TRIM32: a Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

TRIM32: a Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis biomolecules Review TRIM32: A Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis Simranjot Bawa 1, Rosanna Piccirillo 2 and Erika R. Geisbrecht 1,* 1 Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA; [email protected] 2 Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +1-(785)-532-3105 Abstract: Human tripartite motif family of proteins 32 (TRIM32) is a ubiquitous multifunctional protein that has demonstrated roles in differentiation, muscle physiology and regeneration, and tumor suppression. Mutations in TRIM32 result in two clinically diverse diseases. A mutation in the B-box domain gives rise to Bardet–Biedl syndrome (BBS), a disease whose clinical presentation shares no muscle pathology, while mutations in the NHL (NCL-1, HT2A, LIN-41) repeats of TRIM32 causes limb-girdle muscular dystrophy type 2H (LGMD2H). TRIM32 also functions as a tumor suppressor, but paradoxically is overexpressed in certain types of cancer. Recent evidence supports a role for TRIM32 in glycolytic-mediated cell growth, thus providing a possible mechanism for TRIM32 in the accumulation of cellular biomass during regeneration and tumorigenesis, including in vitro and in vivo approaches, to understand the broad spectrum of TRIM32 functions. A special emphasis is placed on the utility of the Drosophila model, a unique system to study glycolysis and anabolic pathways that contribute to the growth and homeostasis of both normal and tumor tissues. Citation: Bawa, S.; Piccirillo, R.; Geisbrecht, E.R. TRIM32: A Keywords: muscle; costamere; muscular dystrophy; cancer Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis. Biomolecules 2021, 11, 408. https:// 1. The TRIM Family of Proteins doi.org/10.3390/biom11030408 The tripartite motif family of proteins (TRIM) is characterized by the presence of an N- terminal RING (really interesting new gene) finger followed by one or two B-box domains Academic Editor: Paolo Cascio (BB1 and BB2) and a coiled-coil region with a variable C-terminus (Figure1A) [ 1,2]. The TRIM family consists of approximately 70 protein members involved in a plethora of biolog- Received: 8 February 2021 ical processes, including apoptosis, cell cycle regulation, muscle homeostasis, and the innate Accepted: 6 March 2021 Published: 10 March 2021 immune response [3,4]. Each domain has independent functions, and the variability in the C-terminal region defines the structural and biochemical properties of the protein and im- Publisher’s Note: MDPI stays neutral parts target specificity. The TRIM family of proteins is sorted into nine categories classified with regard to jurisdictional claims in as C-I through C-XI based upon the composition of the C-terminal domain (Figure1B) [2]. published maps and institutional affil- The C-VII subclass includes proteins with five or six NHL (NCL-1, HT2A, LIN-41) repeats, iations. which are thought to primarily mediate protein–protein interactions. TRIM-NHL proteins also bind RNAs and are key regulators of cell growth, proliferation, and differentiation [5]. There are four TRIM-NHL proteins encoded in Drosophila melanogaster, Mus musculus, and Homo sapiens followed by five in Caenorhabditis elegans [5] (Figure1C). One of these TRIM-NHL proteins, TRIM32, was uncovered as a protein that binds to Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. HIV-1 Tat, a key transactivator of viral transcription [6]. Since this initial discovery, the This article is an open access article biological roles of TRIM32 have rapidly expanded [2,3,7–9]. Human TRIM32 is expressed distributed under the terms and in a variety of tissues, including skeletal muscle, with elevated levels eminent in the brain conditions of the Creative Commons and heart [10]. The Drosophila ortholog of TRIM32 is enriched in larval and adult muscle Attribution (CC BY) license (https:// tissue and demonstrates structural and functional conservation across species [11–13]. This creativecommons.org/licenses/by/ review highlights classical and emerging roles of TRIM32 as a multifunctional protein 4.0/). in a multitude of developmental and physiological functions, as well as summarizes its Biomolecules 2021, 11, 408. https://doi.org/10.3390/biom11030408 https://www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, x FOR PEER REVIEW 2 of 25 Biomolecules 2021, 11, 408 This review highlights classical and emerging roles of TRIM32 as a multifunctional2 of pro- 23 tein in a multitude of developmental and physiological functions, as well as summarizes involvementits involvement in regulatingin regulating glycolytic glycolytic enzymes enzymes to promoteto promote growth growth in in both both normal normal and and cancerouscancerous tissues.tissues. Figure 1. ClassificationClassification ofof thethe tripartitetripartite motifmotiffamily family of of proteins proteins 32 32 (TRIM). (TRIM) (.A (A) General) General schematic schematic of of a TRIMa TRIM protein. protein. The The NN-terminus-terminus is comprised ofof aa reallyreally interestinginteresting newnew gene gene (RING) (RING) domain, domain, one one or or two two B-box B-box regions, regions, and and a coiled-coila coiled-coil domain followedfollowed byby a a variable variable C-terminus. C-terminus. (B )( TableB) Table representing representing different different categories categories of TRIM of TRIM proteins. proteins. (C) Different (C) Different NHL NHL(NCL-1, (NCL HT2A,-1, HT2A, LIN-41) LIN proteins-41) proteins encoded encoded in vertebrates in vertebrates and invertebrates and invertebrates (adapted (adapted from WILLIAMS from WILLIAMS et al. 2019). et al. 2019). 1.1.1.1. Structural andand FunctionalFunctional OrganizationOrganization of of TRIM32 TRIM32 MammalianMammalian TRIM32TRIM32 isis a part of the largest subfamily of RING E3 E3 ligases ligases involved involved in inregulating regulating multifaceted multifaceted post post-translational-translational modifica modificationstions of cellular of cellular proteins proteins through through ubiq- ubiquitinationuitination [2,7]. [ 2The,7]. N The-terminus N-terminus consists consists of the oftypical the typical TRIM TRIMmotifs, motifs, including including the catalytic the catalyticRING domain, RING domain, a single aB single-box domain B-box domain (Type II), (Type and II), a andcoiled a coiled-coil-coil region, region, followed followed by six byC-terminal six C-terminal NHL repeats NHL repeats (Figure (Figure 2A). Conserved2A). Conserved cysteine cysteine and histidine and histidine residues residues spaced spacedout in the out core in the of the core RING of the domain RING domaincoordinate coordinate two zinc two ions zinc in a ions cross in-bridge a cross-bridge fashion to fashionprovide to structural provide structuralmaintenance maintenance and to ensure and tobiological ensure biological activity [14,15]. activity For [14 ,a15 protein]. For a to proteinexhibit toE3 exhibit ligase activity E3 ligase, the activity, RING the domain RING domainmust possess must possessa proline a prolineresidue residue after cysteine after cysteine at the seventh position; this residue is missing in nematode LIN-41 and the protein Biomolecules 2021, 11, x FOR PEER REVIEW 3 of 25 at the seventh position; this residue is missing in nematode LIN-41 and the protein lacks catalytic activity [16,17]. The crystal structure of the TRIM32 RING domain reveals a di- mer of four alpha helices where both the N- and C-termini are located near the proximity of the core [18]. This dimerization promotes the association of E2-Ubiquitin conjugates and enhances the transfer of ubiquitin moieties. Another zinc-binding region is the B-box domain type II and, similar to the RING domain, this domain coordinates two zinc ions in a similar cross-brace manner. Typically, the B-box domain type II presents a two-turn α-helix followed by two short β-strands separated by a type-2 β-turn with two structured Biomolecules 2021, 11, 408 loops adjacent to the helix [19]. The B-box domains, together with the antiparallel coiled3 of 23 - coil region, allow for the formation of higher order complexes, but the domain itself is not crucial for catalytic activity. Instead, this region has been shown to influence the rate of ubiquitinlacks catalytic chain activity assembly [16 ,and17]. contribute The crystal to structure the subcellular of the TRIM32 localization RING of domain TRIM32 reveals [20]. a dimerEach of fourNHL alpha repeat helices is comprised where both of theshort N- stretches and C-termini of about are located40 amino near acids. the proximityThe X-ray structureof the core of [the18]. TRIM32 This dimerization NHL motif promotes reveals a the β propeller association whe ofre E2-Ubiquitin each NHL repeat conjugates folds intoand four enhances antiparallel the transfer β sheets of ubiquitinarranged moieties.toroidally Another around zinc-bindinga central axis region (Figure is 2B) the [12,21]. B-box Thesedomain NHL type repeats II and, are similar essential to the for RING mediating domain, protein this domain–protein coordinates interactions two and zinc likely ions inpro- a videsimilar substrate cross-brace specificity manner. [2]. Typically, It has the reported B-box domain that the type TRIM32 II presents RING a two-turn domainα-helix inde- pendentlyfollowed bymediates two short dimerizationβ-strands separatedand
Recommended publications
  • Educational Paper Ciliopathies
    Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known
    [Show full text]
  • Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
    NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants.
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Molecular Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Level 6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling mutational analysis of Samples required genetically heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 5ml venous blood in plastic EDTA 1:2,000 births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Detection of TRIM32 Deletions in LGMD Patients Analyzed by a Combined Strategy of CGH Array and Massively Parallel Sequencing
    European Journal of Human Genetics (2015) 23, 929–934 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE Detection of TRIM32 deletions in LGMD patients analyzed by a combined strategy of CGH array and massively parallel sequencing Juliette Nectoux1,2,14, Rafael de Cid3,14,15, Sylvain Baulande4, France Leturcq1,5, Jon Andoni Urtizberea6, Isabelle Penisson-Besnier7, Aleksandra Nadaj-Pakleza7, Carinne Roudaut3, Audrey Criqui4, Lucie Orhant1, Delphine Peyroulan8, Raba Ben Yaou5, Isabelle Nelson5, Anna Maria Cobo6, Marie-Christine Arné-Bes9, Emmanuelle Uro-Coste9, Patrick Nitschke10, Mireille Claustres8,11, Gisèle Bonne5,12, Nicolas Lévy13, Jamel Chelly1,2, Isabelle Richard3 and Mireille Cossée*,8,11 Defects in TRIM32 were reported in limb-girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathies (STM) and in Bardet-Biedl syndrome. Few cases have been described to date in LGMD2H/STM, but this gene is not systematically analysed because of the absence of specific signs and difficulties in protein analysis. By using high-throughput variants screening techniques, we identified variants in TRIM32 in two patients presenting nonspecific LGMD. We report the first case of total inactivation by homozygous deletion of the entire TRIM32 gene. Of interest, the deletion removes part of the ASTN2 gene, a large gene in which TRIM32 is nested. Despite the total TRIM32 gene inactivation, the patient does not present a more severe phenotype. However, he developed a mild progressive cognitive impairment that may be related to the loss of function of ASTN2 because association between ASTN2 heterozygous deletions and neurobehavioral disorders was previously reported. Regarding genomic characteristics at breakpoint of the deleted regions of TRIM32, we found a high density of repeated elements, suggesting a possible hotspot.
    [Show full text]
  • Ryanodine Receptors Are Part of the Myospryn Complex in Cardiac Muscle Received: 10 March 2017 Matthew A
    www.nature.com/scientificreports OPEN Ryanodine receptors are part of the myospryn complex in cardiac muscle Received: 10 March 2017 Matthew A. Benson1, Caroline L. Tinsley2, Adrian J. Waite 2, Francesca A. Carlisle2, Steve M. Accepted: 12 June 2017 M. Sweet3, Elisabeth Ehler4, Christopher H. George5, F. Anthony Lai5,6, Enca Martin-Rendon7 Published online: 24 July 2017 & Derek J. Blake 2 The Cardiomyopathy–associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)- related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases afecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on diferent chromosomes. Using immunoafnity purifcation and mass spectrometry we show that minispryn co-purifes with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle. Te unique cytoskeletal organisation of striated muscle is dependent upon the formation of specialised interac- tions between proteins that have both structural and signalling functions1.
    [Show full text]
  • Download Author Version (PDF)
    Molecular BioSystems Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/molecularbiosystems Page 1 of 29 Molecular BioSystems Mutated Genes and Driver Pathways Involved in Myelodysplastic Syndromes—A Transcriptome Sequencing Based Approach Liang Liu1*, Hongyan Wang1*, Jianguo Wen2*, Chih-En Tseng2,3*, Youli Zu2, Chung-che Chang4§, Xiaobo Zhou1§ 1 Center for Bioinformatics and Systems Biology, Division of Radiologic Sciences, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, USA. 2 Department of Pathology, the Methodist Hospital Research Institute,
    [Show full text]
  • Usbiological Datasheet
    ABI2 (ABI-2, ABI2B, AblBP3, AIP-1, argBPIA, SSH3BP2, ARGBPIA, Abl interactor 2) Catalog number 144114 Supplier United States Biological ABI2 (ABL Interactor 2), is a protein that in humans is encoded by the ABI2 gene. By analysis of a YAC and a BAC, Machado et al. (2000) mapped the ABI2 gene to 2q31-q33. ABI2 possesses a basic N terminus with homology to a homeodomain protein; a central serine-rich region; 3 PEST sequences, which are implicated in susceptibility to protein degradation; several proline-rich stretches; and an acidic C terminus with multiple phosphorylation sites and an SH3 domain. Dai and Pendergast (1995) suggested that the ABI proteins may function to coordinate the cytoplasmic and nuclear functions of the ABL1 tyrosine kinase. UniProt Number Q9NYB9 Gene ID ABI2 Applications Suitable for use in Western Blot. Recommended Dilution Optimal dilutions to be determined by the researcher. Storage and Handling Store at -20˚C for one year. After reconstitution, store at 4˚C for one month. Can also be aliquoted and stored frozen at -20˚C for long term. Avoid repeated freezing and thawing. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Immunogen A synthetic peptide corresponding to a sequence at the N-terminal of human ABI2, identical to the related mouse and rat sequences. Formulation Supplied as a lyophilized powder. Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg Thimerosal, 0.05mg NaN3. Reconstitution: Add 0.2ml of distilled water will yield a concentration of 500ug/ml.
    [Show full text]
  • [Frontiers in Bioscience 13, 2633-2652, January 1, 2008] 2633 Intraflagellar Transport: from Molecular Characterisation to Mech
    [Frontiers in Bioscience 13, 2633-2652, January 1, 2008] Intraflagellar transport: from molecular characterisation to mechanism Oliver E. Blacque1, Sebiha Cevik1, Oktay Ismail Kaplan1 1School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Scope of Review 2.2. Overview of cilia and flagella 2.2.1. Two classes of cilia: motile and non-motile 2.2.2. Cilium structure 2.2.3. The ‘ciliome’ 2.3. Discovery of IFT 2.4. IFT in outline 3. The IFT machinery: lessons from unicellular chlamydomonas 3.1. Kinesin 2: the anterograde IFT motor 3.2. IFT-dynein: the retrograde motor 3.3. The IFT particle 3.3.1. IFT particle complexes A and B are functionally distinct 4. IFT in metazoans: the C. elegans model 4.1. Structure/function of C. elegans sensory cilia 4.2. Not one, but two kinesin 2 motors drive C. elegans anterograde IFT 4.3. Novel IFT genes 4.4. Regulation of C. elegans anterograde IFT 4.4.1. bbs gene function coordinates kinesin 2 motor association 4.4.2. dyf-5 regulates the docking/undocking of kinesin 2 motors 5. Vertebrate IFT 5.1. IFT and disease 5.2. Investigation of mammalian IFT 6. IFT and cilium-based signalling 6.1. IFT and sonic hedgehog (Shh) signalling 6.2. IFT and PDGF-AA signalling 6.3. IFT directly mediates Chlamydomonas signalling during mating 7. IFT Cargo 8. IFT and the Cell cycle 9. Mechanism of IFT: a current model 10. Perspective 11.
    [Show full text]
  • Molecular Diagnostic Requisition
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 MOLECULAR DIAGNOSTIC REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested.
    [Show full text]
  • Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
    Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter.
    [Show full text]
  • Dystrophin Complex Functions As a Scaffold for Signalling Proteins☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1838 (2014) 635–642 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Dystrophin complex functions as a scaffold for signalling proteins☆ Bruno Constantin IPBC, CNRS/Université de Poitiers, FRE 3511, 1 rue Georges Bonnet, PBS, 86022 Poitiers, France article info abstract Article history: Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and Received 27 May 2013 incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex Received in revised form 22 August 2013 (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins Accepted 28 August 2013 and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force trans- Available online 7 September 2013 duction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaf- fold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling Keywords: Dystrophin-associated protein complex (DAPC) processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. syntrophin The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle Sodium channel cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More TRPC channel generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins.
    [Show full text]
  • The Neurotransmitter Released at the Neuromuscular Junction Is
    The Neurotransmitter Released At The Neuromuscular Junction Is Towney congeals his bibbers manipulate jocular, but cash-and-carry Winfred never extravasating so malcontentedly. Is Norton always dipetalous and unworn when guzzled some admeasurement very untidily and adversely? Busty Dominic overexcited some close and jemmying his galluses so nautically! Hiw are four nlgs are working memory, sv hubs depending on the specific to the neurotransmitter released neuromuscular junction at institutions across brain The energy is delivered in a fractional manner. Smooth muscle NMJ is formed between the autonomic nerve fibers that branch diffusely on strength muscle in form diffuse junctions. In an intact brain, volume was observed that Cac density at AZs is indeed strongly correlated with Pr. Chemical synapses involve the transmission of chemical information from one cell as the next. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. If you order something abusive or that does not lessen with surrender terms or guidelines please flag it as inappropriate. Ach in the presynaptic protein in the active secretors of the released. You can login by using one alongside your existing accounts. Many drugs and anesthetic agents also affect neuromuscular junction and impulse transmission to inside their effects. The chemical must be present within a neuron. Another route for tetanus is lockjaw, respectively, the calcium rushes out of newly opened gates. In our data presented at multiple neurotransmitters are commonly performed by abnormal nmj but the neurotransmitter released at is the neuromuscular junction, it will fail to propagate from another power stroke can have qualitatively distinct categories reflective of the resultant of development.
    [Show full text]