0.205 1.0- Re - 1.4040_10'

0.8 - 0.I0-

J

0.6- C_ m 0.05

0.4 I 0.00 I0 112 I'4 16 I0

c_

(e) v = 0.081

Figure 95. Continued.

494 0.[0- 0.05 -

r__ 0.6 J O. 05 - 0.00- o'et 9/¥ - 0.96

0,4 0.00 -0,05 10 ]_2 1_4 1_6 10 lib 10 O(

0.8 9/Y - 0.986 0.15- 0.05 -

d 0.6 0.10- o" 0.00-

0,4 0.05 -0.05 ' IO 1G 10 1o ,2 ,4 ,6 Oc

0.30 -

0.25 - -0°05 -

I

// 0.8- 0,20 9/Y - 0.995 -0. [O- ,,.// J / d 0,6- O. t5 -0.15 -

J

0.4 0.I0 i -0.20 IO 1_2 i_4 10 ,'2 ,'4 16 10 o

(e) v = 0.081. Concluded

Figure 95. Continued.

495 1.4

t.2 0.05 -

d

1.0 (E 0.00-

0.0 =0.05 v ,0 ,_ lq I; 10 12 14 16 @

- °

0o10]

d l.O c_ E 0.05 l 2t I 0.8 o.oo/ o.oo / t0 2; 10 1; 10 ]12 1'4

O.800

0.05 ] d DotoPotntID: RTPOTI.R0354

1.ot'21 y/T- - 12.97± 2.06 Dog. E..._e 0. O0 ]

0.8 Freq. - 7.01 cp8 -o.o5 / 1o 1'2 14 1; 1o 1_ A 1;

- 0.094 o¢

VeL, - 234.2 fps

1.0- Mn - 0.206

Re - 1.4070_t06

O.@- O.]O-

d

0.6- o e 0.05

0.4 0.00 I0 I'2 ]'4 I; _o I'2 ;, 1;

(f) v=0.094

Figure 95. Continued.

496 0.8 0. I0- 0.05 - _IY - 0.966

.._f"

0.6 0.05 - 0.00 -

0.4 10 L6 0.00 10

d 0.6 1ylT - 0.986 o,sI J 0"05o.ooI

0.4 O.OS t -o.o5 / I0 12 14 I'6 I0

0.30 -

0.25 - -0,05

"o 6.3 0.20 -0.10 //

f_m

d 0.6 t O. tS" -0. t5

O'et _/T - 0.99 7

0,4 0.10 , -0.20 _o 1'2 /4 10 18 I0 Im2 I'4 16 O

(t) v = 0.094. Concluded

Figure 95. Concluded.

497 1.0-I"2-_/y . 0.25_

0.8 - i ,

0.6- J 0.,4- 0.05

0.2 ooo4_i- -Q I o.o

-0.2 , _ , _I _ s '7 9 ;11'31'sf71b_i -I ! 3 5 ? 9 11 13 t5 17 19 2] c_

i.2

1.0

0.8 O. 25 " .i

0.6 O. 20 - .i._ J 0.4 o.os7 J 0.15- ./;v 0.2 0.10- ;'_ c__" 0.0 -0.05

-0.2 i ! i i i -0.101 , , , , , J _ _ , , -,, _ _ _ o _'i_':_'_1'7,;_'_ -1 l 3 5 7 9 ll 13 15 17 19 21 o O

1.0

0.8

0.6 OataPoLnt ID: RTOST1.R0287 0.4- 0.2- a- 10.09+ 10.07 De9. 0"°5O. O0 t 0.0- Freq, - 0,00 cp8 C-_G -0.05 I

- O. 000 -O'lO-II 1 ; _ _ ; Ill 113 115 117 119 2'1

@ Vet. - 234.2 rps Mn - 0.206 1.o Re- 1.4010_10 s 0.8

0.6

d 0.4

0.2

0.0 c_E 0.00 _"_""_a'_-_"_"_ 0"05 t

-0.2 -_[ _ _ _ _ ;,;3t'_1'7,'92'1 -0"05-I1 l 3' 5' 7' _ A6,'_1'_Ib2'1 o

(a) Repeat no. 1

Figure 96 3-D round tip quasi-steady data; with BL-trip; q = 60.

498 ].0- 9/¥ - 0.966 0.8-

0.6- 0.20 1 d 0.'1- 0.2- o,o1 oo,1 0.0- o,51 -0.2 _ , _ T , -0.05 / -1 , 3 5 7 9 1'1 ,'3 1; 1_7 1_9 2'] -1 I 3 5 7 9 [I 13 15 17 19 21 -1 1 3 5 7 9 lml 1_3 15 17 19 211 o o ol

0.6 0.15 1 d 0.4 _ 0.10

0.2 0.05 1 rJE 0.05o.001 __ o0.0 _ _ _ r oo0.00| _-'_--'_'_" / -0.05 -I I 3 5 7 9 11 13 15 17 19 2' -1 1 3 ; 7 ; 1'1 13 1_5 ,7 1'9 2'1

(1

0.55 -

O. 50 -

0.45

0.'_0 0.05 -

0.35 0.00 -

0.30 _.o-m'2-y/T- 0.995 j_ J 0.25 -0.05--0. lO :" _ _.

0.6-_ O. 20 - c._t -0.15 d 0.4- 0.15- -0.20 -

0.8- ,,- 0.2- 0.10- -0.25 -

0.0- 0.05 - -0.30 -

-0.2 n n _ _ v 0.00 ! -0.35 , , , , , -_ _ 5 _ 9 ,'1,'3 _'51'_,'. 2', -I 1 3 ; 7 ; X" "3 1'5 17 '9 2'I -1 1 3 5 7 9 ,'! 1'3 1'5 1_7 ,; 2_] O_ oc

(a) Repeat no. 1. Concluded

Figure 96. Continued.

499 L.2- ylT- 0.250

U.8- _

0.6- d 0.4- 0.05 7

l.O- __ 0.2- 0.0- -°-°'1 ,, -0.2 -11 _ s _ ; f11;1;1'71; _1

c_ o

L.2- _IT- 0.4Z_ 1.0- 0.25 -

0.8" ) 0.20 -

0.6- 0.15- d 0.4 0. I0- o.os7

0.2 0.05 - C3 _ 0.0 0.00 - -o.os1 _I ;_ 0,2 i r _ _ -0.05 I t l i 1 r -0.I0) ) i f ) i ) r r i r ) -I l 3 5 7 9 1'1 1; l; 1)7 I_9_1 9 18 -1 1 3 5 7 111 lJ3 lJ5 1)7 211 -1 1 3 5 7 8 11 13 15 17 19 21

0 O

1.2 ylT - 0.800

0,8-

0.6- d OotoPoLntID: RTO5TI.R0288 0.4-

1.0 I 0.05 l 0.2- = I0.I0± 10.07 De 9.

0,0- Freq. = 0.00 cps J -o.os] _ o.2 I _ ; _ ; A1'3,;1'71;21 - 0,000 -o._o_t I ; ; _ ; i', 1'_i'517 ,; 2',

t_ VeL. - 234.5 £ps

Mn = 0.206

Re - 1.4030_10 ° 0.8

0.6

c.3 > 0.4 1.0- 0.2

0.0

-0.2 , , ) , -I 1 3 5 7 9 1'1 113 1; 1)7 t; 2'I

0

(b) Repeat no. 2

Figure 96. Continued.

5OO |.0- _/Y - 0.966 0.8-

0.6-

d 0.4- 0.15] 0.2- J o.1o]°2°7 o.0-_ E 0.00 0.05 1 0.05 1 -o. 2 -0.05 -1 l 3 5 7 9 31 13 15 17 ]9 2] -I 1 3 ; :z ; l'l 1'3 Ira5 1'7 ]; 2'] , i 3 ; } ; ,',L'31_;7,;/, Oi Oi

0.25 - o.e _/T - 0.986 O. 20 -

0.t 0. t5 d J 0.20.6 O. tO 0.05 l 0.0 0.05 ooo] -0.2 I , i I w 0.00 i f -0._ / , -11 3 5 7 g I'I t; I; I'7 1; 2'I -I 1 3 ; 7 9 l'l I'3 I15 I)7 I=9 2'I -I I 3 5 7 9 Jl J_ ms 17 19 2_ 0 0¢

0.55 -

O.SO -

O._J5-

O. 40 - 0.05

0.35 - 0.00 ,.j -0.05 - J O.B O. 25 - -0.10- "k

1.0-)'2 _IT - 0.99_ o.6 0.20 - J -0.15- d 0.30 - .,,/ Y 0.15- -0.20 - _ o,0.2- jj 0. I0- -0.25 - 0.0- 0.05 - -0.30 -

-0.2 , , , 0.00 -0.35 , , , , , -1 i _ ; v 9 fll'3L;l'vl'92'l -I I 3 5 7 9 I'l I'3 I'5 1'7 1'9 2'1 Oi

(b) Repeat no. 2. Concluded

Figure 96. Concluded.

