Detection of TRIM32 Deletions in LGMD Patients Analyzed by a Combined Strategy of CGH Array and Massively Parallel Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Educational Paper Ciliopathies
Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known -
Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants. -
Ciliopathies Gene Panel
Ciliopathies Gene Panel Contact details Introduction Molecular Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Level 6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling mutational analysis of Samples required genetically heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 5ml venous blood in plastic EDTA 1:2,000 births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases. -
[Frontiers in Bioscience 13, 2633-2652, January 1, 2008] 2633 Intraflagellar Transport: from Molecular Characterisation to Mech
[Frontiers in Bioscience 13, 2633-2652, January 1, 2008] Intraflagellar transport: from molecular characterisation to mechanism Oliver E. Blacque1, Sebiha Cevik1, Oktay Ismail Kaplan1 1School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Scope of Review 2.2. Overview of cilia and flagella 2.2.1. Two classes of cilia: motile and non-motile 2.2.2. Cilium structure 2.2.3. The ‘ciliome’ 2.3. Discovery of IFT 2.4. IFT in outline 3. The IFT machinery: lessons from unicellular chlamydomonas 3.1. Kinesin 2: the anterograde IFT motor 3.2. IFT-dynein: the retrograde motor 3.3. The IFT particle 3.3.1. IFT particle complexes A and B are functionally distinct 4. IFT in metazoans: the C. elegans model 4.1. Structure/function of C. elegans sensory cilia 4.2. Not one, but two kinesin 2 motors drive C. elegans anterograde IFT 4.3. Novel IFT genes 4.4. Regulation of C. elegans anterograde IFT 4.4.1. bbs gene function coordinates kinesin 2 motor association 4.4.2. dyf-5 regulates the docking/undocking of kinesin 2 motors 5. Vertebrate IFT 5.1. IFT and disease 5.2. Investigation of mammalian IFT 6. IFT and cilium-based signalling 6.1. IFT and sonic hedgehog (Shh) signalling 6.2. IFT and PDGF-AA signalling 6.3. IFT directly mediates Chlamydomonas signalling during mating 7. IFT Cargo 8. IFT and the Cell cycle 9. Mechanism of IFT: a current model 10. Perspective 11. -
Molecular Diagnostic Requisition
BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 MOLECULAR DIAGNOSTIC REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested. -
The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies Review Article
Review Article 04/25/2018 on mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== by https://journals.lww.com/continuum from Downloaded Downloaded from Address correspondence to https://journals.lww.com/continuum Dr Stanley Jones P. Iyadurai, Ohio State University, Wexner The Limb-Girdle Medical Center, Department of Neurology, 395 W 12th Ave, Columbus, OH 43210, Muscular Dystrophies and [email protected]. Relationship Disclosure: by mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== Dr Iyadurai has received the Dystrophinopathies personal compensation for serving on the advisory boards of Allergan; Alnylam Stanley Jones P. Iyadurai, MSc, PhD, MD; John T. Kissel, MD, FAAN Pharmaceuticals, Inc; CSL Behring; and Pfizer, Inc. Dr Kissel has received personal ABSTRACT compensation for serving on a consulting board of AveXis, Purpose of Review: The classic approach to identifying and accurately diagnosing limb- Inc; as journal editor of Muscle girdle muscular dystrophies (LGMDs) relied heavily on phenotypic characterization and & Nerve; and as a consultant ancillary studies including muscle biopsy. Because of rapid advances in genetic sequencing for Novartis AG. Dr Kissel has received research/grant methodologies, -
Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
Eye Disorders Comprehensive Panel Test Code D4306 Test Summary This test analyzes 211 genes that have been associated with ocular disorders. Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing Individuals with an eye disease suspected to be genetic in origin Individuals with a family history of eye disease Individuals suspected to have a syndrome associated with an eye disease Test Description This panel analyzes 211 genes that have been associated with ocular disorders. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Diseases associated with this panel include microphtalmia, anophthalmia, coloboma, progressive external ophthalmoplegia, optic nerve atrophy, retinal dystrophies, retinitis pigementosa, macular degeneration, flecked-retinal disorders, Usher syndrome, albinsm, Aloprt syndrome, Bardet Biedl syndrome, pulmonary fibrosis, and Hermansky-Pudlak -
MKKS Is a Centrosome-Shuttling Protein Degraded by Disease