501 [.2-

[.0-

0.8-

0.6- d 0.4- 0.00 7 0.2- _" -o.osI " " 0.0 -O.lO1 0.2 i ! i i i i T v _ 7--7 -0.15 ] , , , , _ , , , , , ) I I 3 5 7 9 1! 13 IS 17 19 21 1 ] 3 5 7 9 11 13 15 17 19 21 0

1.0- o.2s0.30 - [_,<¢(_t 0.8-

0.15 I 0.6- J J I 0.4- 0.10 0.05 7 1.2-_ 0.2- O. 05 0"00 t 0.0 0.00 oosI .I.,,:,u,;l -0.2 -0.05 -0. i0t ) , ) , , ) ) ) , ; , -1 l 3 5 '_ ; 1'1 1'3 115 I)7 I; 2'1 -I 1 3 S ? 9 11 13 15 17 19 21 o ol

1.0-

0.8-

0.6- d OotoPoLntID: RTOSTN.RO48B 0.4 1.2-_ 0,2" " 10.02± 10.17 Do 9. 0,0- Freq. " 0.00 cp8 co e oO. O0 -0.2 , , , , -0.05 ) - 0.000 -1 I 3 5 7 9 I1 13 15 17 19 21

VeL. - 233.4 £ps

Hn - 0.206 [.2 y/T - 0.900 Re - 1.4230.I0 B 1.0

0.8

0.6 d 0.4

0.2 0.05

0.0 {__ 0.00

-0.2 -0.05/ , , , , , , , , , , , -1 1 3 5 7 g 11 ]3 15 17 19 21 o

(a) Repeat no. 1

Figure 97. 3-D round tip quasi-steady data; no BL-trip; q = 60.

502 1.0-

0.8-

0.6- 0-20 7 d 0.4-

0.2- J o.m] 0.05 1 0.0- 0,05o.1511 -0.2 0.001 , -0.05 | , , ) -I 3 5 7 9 I'I t'3 I'5 17 19 21 -1 i _ _ _ 9 1'Ifi,5;_1;21 o_

0.25 -

0"8 7 _/¥- 0.986 ..z_,.@ 1 0. t5 d o._ J 0.10 0.00 - r._ R 0.20 0.05 -0,05 -

0.0 , , , , , 0.00 , , , -0.oI0 -1 1 3 5 7 9 11 13 15 17 19 21 -I l ½ 5 7 @ t'l 1'3 I'5 1'7 1'9 2'I -I 1 3 5 7 9 ll 13 15 17 19 21

0.55 -

0.50 -

O. 45 - i_ 0.40 - 0.05-

1.2 0.35- 0.00 -

1.0 0.30- -0.05 - J 0.8 0.25 - -0.10 -

0.6 0.20 r.3e -0.15 - d 0.4- 0.15 -0.20 - ylY - 0.995 ,_ 0.2- 0. L0 -0.25 -

0.0- 0.05 - -0.30 -

-0.2 -11 _ _ _ 1'16 l's1'7162'1 o.oo_, I _ ; _ _ 1'1fi ;5,'7G 2'1 -o.35_1I _ ; _ ; 1'11'31'5;7 1; ;1 oc

(a) Repeat no. I. Concluded

Figure97. Continued.

503 L.2 SIT - 0.250 ,,

0.8

0.6 d 0.4 l.O 0.2

U.O

-0.2_, I I ; _ ; 1'1_'_,'5 b _'__'_

o

1.2 y/Y - 0.475 ¢_,? ,

0.8-

0.6- d 0.4 - 1.0.// _ J 0.2-

0.0-

-0"2-1 1 3 ; 7 ; 1'1 1; 1; 1)1; 2'I -I 1 3 S 7 9 II 13 15 I? 19 21 ol ol

1.0-

0.8-

0.6- d OotoPoLnt ID: RTOSTN.R0487 0.4 1.2- 0.2 o- 10.03+ 10.17 De 9.

0.0 F'r'eq. - 0.00 cps

u - 0.000

o o( VoL. - 233.3 fpa

Nn - 0.206 1.2 y/Y - 0.900 Re- 1.4260_I0' 1.0 ¸

d

0.0-0.40.2_0.8- -0.6

0.2 ; _ ; _ ; i'iI'_l'_(71'92'I -1 I 3 5 7 9 11 13 1,5 17 19 21 o

(b) Repeat no. 2

Figure 97. Continued.

504 1.0 y/¥ - 0.966 0,8

0.6 0.20 1 0.4 0.2 J o.,o°"511 if/// o.ol 0o0

-0.2 I I I ; _ . -0.05/ _ ; , ______-1 i 3 5 7 9 I'1 ['3 1'5 1) 19 2'1 -1 I 3 S 7 g t'l t'3 1'5 1) 1; 2'1 -1 I 3 S 7 g 11 13 IS 17 lg 21 o( _ ol

0.25

0.15

O. I0 O. 05 -] 0.20- I

0.00 -I I 3 ; _ ; I'2 L'3 1'5 117 I; 2'I -0.05| 1 _ ; iii i13 1,5 i_7 i_'2,1

0,50

0..,15

0.'10

].2- 0.35 y/Y - 0.995 0.05 1.0- O. 30 - 0.00 I 0.8- t _ t J 0.25 - AI -0.05

0.6- 0.20 - AI/' 4 1o d 0.4 0.15 -

0.2 O. tO- -0.20 - 'l -0.15- 0.0 0.05 - -0,25 -

-0.2 I I I I I 0.00 l i i _ i -0.30 I I I I _ -I I 3 5 7 9 I'1 1'3 I'5 I17 19 2'I -1 i _ _ _ _ _'1G,'51'_,'92', Oi

(b) Repeat no. 2. Concluded

Figure 97. Continued.

505 m

1.0--

0.8--

0.6-- d 0.4 _ 1.2-_ 0.2-

0.0-

t.O _

0.8- O. 20 -

0.6- 0. t5-

0.10- 0.4- -o 1.2- 0.2- 0.05- _J O. 05

0.0- 0.00- _" _o.os°'°°!i_2 i -°'°s-1I _ _ _ ; A ;3;s,'7I'g2'i

m °

1.0-

O.@-

O.B d DotoPotnt 1D: RTOSTN.R0488 0.4 t.2- 0.2 - 10.05+ 10.19 De 9.

0.0 Freq. - 0.00 cps o2 I k ; } G A1'3,'51'_1;21 - O.000

ol VeL. - 233.5 Fps

Mn - 0.206 1.2 ylT - 0.900 Re- 1.4300-10"

d 0.0_1.0_o.B-0.4-0.8-0.2J

-0.2 I _ ; } ; Al'_t;t'7_;2'l -t t 3 5 7 9 It 13 15 17 t9 21

(c) Repeat no. 3

Figure 97. Continued.

506 1.0

o._0.60.28_0.40.0

-0.2

0.8 - 0.25 -

d J 0"0-0"2-0"4-0"6-

-0.2

o

0,55 -

0.50 -

0,45 - 0,05

0.40 - o.o0

0.35 - -0.05

1.0- 0.30 - -0.10 I '_ J 0.8- 0.25 - -0.15 - J -0.20 - _ _I 0.6- 0.20- d 0.4- 0.[5 - -0.25 - 1,2-_ 0.2- 0. I0- -0.30 -

0.0- 0.05 - -0.35 -

-°2-i I _ ; ; ; 1']1'3,'51'_1;2'1 0"00-1 1 3 5 7 g I'1 1'3 1'5 1'7 l_g 2_1 -0"40-1 1 3 ; 7 ; 1'1 1'3 115 1'7 1; 2'1 o_

(c) Repeat no. 3. Concluded

Figure 97. Continued.

507 [.2- 9/Y - 0,250

l.O-

U.8-

0.6- d 0.4-

0.2-

0.0-

-0.2 -0.05! , , , , , i _ ; _ ; ;1fi ,'sl'71; 2', -I ] 3 S 7 9 11 13 15 17 19 21

1.2- _/Y - 0.475 _

0.8

O,6 d 0.4 0.15- l

1.0- _ _\!_ 0.2 0.I0 - 0.05 -

0.0 o.os- J o.oo-._-'--'_'_,,, _ ° IY r"'V"qnq -0.2 i l z , 0.00 f I r r I l 0,05 I r I i v I ! ! r i -[ | _ 5 7 9 ]| |_3 [5 |7 |9 2] -J | 3 5 7 9 l| ]3 15 [7 ]9 2]

[.2-

I.O-

O.B-

0.6- d DotoPotntID: RTOSTN.R0513 0.4-

0.2-_ o - I0.05_ lO.t8 De 9.

0.0- Fneq, - 0.00 cpe £3 E O . O0 -

-0.2 - 0.000 O. 05 i -1 -I l 3 5 7 9 II 13 [5 17 19 21

VeL. - 23].8 rps Mn - 0.205

-- o Re - ].4460x10' 0.@

0.6

d 0.4

0.2- °-°5-I O.D-

l l I I I __o.o,,°°°_,,,,,,, ,- ,, -I ] 3 5 7 9 II 13 I5 17 19 21

@

(d) Repeat no. 4

Figure 97. Continued.

508 |.0-

0.8-

0.6 0.20 ] d 0.4 °.,,1 / 0.2 J o.,oI ./ °.°5l 0.0 ooo1O. 05 c.3E • ! i i i i ! i i ! i i i , , , , , , , , , , , -0.2 -oo5/ -] I -I 1 3 5 7 g II 13 15 17 19 21 -1 l 3 S 7 9 11 [3 15 17 19 21

0.8 0.25 -

0.6

0.{ O. 15- 0.05 "l d J 0.2 o.1o- __, 0.oo 0.0 005- -0051 "

-0.2 o.oo,- I _ ; _ a l',,%,'sb,'9_', -o.lo-' ,1 3...... 5 7 9 '1 '3 '5 '7 19 2'

0.50 -

0.45 -

0,40 - O. 05 -

0.35 - 0.00 - L.2- 9/T - 0.995 0.304 -0.05 -

0.8 J 0.25 - -0.10- I.O _.tS /,_ / 0.6- 0.20 - C..3_ '-0.15 - d 0.'1- 0.15- -0.20 -

0,2- 0.t0- -0.25 -

0.0 0.05 - -0.30 -

-0.2 l _ l J , -0.35 f -1 1 3 5 7 9 1'1 I'3 115 1'7 1'9 2'1 °'°°-ii _ ; _ _ Ii l'a ,'s ,'7,; 2', -! I

a o_

(d) Repeat no. 4. Concluded

Figure 97. Continued.

509 1.2- ylT- 0.250 1.0- ,

O.B"

0.8- d 0.4

0.2

0.0 C__e O. O0 -0.2 i Ii _ ; _ ; :11;1'51'7,;2'I -°'°5-Ii _ _ _ ; 1'I1'31'51'7I;2'i

l.n-

0.8-

0.6- d 0-20 l 0.4- 1.2-_ °'51 l 0.2- °,°I .:' 0051 , 0.0-

-0.2 _ , , _ ) O.OOl ,"-7-'_, , , , , , , , , - . -I 1 3 5 7 9 1'1 1; 11B 1'7 19 2'1 -1 1 3 5 7 9 11 13 15 17 19 21 -I l 3 5 7 9 11 13 15 17 19 21 G O O

12 y/Y - 0.800

0.8

0.6 d OotoPotntID: RTOSTN.R0514 0.4 1.0 _ 0.2 = 10.05+ 10.19 Oeg.

0.0. Freq. - 0.00 cps J 0,00 -0.2 -,I _ ; 7, _, _I, ,;,'5I'7 - O. 000 -0.051 _ , , , , , , , , ; , ,;2'1 -I 1 3 5 7 9 I1 13 15 17 19 21 a VeL. - 23].5 £ps

Hn - 0.205

- ° Re- 1.4450MI0 B 0.8-

0.6

d 0.4 1.0- 0.2

0.0

0.2 _ , ) , 0.05 I i _ ) , r , , , , ; , -I 1 3 ; 7 9 l'l 1'3 IW5 1'7 ll9 2'I -1 1 3 5 7 9 11 13 15 17 19 21 c_

(e) Repeat no. 5

Figure 97. Continued.

510 1.04

0.8-

0.6- o.2o7 d 0.4 1 ./ 0.2 J o.,o1 ../ °°51 0.0 o.051 J 0.o01 -0.2 i i , i i -1 | 3 5 7 9 ?| ?3 ]; 17 l; 2'1

0.8- 0.25- ,y/Y - 0.986 0.6- 0.20-

0.4- 0.15- d J 0.2- 0.10- 0,05 7 0.0- 0.05-

-0.2 -I _ _ _ 1'1i'_ 1_1_?__'1 °'°°-i1 ; _ _ _ 1'11_,_I_I;2'1 -11 _ 5 _ 9 111_1_1_192'1

0.50-

0.45 -

0.40- 0.05-

1.2- 0.35 0.00-

1.0- 0.30 -0.05-

0.8- rZ 0.25 -0,10

0.6- 0.20, d Cj e -0.15 0.4 0.15- -0.20

0.2 0.10- -0.25

0.0 0.05 - -0.30-

-0.2 0.00 ) _ _ -0.35 , , , -1 ' _ _ _ _ ;11'3_1_1;_1 -1 1 3 5 7 ; t'l 13 75 17 19 2'1 o

(e) Repeat no. 5. Concluded

Figure 97. Concluded.

511 1.4- y/Y - 0.263 ! .2 '=_.. ,

1.0-

0.8" d 0.6" 0.05 ] ,, 0.t- 0.2- J o.o1 °'°-, I _ ; ; ; ,',_'_l; 1'7,; 2'1 -O.lO:,I ; _ ; ; 1'I,'3,'5;7,'92',

o_ O. 35

O. 30 1.4- y/Y - 0.500 0.25 \/_/W I e I 1.0- 0.20

0.B- 0.15 0.05 j 0.6 0. I0 I I 0.'1 O. 05 - 1.2- _ _ -0.05 1 0.2 O.O0 -

'3.0 -, i _j 5j 7, 9j ,'i,'_,;,'7I;2', -0.05 -, 1, _, 5, 7, 9, 1',1; ,'5 h ,'92'1 -°15-',i _ 6 ; ; ,'Ih ;sL'71'92,

'.4 ylT - 0.842 1.2

1.0

0.8 d OataPotnt[D: 2DOSTN.R0550 0.6 0.05 ] 0.4 o - 10.13_ 10.16 De 9. 0-00 1 ___¢._ _^_ _ • 0.2 c'3_ -0.05 " "_'_ Freq. - 0.00 cps

0.0 i f i i i _ i i i -0.I0| - 0.000 -I l 3 5 7 9 'I 13 '5 [7 '9 21

VeL. - 232.2 fps

Mn - 0.204 1.4- ylT - 0.947 1.2- Re - 1.4020"i0'

I.O-

0.B-

d 0.6-

0.4- 0.2- 0.05_ _-_-_ ""'_ 0.0- _ii:it -0.2 -0.101 , , , , , , , , , , , -I I 3 5 7 9 II ]3 15 17 19 21

(a) Repeat no. 1

Figure 98 2-D quasi-steady data; no BL-trip; q = 60.

512 1.2-

1.0-

0.8-

0.6- 0.05 7 0.4-

0.2-

0.0 I _ _ _ _ 1'1/3,'s,'7792'i -°'I°2,I _ ; _ _ fi I; l's/7 ,'921

o c_

0.35 -

O. 30 - 1.4- y/Y- 0.500 il_J'] 0.25 - .,-/| II q I rl I 0.20 -

0.81,0- _ L I c__ 0.15 - 0.05 ] T 0.6- 0.,0-

0.4- 0.05 - 1.2-_ J -o.o51 0.2- 0.00 -

0.0 l , , , -0.05 i , , , -I 1 3 5 7 9 ,'1 ,; 15 ,_7 119 2', -1 , 3 5 7 9 1, 113 ,'5 1'7 It9 2'1 -°"5-'1 I _ _ _ _ ,'1,'3,'s ,'_/0 2'_ 0 Ot o

1.8-

0.8- d o.s OotoPotnt [D: 2005TN.R055!

0.4 1.2- a- 10.13:1:10,16 De9. 0.2 Freq. - 0.00 cps °°51 "r 0.0 , -I 1 3 ; 7 9 1'! 1; ,'5 1'7 I; 2'1 -°"°J,i _ _ _ _ ,',,'3t'5,'7,'92', - O. 000 c_ VeL. - 231.2 £ps

Mn - 0,204 t.4 y/Y - 0.947 Re- 1.3980M[0 '

1.0

0.8 d 0.6

0.4- [.2

0.2- 0.050.00-[- 0.0- -0.05 _ , , _ _ , , _ , ,-7 -1 I 3 5 7 9 ,1 ,3 ,5 17 19 21

(b) Repeat no. 2

Figure 98. Continued.

513 1.2- 3/¥ - °.263..,-'-_AnJ'_ / 1.0-

0.8- d o.s- 0.05 7 -_ 0.4-

0.2-

0.0 -0.10 # T , -I 1 3 5 7 9 1'1 l; I'5 I'7 I; 2'I o¢

0.35

1.4- .g/T- 0.500 0.30 _,,e,_ 1.2- O. 25 - _" I tv_¢ 1.0 0.20 - I I 0.8 d °,5 I 0051 0.6 . -'-'. 0.,0- 0.00 0.4 -0.05 -I I , "_ O. 05 - I._ • 0.2 0.00 - _ --0.I0 t _/ll_'/I/_t '_)I' 0.0 i , , _ i -0.05 l r , , _ , , i v w l 0.15# I , _ , i w , , , , i -1 I 3 5 7 9 11 13 15 17 [9 21 -I ] 3 5 7 9 II 13 15 17 19 21 o¢ Ol

1.2- -- ° [,_

0.8-

J 0.6 ° OatoPoLntlD: 2DOSTN.R0552 0.051 °.4- 1.0- o - 10.15± lO.IB Deg. 0.2-

Fneq. - 0.00 cps 0.0 -' 1 3 ; 7 ; I'I I'3 "5 ,)I'9 2" - 0.000 @

VeL. - 231.8 £ps

Hn - 0.204 m.4- _/T - 0.947 Re - 1.4040_106 1.2 - l._x_, _f__ _

1.0-

0.8- d 0.6- 0.05 1 13.4- 0.2.- o. 0.0

-I 1 3 5 7 9 II 13 15 17 19 21 @

(c) Repeat no. 3

Figure 98. Continued.

514 l.o-t'2"_/Y - O_ 0.8- s

d 0.00

0.t J -o.05 0.2 // "

0.0 j I:T -0.151 , ; , , r , -l 1 3 ; 7 9 I'1 6 t5 1)I'9 2'1 -I % 3 5 7 9 II 13 15 17 19 21

0._5 -

1.4- 9/Y _ 0.50O 0.30 - 0.25 - / ! # I 1.0 o 0.20-

0.8- _ 0.15- I O.O5 I d I 0.6 - "_ O.IO- I 0.00

0.4- O.OS- t.2-

0.2- 0.00- --0.10 I'-t,/v'l',_l

0.0 -,i _ _ _ ;,'11;1sl), 1'8='1 -0.05 -0.15. i , , _ , , , , , , , Oi

|.2-

i.o- o.e-

d 0.6- OotoPotntID: 2005TN.R0553 0.05 1 0.I- - 10.14± 10.16 Be 9. 0.2- -0._5 Freq. - 0.00 cps 0.0 _ i i i v i -0.10 -I I 3 5 7 9 11 13 15 17 19 21 u - 0.000 oz r, VQL. - 230.8 fp8

Hn - 0.203

=.2 9/:_ - 0.947,_,A Re - 1.3980"10'

0.0-

d 0.6- 0.t- o I.O _ _ _ 0.2- -0.05 0"00 t 0.0 i i i i i i i ! i -0.30 -I 1 3 5 7 9 11 13 [5 17 19 21 -, i _ _ _ _ _';_'_,'5,'_,'92'_

(d) Repeat no. 4

Figure 98. Concluded.

515 1.0_ d O.G -_ "]I

0.6 -o.ioi i r 1 I0 G G G l_ 2_ 10 12 I_4 1_6 18 2O

O. 25

ylY - 0.475 0.20 0.05 -

1.2- 0.15 O. O0 -

// d t.0- 0. I0- ) E -0.05 -

O.B- 0.05 - -0. I0

O.B 0.00 I0 G 1'4 t'6 1'8 2'0 I0 I'2 le4 le8 I'B 2.O -0.15 I0 I'2 G G G 2'o

C_ C_

f.O J ~ DotoPoLntIO: rtpotl.r1214

0.8 O. 00 1"2' 1 .y/Y - O. O0 - 15.19_ 4.08 Dog. °'°sI -0.051 06 G G ,'6 ,'8 2'o Freq. " 2.01 cpe ,o G G G ,'6

- 0.039

Vet. - 162.8 £pe Mn - 0.146

1.2 y/Y - 0.900 Re - 1.0590.|0 s

1.0

O.B

0.6 o.ooI lO 10 G G t's ,'_ 2.o

C_ o_

(a)v = 0.039

Figure 99. 3-D round tip pitch oscillation data for surface flow visualization at q = 30; BL-trip; cz= 15 _+4 deg.

516 O. 8 O. 10 - Y 0.05 d o.eoljYog._c_'-f-" "" o5o.o5 iJ o.oo 0.4 2o 1'2 i'4 I; I; 2'o 0.00 11o 1'2 ,'_ i; 1'8 2'o -o.o5

0.25 -

//

0.05 1 # /#f" O.B _" Cj_ 0.15 Y d 0.4 0.10 0"8 1 .y/Y - 0.9_ 0.20

0.2 0.05 1o ,'2 I'4 i; ,; ;o 1o 1_ 1_ 1; 1'8 _'o -OlO21o ,'2 ?_ 1; 1; _0

0.40

0.35

0.30 0.00

/I 1.o-_ y/y_ 0.995 0.25- -0.05 r/ 17

0.8- // 0.20- -0.10 S J d 0.6- 0.15- f. -0.15- 0.4 0.10 - -0.20 -

0.2 0.05 1 lO 10 2_ A l; i; _o -°'252o 2_ 2_ 1; 1;

(a) v = O.039. Concluded

Figure 99. Continued.

517 1.4- y/Y - 0.250 0.05 -

1.2- O. O0 - \\ d l.O- I -0.05 -

0.8- -O.lO- _ / Ip 0.6 -0.15 I0 1'2 :4 1" 1'o I0 13 I'_ I; LIB c_ Cc O. 30 "

0.25 -

1.4- O.20 - 0.05 -

ylY - 0.4_ J 1.2" C__ 0.15 J0.00 - /

cj_ 1.0- 0. I0 e -0.05 - #

0.8 O.05 -0. lO-

0.6 j -0.15 I0 1'2 :4 1'6 1" _0 0.00 10 1'2 _'_ :6 1'0 20 I0 ,'2 ;4 1'6 1'8 @ o(

[.2 ylY - 0.8_ 1.0 0.10 d OotoPotnt ID: rtpotL.rl215

O.B C_)_ 0.05 - 15.19+ 4.12 De9. 0.6 0.00 10 Freq. - 5.05 cps I0 ,'2 ,', ,'6 l'. 2_, o{ u - 0.098 ot

VeL.- 162.4 fps

Mn I 0 . 146

Re- 1.0560_10 s

d

0.8 c_)_ O. 05 0"10 1

O.B i o.oo / I0 12 I'4 l'B If@ 20 I0 I_ IV4 116 l'. @

(b) v = 0.098

Figure 99. Continued.

518 0.8 O. IO d o.o5] _---'--.

,.o0.6 l.IY_o.9,..._S_ _ _ 0..0,05 I1 . J °-°° 1 -0.05 1 , 0.4 10 ]'2 ]'4 ,)6 118 210 0"00110 1)2 |'4 I)6 |'8 20 I0 I)2 I'4 I'6 l'e 20

c( c(

0.05 |.o- y/¥ - 0.986 0.25-

// 0.8- 0.00 d / 0.20- c3_ o.6- C3_ 0.15- / -0.05 __ 0. I0- 0.4 .0. [0

0.2 i O, 05 l -0.15 ,'2 ,'4 ,_ ,'8 1o ]'2 I'4 If6 I)8 20 IO l_ ,'_ ,'6 ,'8 20 10 20 o_ ot

0.45 -

O. 40 -

O. 35 - 1I 0.30 - / 0.00 |.0- r__ 0.25 - -0.05 y/Y - 0.995/.-'/

0,8- 0.20 - / -0. I0 J // 0.6 0.15- / -0.15 0,'I 0.10- -0, 20

0.2 0.05 20 .0.25 I0 I0 10 ,'2 G i'6 ,'8

(b) v = 0.098. Concluded

Figure 99. Continued.

519 [.4- ylY - 0.250

L.2-

1.0- d 0.8 °°'1 ////II 0.00 ] 0.6 -0.05 -t -.. I F 0.4 / -0.10| , , , ", I0 I0 12 14 10 18

1.6- y/Y - 0.475 0.25-

J_ 1.4- k 0.05- 11 k

1.2" i / L'I 0.15 0.00- d J 1.0 0.10 -0.05 ', f

0.8 0.05 J -0.10 \ 0.8 IO ,'2 ,'4 ,; l'_ 2; o.OO,o _0 -0.15 lO ol

d DotoPotntIO: rtpotl.rl216 0"10 1 0.0 J

- 15.18± 4.23 De 9. 0"05 1 - / ______0.6 I0 1_2 LI4 t6 L8 2'O 0.00 1 Fneq. - I0.I0 cps I0 _'2 ,'4 L'6 L'8 2'o

u - 0.196

VeL. - 162.3 Cps

Hn - 0.146

Re - 1.0540n106 d 0.6,°l _JY-o.__ iiiit 0.4 0.00 1 I0 lS2 114 lJ6 118 ,0 t'2 t'4 l_ 1_8 2'0 oc

(c) v=0.196

Figure 99. Continued.

520 0.8 _ O. tO d

1.0] .y/y _ 0.966 0.15] 0.6 _C.__ 0.05] J_ _- J o.oo] 0.4 , 0.00/ 1o ,'2 A ,'6 ,'8 2o io 1_ A i'6 1'8 2_0 -{3.05 ,ol ;2 A ,6, ,;_ 20, o Q

1,0- yl_ - 0.986 o.2s 0.05 -

0.8- O.O0- d 0.6- _ o0,15o J -0.05- 0.4 0.10- -O. lO-

0.2 i -0.15 I'2 I'4 l_6 iv8 2,0 0.05 10 10 20 ]O i'2 ,', i;_ 1'8 2'o Q

0.45

0.40

/ 0.35 i /

0.30 - /// 0.00 -

0.25 - -0.05

l.o 9/¥ - 0.995:/ 0.8 ¸ 0.20 - -0. tO J \ d 0.6- 0.[5 \\ /_/ -0.15 - 0.4- 0.I0 -0.20 -

0.2 210 0.05 I0 10 1'2 1'_ ;6 ,'8 i'2 A :6 :8 2'o o_5 10 1_ 1'_ i'e 1'o 2'o o_ c_

(c) v = O.196. Concluded

Figure 99. Concluded.

521 0 Top 0 Bottom

,-----I_===.=.8:=_=.=0....* --u----- _:_ _,_._,_ :,-_-_-_"-0"-" -0.005

-0.010

-0.015

0.005 - ( I

... _)..... 0 ..... 0 ..... 0 ..... 0 - - b. t'__ 0_ 0.0001 " "l-] g &._ ._.0.------[ -0.005 D u

63 -0.010 a = 7.5d.g O3 _n -0.015 _D I,-- ,q 0.005 ---0 .... I o - 0.- .... 0 - - .... O.. "'t ..... 0-- 0.000 (/3 Q) -0.005 > _0__0...... --0--" .4' o "_ -0.010 rw 0.= 13dog -0.015"

0.005. I --0 .... I )_..... o_..""o""" _--- .-o-- -0 ..... O- - - 0.000- I l jr-p..------I -0.005'

-0.010' a = 15deg i -0.015 , -3.0 -2,0 -1.0 0.0 1.0 AO 3.0 Distonce from Wing Quorter Chord - Chords

(a) Top and bottom boundary values

Figure 100. Static pressure survey; 2-D configuration.

522 [] Front 0 Reor

0.005 I I [3----C, (3------[] 13--0"------13 0.000 I I I O---C}------0 ...... 0 .... - -0 ...... 0 ...... 0

-0.005

--0.010

-0.015'

0.005 I I I ID-----D q) --El o 0.000 _I O. _ I c .... 0 ...... 0--- "'''0 (D %._ (D -0.005 i I r-3 -0.010 Ot= 7.5 deg -0.015-

ck 0.005 - R-----D- i I I I 121 0.000 - 0 - - -O- ...... O ...... o.... "-0 I...... 0I..... _._ q) I I > -0.005 - o -0.010 of O_= 13 deg -0.015

0.005 i

0.000

I "I .... "...... c_...... o -0.005

-0.010 a=lSd_

-0.015 , , , , , 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Distance from Floor - Chords

(b) Fore and aft boundary values

Figure 100. Concluded.

523 [] Top - 3 repeats + Bottom - 3 repeats

0.005

0.000

_, , ,j_=,_,_ "- .:-t:..... +",TC.._,Ibd,[3,_--- - -O.OO5 -,,D,....._--_

-0.010

-0.015

0.005- I. F'==',, o O.O00- c q) %.. q) -0.005- ,,,_It r- C3 \f -o.olo- a = 7.5deg V" 0'3 --0.015

EL 0.005 (0

_0 0.000

>_ -0.005

_. -0.010" OL= 13 deg -0.015"

0.005-

0.000". _ +.o .+ ..... +.-, -+m=..._ .... "4-=.,

-0.01 -00o5a= lSd,g V -0.015 -3.0 -2.0 --1.0 0.0 1.0 2.0 3.0 Distonce from Wing Querier Chord - Chords

(a) Top and bottom boundary values

Figure 101. Static pressure survey; 3-D configuration; _ = 0.075.

524 [] Top - 3 repeats + Bottom - 3 repeats

0.005.

0.000-

-0.005-

-0.010-

(7. = Odeg -0.015-

0.005 I _ I I I 1 D_-O _ c-- --[3- ¢) o 0.000 --_-_-_._._._ ...... _...... t c q,) L. / I -0.005.

£3 -0.010,

k_ e¢ = 7.5 deg 03 -0.015. O3

L. EL 0.005. £) .m 0.000- o .4,J ...... T ...... +._:--==-__+.;_=,,,, --I. V') -0.005 I I >

o -- -0.010 q) t-Y = 13deg -0.015

0.005 _...... __ I I I I 0.000 :--_-_+,_-,, _.,,.=.-__. 1 , y- -u I Jc" ..... -E,, .... ,,,+J. -0.005-

-0.010-

o_= 15deg

-0.015 , ! i 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Distance from Floor - Chords

(b) Fore and aft boundary values

Figure 101. Concluded.

525 [] Top - 3 repeats + Bottom - 3 repeats

0.005-

0.000-

-0.005

-0.010

-0o015

0.005-

"- ._-_,_ =_-T-"=_1,-_-+,,=o-'_+_+_+_, o 0.000. c Q) '_' t, o 0_' - ....._--.-_

-0.005

-0.010 a =7.5deg if) o3 -0.015

cl 0.005 - I _.._. I . ÷.-._.-.+; .. 0.000

_[]----,_[ q) -0.005

0 I1) -0.010 Q2 a= 13deg -0.015-

0.005

#/p o o _l, Jr'l, _, .... +o,,,=,,_ _v+ ..Z= m m I _" 'Jr..i jl - ,,fgr I '" 0.000 - w 3c,1¢- _[3----'--[ -0.005

-0.010

o.= 15deg -0.015- -3.0 -2.0 -I.0 0.0 1.0 2.0 3.0 Distence from Wing Quorter Chord - Chords

(a) Top and bottom boundary values

Figure 102. Static pressure survey; 3-D configuration; "_ = 0.479.

526 [] Top - 3 repeats + Bottom - 3 repeats

0.005 I ID- .'-I [] 0.000 n,,"--_ I I ..olilil_ Ill I ll+ie I imi_m I -0.005-

-0.010-

-0.015-

0.005. I I ,-,---'3" _ (_----_c ...._ -o o 0.000 - --_-,,-.-,__+ ..... + .... : ,%. c -- ',,-, == ._m, llmi immimuui .

¢) -0.005, w-- £3 -0.010 _D &_

co --0.015. 03

&_ n 0.005 - u i I .,. , .,_ -,_------_ O.O00- +-"u"+'"""r'_ " .... ,T .... .=±======+...... ,_ w,.,, (/') I I _u -0.005- > o -_ -0.010- Of _=13d_ -0.015

0.005 - I

0.000 - D+.L,L.I n r.- -X .... at,,'.+'='''='='= _=='='---'----k

-0.005

-0.010 _=15d_ -0.015 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 DistGnce from Floor - Chords

(b) Fore and aft boundary values

Figure 102. Concluded.

527 [] Top - 3 repeats + Bottom - 3 repeats

0.005

0.000

-0.005 -,t_r

-0.010 a=Od_ -0.015

0.005

I I

0.ooo ---43_ ID_D_.. -0.005

-0.010 Ix= 15deg -0.015 -3.0 -2.0 -I.0 0.0 1.0 2.0 3.0 Distonce from Wing Ouorter Chord - Chords

(a) Top and bottom boundary values

Figure 103. Static pressure survey; 3-D configuration; _ = 0.892.

528 [] Top - 3 repeats + Bottom - 3 repeats

0.005 I

0.000 --4:3 _------g

D B° + ..=+8=- m+_ ..... mm'-_'llIllllllllI . .I IIIw -0,005 -

-0.010 -

_=Od_

-0.015 - , i

0.005.

I E}' o 0.000 - -r-i-=_.--O_B c --'t"lrarl+l m e I = ,, .÷ .. ,, ,= m Ii ii. .mjllmmlm q) q) -0.005 4_ 4:__ C3 -0.010- 120 5_

-0.015"

L_ Ck 0.005- o °-- o 0.000- --+'- - ,+, m ,,- - --:+- ...... + ...... +...... -hr_nnnr--+' (/3 -0.005 > o -0.010 CK Or.= 13deg -0.015

0.005 ) i I

0.000 -

-0.005

-0.010

a= 15deg -0.015- 0.0 1.0 2,0 3,0 4.0 5.0 6.0 7.0 Distonce from Floor - Chords

(b) Fore and aft boundary values

Figure 103. Concluded.

529 [] Top - 3 repeats + Bottom - 3 repeats

0.005

0.000

-0.005 .'E.

-0.010

-0.015 , l

0.005 -

- 0.000_ -"-,O,--.,....,m[

q) -0.005

-0o010

23 fl) m -0.015

n 0.0O5 o o 0.0o0 =""0.,,,.,-,,--,-- (/3 -0.005- > o -0.OLO- n," O,= 13deg -0.015-

0.005

=i e 1+4 0,000 ,40/ q _ "l"l

-0.005

-0.010 a= 15deg -0.015 ' -3.0 -2.0 -1.o o.o 1.o 2.0 3.0 Distance from Wing Quarter Chord - Chords

(a) Top and bottom boundary values

Figure 104. Static pressure survey; 3-D configuration; -_ = 1.671.

530 [] Top - 3 repeats + Bottom - 3 repeats

0.005

0.000

i_¢,_t, . • = = : :_ ,. = = ,, __._.r.r_=, Ill i .- l! llli,,iillll ,if-

-0.005

-0.010

G-Od_ -0.015

0.005 -

q) o c o.ooo- • .... ,, iI ..2.._-" m_ s (D (D -0.005 -

C_ -o.oio-; I k-

in -0.015 _1G = 7.5, deg , (,9 0 0.005-

0

0 0.000-

:| It |" e+ |il|ll_| I I i |i.-| I | I | =" ..Zm_ 0'3 I1) -0.005 >

0 -0.010 CY

-0.015 , , , , ,

0.005

0.000 . ' ...... + ...... ==_=. .... t-..,,-!3

-0.005

-0.010 G- 16deg

-0.015 , , , , , 0.0 1.0 2.0 _.0 4.0 5.0 6.0 7.0 Distance from Floor - Chords

(b) Fore and aft boundary values

Figure 104. Concluded.

531 [] Top - 3 repeats + Bottom - 3 repeats

0.005-

0.000-

-0.005 •

-0,010 •

-0.015.

0.005-

0 0.000- c-

-0.005.

db -0.010.

03 -0.015. f,o

t,_ (3_ 0.005- 0

..¢_., o 0.000- (/3 -0.005-

0 -0.010. 0 rY {X- 13 doo -0.015.

Distonce from Wing Quarter Chord - Chords

(a) Top and bottom boundary values

Figure 105. Static pressure survey; 3-D configuration," -_ = 1.800.

532 [] Top - 3 repeats + Rear- 3 repeats

0.005-

0.000 - -/t- i...

-0.005

-0.010

G=Odeg -0.015

0.005 •

o@ 0.000- o- ..... ,% ...... _ .... .=_:,. ....+ K.. Q) -0.005

C] -0.010

(x - 7.5 (leg oo -0.015

[_ 0.005,

.(.) '-"o 0.000 - _---+_4 ...... + "'mwmI+IIiiii _llmIII (,0 @ -0.005- > o -_ -0.010- I:t:: G- 13deg -0.015-

0.005

0.000

-0.005

-0.010'

G- lSdeg -0.015- 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Distonce from Floor - Chords

(b) Only aft boundary values

Figure 105. Concluded.

533 TESTlD:rtsbv2.DO92E PITCH RNGLE - 0.03

Freq. - 0.00 cps Il.sch No. - 0.290 - 0.000 Rr, - ].9980_106

- 7.45± O.OOOe 9. £Lr Speed - 329.8 fps

-7 _/c - 0.250 -7- ,q/c- 0.800 7 W/c - 0.900

-6 -6- -6

-5 -5- -5

-4- -4

-3-

-2 -2- -2

-1 -|- -1

0 ].00 0:25 0150 0.75J 1[00 0 _oo o125 oi_o O.' 75 1100 O ].00 0125 0150 0.75 _ioo 1 t 1 ×c X C X c Meon-CP V5 X/C FOR DIFFERENTIRL SPRN STRTIONS

-7- y/c = 0.475 -7- y/c : 0.957 -7- y/c : 0.966

-6- -6- --6-

-5- -5- -5-

-4- -4- -4-

-3- -3- U& -3-

-2- -2- -2-

-1- -1" -1-

0 0 o i foo 0:25 0.50 0.75 ,oo ).00 0.25 0.50 0.75 1.00 ),00 0.25 0.50 0.75 1.00 I 1 1 X c Xc X c

y/c : 0.976 y/c : 0.986 -7 -7- _7_ Iy/c : 0.995 -6 -6-4 -6! -5 -5-4

-4-- -4- -_i I U & -3- _-_-_i

-2- -24 24

-1- -1-

0 0 _ _1 ," i i i _1 LO0 0.25 0.59 J.75 1.03 ).00 0,25 C,50 0.75 LC: 1 1 7mOO0 0.25 0.50 0.75 1.00 ×r

(a) o_ = O.0 deg

Figure 106. Static pressure survey; chordwise pressure distributions.

534 TE5TlO:rtsbv2.D0928 PITCH RNGLE - 7.45 Freq. - 0.00 cps Plach No. - 0.290 - 0.000 Rn - 1.9980.10' " 7.45± O.OODe 9. RLr Speed- 329.8 £ps

y/c - 0.250 -7- 9/c - 0.800 -7- y/c - 0.900

-6- -6-

-5- -5-

-4-

<] -2

-I -|-

0 0 , , , _.00 0.25 0.50 0.75 I. 'DO ] _.DO0.25 o.so o.7s j'.Do i moo o.2s s.so 0.75 iiDo Xc Xc Xc

Meon-CP V5 X/C FOR O]FFERENT]RL SPRN STATIONS

¢/c: 0.475 -7- -7- y/c = 0,957 -7- y/c = 0.966

-6- -6-

-5- -5- -5. -4- -4- -4-

U_ -3- -3- 0 U _ -3-

-2-

-I-

0 0 _w 0 ._.- • 1 0 25 0 50 0 75 1 O0 I 1_),00 0.25 0.50 0.75 1.00 1 tOO 0.25 0.50 0,75 1.00 X¢ Xc Xc

y/C : 0.976 -7- -7- y/c = 0.986 -7- y/c = 0.995

-6- -6- -6- -5- -5- -5-

-4- -4- -4- U& -3- 0 -31- U& -3-

-2- -2- -2-

-I- -|-

0 0 _ -1. -° ! v i ).00 0.25 0.50 0.75 tOO I r.O0 0.25 0.50 0.75 1.00 1.00 0.25 0.50 0.75 1.00 ! ×C )(c

Meon-CP VS X/C FOR ABSOLUTE SPAN STATIONS

(b) a = 7.5 deg

Figure 106. Continued.

535 TESTI0: rtsbv2.D093L PITCH FIN6LE - 12.94

Freq. - 0.00 cps Nach No. - 0.290 - O. 000 Rn - 1.9980.106

- 7.45± O.OODe 9. RLr Speed - 329.8 ¢ps - -7- _/c - 0.800 -6-

-5- itU/c - 0.900

-4

C_ -3- -3 <3 -2 -2- -2

-I -l--4- -I

0 0 1.00 O'.25 0150 ' IfO0 0 0.75 ]._ 0.25 0.50 0.75 ]._ lloo I I I _.00 0.25 0.50 0.75 Xc X C Xc

Meon-CP VS X/C FOR DIFFERENTIRL 5PRN STRTION5

-7- y/c -- 0.475 -7 y/c = 0.957 -7- y/c= 0.966

-6-

-5" -5-

-4- -4-

U_ -3-

-2-

-I- _ -3- 0 -3--I"

0 L ..... + ..... I ..... v --, 0 i LO0" 0.25 0.50 0.75 tOO I- P:Oe" "6._ 0.50 0.75 1.00 I. j . 25 0.50 0.75 1.00 1 Xc X C X c

-7- y/c = 0.976 -7- y/c = 0.986 -7- y/c -- 0.995

-6- -6- -6-

-5- -5- -5-

-4.- -4- -4-

0 -3- Um -3- U& -3-

-2" -2-

-I. -I- -I- -2- 0 , _ 0 i ! I 0 .--i " w r i ).00 0.25 0.50 0.75 1.00 ,o_oi_ 0.50O.75 1.00 ).DO 0.25 0.50 0.75 1.00 I 1 Xc Xc X c

Mean-CP VS X/C FOR ABSOLUTE SPAN STATIONS

(c) a = 13.0 deg

Figure 106. Continued.

536 TESTlD:rtsbv2.00934 PITCH ANGLE - 14.99

Freq. - 0.00 cps Hach No. - 0.290 u - 0.000 Rn - 1.9980w|0 e

101 - 7.45± 0.00De 9. RLr Speed - 329.8 £ps

-7 y/c - 0.250 -7- _/c - 0.800 -7- _/c - 0.900

-6 -6 - -6-

-5 ° -5 -

-d I . -4-

o_ -3- -3- _.3.

-2- -2- o_- -4- -5- -I- -|. -|-

o o ! i i I ,._o:3 o'so o:_ ,'.oo _® o:3 o:_ o.Ts I [}.00 0.25 O.SO 0.75 I 1 I Xc Xc X c

Meon-CP V5 X/C FOR DIFFERENTIAL SPAN STATIONS

-7- Mc -- 0.475 y/c = 0.966

-6- 7]y/C = 0.957

-5-

-4-

(D& -3- u_

-2-

0 L ..... • ..... n- i i i ):0_ "0.25 0.50 0,75 1.00 o: o 1.O0 1._J_r" 0.25 0.50 0.75 1.oo XC Xc X c

y/c 0.995 _? y/c = 0.976 -7- lY/C = 0.986 -7- =

-- -5- -5-

-4- -4--

0 L._ -3- -3-

-2- -___-- -_-1- -1- .-- i ! i 0 i ! i i _p.oo 0.25 050 o._s t'oo 0 ),oo o25 o.so O'.TS too L_ro"0.25 0.50 0.75 i.oo 1 X c Xc X C

Mean-CP VS X/C FOR ABSOLUTE SPAN STATIONS

(d) o_ = 15.0 deg

Figure 106. Concluded.

537 (a) a = 15 +_4 deg. v =0.04

Figure 107. Stalled surface flow; cycle-to-cycle variation of the flow pattems.

538 (b) _ = 15 +_4 deg. v = 0.04; repeat cycle

Figure 107. Concluded.

539 TESTID: dphpot.D1120 PITCH ANGLE = 15.14 deg Freq. = 2 cps Mach No. = 0.146 v = 0.04 Rn = 1.0257 x 106 0_= 15 +4deg Air Speed = 164.8 fps

Meon-CP V5 XtC FOR DIFFERENTIRL SPRN 5TRTIONS

-7- y/c - 0.250 -7- _/c - 0.800 -7 _/c - 0.900

-6- -6- -6

-5- -5-

-i I -

c__ -3- _ -3- _ -3- -2 -5- -4- -_ -1 -|-

0 , 0 I i i i 0 i i'.oo _._ oi_ oi_ o._s 11oo 1.130 0.25 0.50 0.75 I.OO _.oo0'.25 o'.so o7_ I 1 l XC ×c Xc

Meon-CP VS X/C FOR ABSOLUTE SPAN STATIONS

-7-

-6-

-5-

-4-

L__ -3- -2- O -I-

o 0 , o l .o- , ,- i )00 10"_25 050 075 100 1.O0 l 1]D.O0 0.25 0.50 0.75 1.OO 1 ..J) .,OO" " 0.25 0.50 0.75 X¢ X c X c

y/c = 0.976 -7- y/c = 0.986 -7- y/c = 0.995

-6- -6-

-5° -.5-

-4- -4- 0 d-3 d -3"

-2"

-2"_

0 .- , ..... ; ..... , .... , o .-V e .... i i i ,00 0.25 0.50 0,75 1.00 ).o_ 0.25 0.50 0.75 1.00 1.P.O0 0.25 0.50 0.75 1.O0 1 1 Xc ×¢ Xc

(a) cq = 15.14 deg

Figure 108. Stalled surface flow; the instantaneous pressures corresponding to pattems of figure 107(a).

540 TESTID: dphpot.D1121 PITCH ANGLE = 16.69 deg Freq. = 2 cps Mach No. = 0.147 v = 0.04 Rn = 1.0289 x 106 oc= 15 ±4dog Air Speed = 165.4 fps

Meon-CP VS X/C FOR DIFFERENTIRL 5PRN 5TRTION$

-7 "_ - -7 - 9/c - 0.800 -7 ..q/c- 0.900

-6 -6- -6

-5 -5-

-4 -4- -d

-3- _ -3-

-2 -2-

-I -I- o.ooo'._ o15o o',75i'.oo o 1.00 0._ 0.50 0._ I. 11.00 0.25 0.50 0.75 i'.oo Xc 1 ×C ! Xc

Mean-CP VS X/C FOR ABSOLUTE SPAN STATIONS //c = 0.475 0.957 -7- -7- •,_ -7- y/c= 0.966

-6- -6- I -6-

-5- -5- -5-

-4" -4- -4-

(D_ -3" -3-

-2- -2- -2-

-1" -I- 0-3- -|- 0 I . _---'I ..... • ' I 0 , 0 .J'- I ' "I i .00- -O._5 0.50 0.75 tOO ).00 0.25 0.50 035 I.OO u00 "o.25 0.50 0.75 1.00 1 ! ×c Xc Xc

-7- y/c = 0.976 -7 "/^>"_-= 0.986 -7- y/c= 0.995

-6-

-5- -- -5-

-4" -4- t_ -3" d 0-3- -2-

-1- -_!_ -2-

0 l --, --'," ..... T--- , 0 .-i" i ! i ).00 0 i25 0.50! 0.75i t.O0i tOO ).01_ 0.25 0.50 0.75 tOO t _,O6"__ 0.25 0.50 0.75 1 1 XC ×c ×C

(b) a i = 16.69 deg

Figure 108. Continued.

541 TESTID: dphpot.D1133 PITCH ANGLE = 19.10 deg Freq. = 2 cps Mach No. = 0.147 v = 0.04 Rn = 1.0340 x 106 o_= 15 ± 4deg Air Speed = 166.4 fps

Heon-CP V5 X/C FOR DIFFERENTIRL SPRN STRT]ON5

0.900 -7- _/c - 0.800

-15- ilulc - 0.250 -5-

-3- <3 -2

-L

0 013 , , , lloe ).00 0.25, 0 :50 0.75' I :(3(3 l'.oo I j.00 0.25 0.50 0.75 I Xc ×c

Meen-CP VS X/C FOR ABSOLUTE SPAN STATIONS

y/c = 0.475 y/c = 0.966

-7tY/c= 0-957 iL i 0 I i I ! _'-""== 1 0 / .,- ,...... -_ i LI, , --'o,o....o,,;1.00 l j).00 0.25 0.50 0.75 1.00 1J).OO" 0.25 0.50 0.75 1.O0 X¢ X C X c

-7- y/c = 0.976

-6- 7t y/c = 0.986 -6-

-5- -5- -7-] y/c = 0.995 -4- -4-

-3- 0

-2 _ -2-

-I 4 -|-

0 ,000:25 0:50 0 .ereo.;;o;;. ;;; ,oo 1 1_'°6 0.25 0.50 0.75 too 1- X C X C ×c

(c) ai= 19.10 deg

Figure 108. Continued.

542 TESTID: dphpot.D1141 PITCH ANGLE = 13.53 deg Freq. = 2 cps Mach No. = 0.146 v = 0.04 Rn = 1.0274 x 106 o_= 15 + 4 deg Air Speed = 165.3 fps

3.00 0.25 0.50 0.75 Xc

I ) _R) 0.25 O 50 O 75 1.O0 Xc

).00 0.25 0.50 0.75 tOO Xc

(d) _i = 13.53 deg

Figure 108. Concluded.

543 Figure 109. Stalled surface flow; cycle-average patterns; _ = 15 _+4 deg; v = 0.04.

544 Figure 109. Concluded.

.545 Figure 110. Stalled surface flow; cycle-average pattems; a = 15 +_4 deg; v = 0.20.

546 Figure 110. Concluded.

547 1.000

%.- D CO 0.998 CO

EL 0.996 -

[9 .w-, 0.994' _e Q) 0.992 > \ ..W.2 0.990' "0.._

CK O.988

1.000 (I) = 0.475 K_ / 0.998 O3 0 CO 0.996 (3_ {9 0.994 \ /

Q) 0.992 >

-4--' _o 0.990 (U CY L 0.988

1.000 (D &- y- 0.8o r_ .c

CO 0.998 CO _ 0.995" Cl 9 -_ 0.994'

Q) 0.992 jr > •h. o. _ 0.990

cY 0.988 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0,40 Distance BELOW Wing Trailing Edge ---- Chords

m Figure 11I. Wake survey data; a = 13 deg; X = 1.5.

548 1.000- (D K- (n 0.998- CO _ 0.996- Ck

0 -_ 0.994

_) 0.992 > °_ __0 0.990 i1) cY 0.9BB

1.000

L - 0.475 U) 0.998 U) Q) L 0.996 CL

O 0.994 2 _ 0.992 >

"_ 0.990 rY 0.988.

1.000.

L. V- 0.80 (n 0.998

CLL 0.996" O -_ 0.994" . _ 0.992. >

0 0.990- cr " 0.988- 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 Distance BELOW Wing Trailing Edge ----Chords

Figure 112. Wake survey data; a = 13 deg; X =3.0.

549 550 APPENDIX Examples of data detail- Figures A-I through A-8 present a graphic example of the kind of supporting detail Data Base available from the data base using the interactive data reduction software and are useful when interpreting the The reduced data of this report, their cycle-averaged the cycle-averaged coefficient results. pressures, and the data base of raw data files are archived The coefficient loops (i.e., section aerodynamic coef- at the U.S. Aeroflightdynamics Directorate at NASA ficients versus angle of attack for the cycle-averaged data) Ames Research Center. Inquiries about accessing these at a span station of 0.475 of data point RTPOTl.D0336 results should be addressed to the Directorate. are presented in figure A-1. From these coefficient loops Data storage- The raw data acquired for each data it is possible to obtain an overall view of all the surface point is stored in binary form on optical disks. Each data pressures for this span station plotted over the cycle point file has a name identifying the test type and model (fig. A-2). In this view, any point (phase angle) in the configuration, and a name extension containing the cycle can be selected via screen cross hairs for plotting the sequential data point number (data point naming is chordwise pressure distribution (fig. A-3) for this span defined in the Basic Data Set Description section of this location, or for all span locations (fig. A-4). A statistical report). The raw data file header contains the data point view of the pressure at any one location can be obtained description parameters, the data acquisition parameters, (fig. A-5). Here, the center curve is the cycle average, and and the run beginning zeros for each channel. It also holds the curves on either side of it are, respectively, the cycle the calibration constants, the voltage gain calibrations, average plus and minus a standard deviation. The upper and all the raw data samples for each channel for all and lower curves are, at each phase angle, the maximum repeats. Thus, each file is a low-level record of the data and minimum over all the cycles. The information in this point except for the run end zeros. These were recorded as view shows how stalled flow unsteadiness varies through- the beginning zeros of a dummy data point (with an ID of out the cycle. For example, clearly the stall influence at RTENDZ) taken at the end of the run. Each data point this chord location becomes significant at a phase angle of file, together with the end run zeros, contains all the about 70 deg, and the reattachment of the flow is complete information necessary to reduce the data point to engi- at a phase angle of about 310 deg. Figure A-6 illustrates neering units at any desired level of detail. another view of the repeatability of this individual pres- Software-- The interactive data reduction software sure where all the individual cycles are concatenated. The opens the binary raw data file (described above) for the information in this view allows selection and plotting of specified data point in the data base. It provides the user any individual pressure cycle (e.g., cycle repeats numbers with the option to reduce and view the data point repeti- 5 and 8, fig. A-7) and production of the coefficient loops tively in any form from the most elementary to the fully for these individual cycles (fig. A-8). integrated aerodynamic coefficients. The following results can be produced for any indi- vidual pitch oscillation cycle or for the cycle-averaged Lift Coefficient from Leading Edge Pressures results plus or minus a standard deviation: 1. The output of any individual pressure transducer, The procedure developed for the fit and interpolation including the test section static and dynamic pressures, of the leading pressure distributions described in the Data and the angle of attack transducer. Reduction section implicitly locates the stagnation point. 2. The chordwise distribution of Cp at any span This interpolation procedure suggests a method for obtain- station for any instant of time or phase angle in a pitch ing the local section CI from leading edge pressure cycle. measurements. 3. The section aerodynamic coefficients versus _ at The availability of the functional relationship any span station. between the stagnation point location and C i for a given 4. The spanwise distribution of the section aerody- airfoil section (fig. 7) makes it possible to evaluate the namic coefficients at any instant of time or phase angle in magnitude of the local section CI on any wing or rotating a pitch oscillation cycle. wing with the same airfoil, given as few as 2 (the mini- 5. The wing aerodynamic coefficients versus o_at mum required for the fit procedure) leading edge pressure any span station. measurements. Note that while two measured pressures In addition to these graphical presentations, options are the minimum required, more measurements increase exist to output most of the above forms as numerical the accuracy of the leading edge pressure fit and the results to a file for desired use, e.g., as input to post pro- determination of the stagnation point location. cessing or plotting software. The procedure is as follows: Experimentally calibrate the airfoil of the subject wing or rotor. Determine the

551 P_ PAGE Ilt.Ar_ NOT FN..ME.J._ functional relationship of the stagnation point location to results are within 9% when using linear extrapolation of the section C! (fig. 16) from a 2-D test of the airfoil sec- the airfoil calibration. tion using the fit procedure. Use the wing or rotor leading The following limitations influencing accuracy need edge pressures and the fit procedure to determine the further investigation: stagnation point location. The stagnation point location is 1. The procedure should only be valid below stall. then used to determine the section C I from the airfoil However, a stalled airfoil has a bound circulation calibration. reflected in the stagnation point location. The accuracy of this procedure has not been thor- 2. The procedure may not be valid in highly 3-D oughly investigated. However, within the context of this regions of a wing, e.g., near the tip. data set at the wing midspan location for C 1 < 1.0, the 3. The fit procedure is based on the assumption of procedure yields results within 4% at reduced frequencies incompressible flow. up to 0.20. For 1.0 < C 1 < 1.3 on the nonlinear part of the lift curve attained under dynamic pitch operation, the

|.B- O.45 - O. 05 -

1.6- 0.40 - 0.00 -

1.4- O.35 - -0.05 -

1.2- 0.30- -0.10 -

1.0 0.25 -0.15 -

0.8 O.20 -0.20 - E d 0.6 J 0.15 CD -0.25 -

0.4 0.I0 -0.30 -

0.2 O.05 -0.35

0.0 O.O0 -0.40

-0.2 | i -0.05 I _ -0.45 w i 10 15 20 10 15 20 10 15 20

SPAN STATION - 0.475

Freq. " 3.99 cps Moch No. - 0.287 - 0.038 Rn - 1.9659.106

- 15.02± 4.060e 9. ACt Speed - 328.6 fps

Figure A-1. Data view; aerodynamic coefficients versus a; cycle average.

552 SPFIN STRTION - 0.47SFIBS,UPPER TESTID: rtpot1.D0336 Freq. - 3.99 cps Moch No. - 0.21_7 -24 - 0.038 Rn - 1.9659-]0- -23 -22 (_ - 15.02+ 4.06De9. FILr Speed - 328.6 £ps -21 -20 -19 -18

-16 -15 -14 -13 -12 -ii -p

-4 -3 / -2 -1

0 ' ' ' ' ' ' ' ' t ' ' .... ' ' I ' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' ' I 1 90 ]80 270 360 2 3 6 4 5 6 7

SPAN STATION - 0.4-75ABS,LOWER TESTID:rtpot 1.DO336 Freq. - 3.99 cps Moch No. - 0.267 v- 0.038 Rn- 1.9659_10- 7-_°]1 c_- 15.02+ Air Speed- 328.6 fps -_/_ 4.06Deg.

-;2216t 2o-

-11 - -10 -

--9-

--6-

n --7-

U --6- --5-

--4"-

--3-

--1-

2- 3- o 6- 7

Figure A-2. Data view; all section pressures over cycle.

553 _rIN STAT]ON- 0.475RB5

- [q.3 _- 13.250e 9. TESTIO: tpotl.COS36 mea_, ±sd

-7- Freq. - 3.99 cps Mach No. - C.2_7 > - O. 038 Rn - !.%5q_10 6- _ - ]5.02t 4.060e9. Atr Speem - _26.E, _#s

-4-

rj _ -3-

2

04 7.. - _ , . , ..-x-A-'-1_r_ 0.50 F 7c

SPAN STATION - 0.475685

O - 79.4 e - 17,350e 9. TESTlO:rtpotl.00336 meon ± sd -7]_ Freq.- 3.99 cps Moch No.- 0.2_7 ]_ _ - 5.538 Rn- l.gGS9-]O-

_iI/_ - 15.02± 4.060e 9. AL- Speed - _28.6 rps

"%. 1 O! ,,,

:_ XC

SPRN STATION - 0.475RB5

0 - I0_.4 a - 18.420eg. TESTIO:rtpotl.D0336 meon ± sd -1 Freq. - 3.99 cps Moch No. - 0.2_7 _- 0.538 Rn- ].9659.10-

-6 t _ - ]5.02± 4.060e 9. R_r Speed - 328.6 _ps -5

-4

0 _ -_

-2

1

0 f I 0,50 " 017S' ' '

1

Figure A-3. Data view; individual chordwise pressures; any phase angle.

554 TEST]'D:rt.pot].D0336 PHflSE ANGLE - 90.00 PITCH ANGLE - ]7.93 Freq. 3.99 cps Mach No. - 0.287 - 0.038 Rn - 1.9659.t0 _

o - 15.02± 4.060e9. RLr Speed - 328.6 _ps

Meon-CP V5 X/C FOR DIFFERENTIAL SPAN STATIONS

-7- 9/c " 0.250 -7- 9/c - 0.800 -7 y/c - 0.900

-6- -6-

-5- -5- -5

-4- -4- -4

-3- -3- <3 <3 <3 -2- -2- k -2-6 -I - -1 - -1 k___ 0 t 0 ooo125 olso o75' ,oo 3.000'.25 0150 0.75 1'.00 0.00 0125 0.50 0.75 1.00 1 1 ] ×c Xc Xc

Mean-CP VS X/C FOP ABSOLUTE SPAN STATIONS

_ y/c : 0.475 y/c : 0.966 _ily/c: 0.957 -i1 -4 Q. _ -3- U U -2- -4- _

--1- _ 0 ! .... -& ..... 3 '" i i l.O0- -0._5 0.50 0.75 1.00 1.00 _'_; o.5o 075 _.oo 1- - --, ×c Xc Xc

-7- y/c : 0.976 --7- y/C : 0.986 -7 y/c : 0.995

-6- -6-

-5-

-4- -4-

,_ - 3 -3-

-2 \

-I \_._ -2--I-

o 1 1 r i 0 :.00 0.25 9.50 0.75 1.00 ),8_ 0,25 0.50 0.75 1.0C i 1 _J?._O 0.25 0.50 0.7-. 1.00 ×c i

Figure A-4. Data view; all chordwise pressures; any phase angle.

555 SPRN STRTION = O._75RBS,UPPER CHORD 5TRTION = 0.100

TESTID" rtpot] .D0336 ].0-

Moch = 0,5-- Freq. = 3.99 cps No. 0.287 _,- 0.038 Rn = ] 9659_ ]0o

0.0 i _ av - J i15.02+, , , i 4.,O,6,Degi nI HCf,Speed,i T r=, , 328i i i I r6 I rps .0 90.0 180.0 270.0 360.0 -0.5 -

-i .0 -

n o -i .5 -

-2.0

-2.5 -

-3.5 -3"0 1

-4.0

CHF-II'!NEL : R ] 8

Figure A-5. Data view; individual pressure; statistical view.

556 SPAN STRTION = Oo_75RBS,UPPER CHORD STATION = 0.100 TESTID:PLpoL1.D0336

Freqo = 3.99 cps Nach No. = 0 _7 = 0°038 Rn = 1 9659_i U = IS.02± 4o06Dego RLr Speed = 328.6 £ps

Repeal No o 1 2 3 _ S 6 7 8 91011 12 13 1'11S1617 18 19 20 0.0 I I t I I l I I I t I I I I t l I I I I

EL -1 .S

"7 J.O

CHANNEL: A !8

Figure A-6. Data view; individual pressure; all cycles concatenated.

557 SPRN STRTION - O._75RBS,UPPER CHORD STATION - 0.100 TESTID:rtpotI.D0336 1.0

0.5

0.0 ,,_ = 15.02± 4.06D?g RLr 5pe_d I 328.6 £ps l Freq...... = 3.99 cps "I c_' 'No.' ' = @..... _7 I .0 90.0 180.0 270.0 360.0 -0.5

-] .0

¢1 o -1.5

-2.0

-2.5

-3.0

-3.5 -

-'_ .0

::HfiI,!,]E: : fi 18 ReaesT r,-, -

5PRN 5TRTION - 0.475RBS,UPPER CHORD STRTION - 0.100 TESTID:rtpotl.D0336 ].0

0.5 Freq.- 0.u38_ 3.99 cps RnMach- No.1.9659_1- 0._7

0.0 ,,q -!5.02_ ¢.,0,60e9.. n_F S,p?_g ,- 328.6.rps 3.0 90.0 180. O 270. O 360.0 -0.5

-1.0

-1.5

-2.0

-2.5

-3.0 _,

-3.5

-4.D

CHRNNEL: F!18 Reaeat No. 8

Figure A-7. Data view; individual pressure; single cycle.

558 SectLon EL, Cd, and Cm vs ALpha; For ONE cycle

TESTID:rtpoLI.D0336 CycLe REPEAT No. - S

! .8 0.45 0.05

1.6 0.40 0.00 --k--_, [_-VV_i

1.4 _ 0.35 - -0.05

1.2 0.30 - -0. ]0

1.0 0.25 - -0.15

0.8 0.20 -

no & d 0.6 ED 0.15- C_ -0.25

0.4 0.10- -0.30 -0.20 0.2 0.05 - -0.35

0.0 0.00- -0,40

-0.2 _ _ , i _ -0.05 _ _ , r , -0.45 , , , , ; 10.012.0 14.0 15.0 18.0 20.0 I0.012.0 14.0 16.0 18.0 20.0 10,012.0 14.0 IB.O 18.0 20.0

CI O Ol

TESTID: rLpotl .D0336 CycLe REPEAT No. - 8

1.8- 0.45 - 0.05 -

1.6- 0.40 - 0. O0 - ,,,,--,_._v--_

1,4- 0.35 - -0.05 -

1.2- 0.30 - -0.10 -

1.0- 0.25 - -0.15 -

0.8- 0.20 - -0.20 - & rJ_ 0.6- (D_ 0.15 r__ -0.25 -

0.4 0.10 -0.30 -

0.2 0.05 -0.35 -

0.0 0.00 -0.40 -

-0.2 , ; , , _ -0.05 w _ , , _ -0.45 i _ , , , 10.012.0 14.0 16.0 18.0 20.0 10.012.0 14.0 16.0 18.0 20.0 10.012.0 14.0 16.0 18.0 20.0

SPAN 5TAT]ON - 0.475 Freq. - 3.99 cps Moch No. - 0.287 - 0.038 Rn - 1.9659_10 e

a - iS.02± 4.06De 9. ACt Speed - 328.6 ?ps

Figure A-8. Data view; aerodynamic coefficients versus a; single cycle.

559 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public repoding burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to fhe Office of Management and Budget, Paperwork Reduction Pro iect (0704-0188). Washington. DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 1994 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 2-D and 3-D Oscillating Wing Aerodynamics for a Range of Angles of Attack Including Stall 505-59-52 6. AUTHOR(S)

R. A. Piziali

8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER Ames Research Center, Moffett Field, CA 94035-1000 and Aeroflightdynamics Directorate, U.S. Army Aviation and Troop A-94053 Command, Ames Research Center, Moffett Field, CA 94035-1000

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER National Aeronautics and Space Administration Washington, DC 20546-0001 and U.S. Army Aviation and Troop Com- NASA TM-4632 mand, St. Louis, MO 63120-1798 USAATCOM TR-94-A-011

11. SUPPLEMENTARY NOTES Point of Contact: Robert A. Ormiston, Ames Research Center, MS 215-1, Moffett Field, CA 94035-1000; (415) 604-5835

12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITYSTATEMENT

Unclassified-Unlimited Subject Category - 02

13. ABSTRACT (Maximum 200 words) A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two- dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.

14. SUBJECTTERMS 15. NUMBER OF PAGES 570 2-D oscillating airfoil, 3-D oscillating airfoil, Wing and airfoil 16. PRICE CODE A24

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION i19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACl OF REPORT OFTHIS PAGE OF ABSTRACT Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std, Z39-18