Molecular Biology of the Cell Vol. 19, 899–911, March 2008 MKKS Is a Centrosome-shuttling Protein Degraded by Disease-causing Mutations via CHIP-mediated Ubiquitination Shoshiro Hirayama,* Yuji Yamazaki,* Akira Kitamura,* Yukako Oda,* Daisuke Morito,* Katsuya Okawa,† Hiroshi Kimura,‡ Douglas M. Cyr,§ Hiroshi Kubota,*ሻ and Kazuhiro Nagata*ሻ *Department of Molecular and Cellular Biology and Core Research for Evolutional Science and Technology/ Japan Science and Technology Agency, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606- 8397, Japan; †Biomolecular Characterization Unit and ‡Nuclear Function and Dynamics Unit, Horizontal Medical Research Organization, School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and §Department of Cell and Developmental Biology and UNC Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 Submitted July 3, 2007; Revised November 21, 2007; Accepted December 10, 2007 Monitoring Editor: Jeffrey Brodsky McKusick–Kaufman syndrome (MKKS) is a recessively inherited human genetic disease characterized by several developmental anomalies. Mutations in the MKKS gene also cause Bardet–Biedl syndrome (BBS), a genetically hetero- geneous disorder with pleiotropic symptoms. However, little is known about how MKKS mutations lead to disease. Here, we show that disease-causing mutants of MKKS are rapidly degraded via the ubiquitin–proteasome pathway in a manner dependent on HSC70 interacting protein (CHIP), a chaperone-dependent ubiquitin ligase. Although wild-type MKKS quickly shuttles between the centrosome and cytosol in living cells, the rapidly degraded mutants often fail to localize to the centrosome. Inhibition of proteasome functions causes MKKS mutants to form insoluble structures at the centrosome. CHIP and partner chaperones, including heat-shock protein (HSP)70/heat-shock cognate 70 and HSP90, strongly recognize MKKS mutants. -
An EMT-Primary Cilium-GLIS2 Signaling Axis Regulates Mammogenesis and Claudin-Low Breast Tumorigenesis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424695; this version posted December 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis 2 and claudin-low breast tumorigenesis 3 4 5 6 7 Molly M. Wilson1, Céline Callens2, Matthieu Le Gallo3,4, Svetlana Mironov2, Qiong Ding5, 8 Amandine Salamagnon2, Tony E. Chavarria1, Abena D. Peasah6, Arjun Bhutkar1, Sophie 9 Martin3,4, Florence Godey3,4, Patrick Tas3,4, Anton M. Jetten8, Jane E. Visvader7, Robert A. 10 Weinberg9, Massimo Attanasio5, Claude Prigent2, Jacqueline A. Lees1, Vincent J Guen2* 11 12 13 14 1Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts 15 Institute of Technology, Cambridge, MA, USA. 16 2Institut de Génétique et Développement de Rennes - Centre National de la Recherche 17 Scientifique, Rennes, France. 18 3INSERM U1242, Rennes 1 University, Rennes, France. 19 4Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France. 20 5Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 21 USA. 22 6Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 23 USA. 24 7Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research and 25 Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia. 26 8Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health 27 Sciences, National Institutes of Health, Research Triangle Park, NC, USA. 28 9MIT Department of Biology and the Whitehead Institute, Cambridge, MA, USA. -
Loss of the Bbsome Perturbs Endocytic Trafficking and Disrupts Virulence of Trypanosoma Brucei
Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei Gerasimos Langousisa, Michelle M. Shimogawaa, Edwin A. Saadaa,1, Ajay A. Vashishtb, Roberto Spreaficoc, Andrew R. Nagerd, William D. Barshopb, Maxence V. Nachuryd, James A. Wohlschlegelb,e,2, and Kent L. Hilla,e,2 aDepartment of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095; bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095; cInstitute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095; dDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305; and eMolecular Biology Institute, University of California, Los Angeles, CA 90095 Edited by George B. Witman, University of Massachusetts Medical School, Worcester, MA, and accepted by the Editorial Board November 25, 2015 (received for review September 14, 2015) Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages The base of the cilium is not entirely delimited by membrane, and and have essential motility and sensory functions. The cilium’s the ciliary matrix (soluble fraction within the cilium) is, thus, to- capacity to sense and transduce extracellular signals depends pologically contiguous with the cytoplasm. Organellar identity is on dynamic trafficking of ciliary membrane proteins. This traf- maintained by a diffusion barrier that bona fide ciliary proteins – ficking is often mediated by the Bardet Biedl Syndrome complex must traverse; traversal of this barrier in and out of the cilium is (BBSome), a protein complex for which the precise subcellular critical for cilium function (7). distribution and mechanisms of action are unclear. In humans, In keeping with their critical motility and sensory functions, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet–Biedl Syndrome. -
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis
cells Review E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis Santina Venuto 1,2 and Giuseppe Merla 1,* 1 Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013 San Giovanni Rotondo, Foggia, Italy; [email protected] 2 PhD Program, Experimental and Regenerative Medicine, University of Foggia, Via A. Gramsci, 89/91, 71122 Foggia, Italy * Correspondence: [email protected] Received: 3 May 2019; Accepted: 23 May 2019; Published: 27 May 2019 Abstract: The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression. -
Ciliary Genes in Renal Cystic Diseases
cells Review Ciliary Genes in Renal Cystic Diseases Anna Adamiok-Ostrowska * and Agnieszka Piekiełko-Witkowska * Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland * Correspondence: [email protected] (A.A.-O.); [email protected] (A.P.-W.); Tel.: +48-22-569-3810 (A.P.-W.) Received: 3 March 2020; Accepted: 5 April 2020; Published: 8 April 2020 Abstract: Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer.