The Axon Terminal of the Motor Neuron and the Motor End Plate of the Muscle Fiber

Total Page:16

File Type:pdf, Size:1020Kb

The Axon Terminal of the Motor Neuron and the Motor End Plate of the Muscle Fiber How does the body initiate a voluntary muscle contraction? *What was the stimulus that allow muscle cells to demonstrate excitability? Neuromuscular Junction Before a skeletal muscle fiber can contract it must be stimulated by an electrical signal called a muscle action potential. This electrical signal is provided by nerve cells called motor neurons. Each motor neuron will stimulate a number of muscle fibers. We refer to the motor neuron and all the muscle fibers it stimulates as a motor unit. Muscle involved in small precise movements ● Example: eye movement muscles ● Each motor unit will control fewer than 10 muscle fibers. Muscle involved in large powerful movements ● Example: Biceps brachii (elbow flexion) ● Each motor unit will control as many as 2000 muscle fibers. Therefore, require fewer motor neurons. Practice Which group of muscles will have few fibers per motor unit? Why? ➔ muscles that bend (flex) the knee or ➔ muscles that bend (flex) the fingers? Key parts of the neuromuscular junction Axon - the long process of the motor neuron (carries electrical signal away). Axon terminals - branches of the axon that approach the muscle fiber. Synaptic end bulbs - enlarged endings of the axon terminals. (DO NOT touch muscle fiber.) Synaptic vesicles - packages of Acetylcholine/ACh (neurotransmitters) in the synaptic end bulbs. Motor end plate - region of the sarcolemma near the synaptic end bulb. Synaptic cleft - the space between the axon terminal (synaptic end bulb) and the sarcolemma (motor end plate) Neuromuscular Junction It is the the region formed by the axon terminal of the motor neuron and the motor end plate of the muscle fiber. What Happens at the Neuromuscular junction? Physiology of the NMJ To initiate a muscle contraction the motor neuron excites a skeletal muscle in the following way: (Remember that the neuron and muscle cell will not physically touch one another) Events at the NMJ 1. Release of Acetylcholine. An action potential will travel down the axon of a motor neuron. Once reaching the synaptic end bulb it triggers the release of the neurotransmitter acetylcholine (ACh) into the synaptic cleft. ? What structure is the acetylcholine stored in? Events at the NMJ 2. Activation of ACh receptors. ACh diffuses across the synaptic cleft and binds to receptors on the motor end plate. This will open channels for Na+, which will then flow across the membrane. ? What is the motor end plate a part of? Events at the NMJ 3. Generation of muscle action potential. As the sodium ions move into the muscle cell it creates an electrical charge (muscle action potential). The action potential travels across the sarcolemma and through the T- tubules. Events at the NMJ 4. Breakdown of ACh. The enzyme acetylcholinesterase (AChE) rapidly breaks down the ACh in the synaptic cleft. What do you think? What would happen if the release of ACh was blocked? NMJ Pictorial Activity NMJ Animation Physiology of a muscle contraction What happens now that we have a muscle action potential? Remember that for a muscle contraction we need both ATP (energy) and Ca2+ In a relaxed muscle the Ca2+ is stored in the sarcoplasmic reticulum. Steps in a muscle contraction 1. Muscle action potential travels across the sarcolemma and t-tubules. This triggers Ca2+ channels in the sarcoplasmic reticulum to open. This allows Ca2+ to move into the sarcoplasm. 2. Ca2+ binds to troponin molecules in the thin myofilament. This causes troponin to change shape, moving the troponin- tropomyosin proteins and exposing the myosin binding site on actin. 3. ATP attaches to the myosin head. This provides the myosin head with energy. 4. The high energy myosin head attach to the myosin- binding sites on actin (called crossbridges). 5. Then the myosin head rotates or swivels. This is referred to as the power stroke. This slides the thin filament over the thick filament into the H zone. 6. ATP binds to the myosin heads allowing them to detach from the actin and reenergize the myosin head. The myosin head is now ready to combine with a myosin- binding site further along the thin myofilament. Steps 4-6 will continue to repeat as long as ATP and Ca2+ are available. As a muscle contracts there will be some myosin heads attached to the actin while others will be detached and preparing to bind again. What do you think What would happen if calcium ion was available but no ATP? Muscle contraction animation Homework In paragraph form, describe the entire process of events involved in a muscle contraction. Start with the action potential traveling down the axon of a motor neuron and end with the release of the myosin head from the actin..
Recommended publications
  • Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization
    [Show full text]
  • Build a Neuron
    Build a Neuron Objectives: 1. To understand what a neuron is and what it does 2. To understand the anatomy of a neuron in relation to function This activity is great for ALL ages-even college students!! Materials: pipe cleaners (2 full size, 1 cut into 3 for each student) pony beads (6/student Introduction: Little kids: ask them where their brain is (I point to my head and torso areas till they ​ shake their head yes) Talk about legos being the building blocks for a tower and relate that to neurons being the building blocks for your brain and that neurons send messages to other parts of your brain and to and from all your body parts. Give examples: touch from body to brain, movement from brain to body. Neurons are the building blocks of the brain that send and receive messages. Neurons come in all different shapes. Experiment: 1. First build soma by twisting a pipe cleaner into a circle 2. Then put a 2nd pipe cleaner through the circle and bend it over and twist the two strands together to make it look like a lollipop (axon) 3. take 3 shorter pipe cleaners attach to cell body to make dendrites 4. add 6 beads on the axon making sure there is space between beads for the electricity to “jump” between them to send the signal super fast. (myelin sheath) 5. Twist the end of the axon to make it look like 2 feet for the axon terminal. 6. Make a brain by having all of the neurons “talk” to each other (have each student hold their neuron because they’ll just throw them on a table for you to do it.) messages come in through the dendrites and if its a strong enough electrical change, then the cell body sends the Build a Neuron message down it’s axon where a neurotransmitter is released.
    [Show full text]
  • ALS and Other Motor Neuron Diseases Can Represent Diagnostic Challenges
    Review Article Address correspondence to Dr Ezgi Tiryaki, Hennepin ALS and Other Motor County Medical Center, Department of Neurology, 701 Park Avenue P5-200, Neuron Diseases Minneapolis, MN 55415, [email protected]. Ezgi Tiryaki, MD; Holli A. Horak, MD, FAAN Relationship Disclosure: Dr Tiryaki’s institution receives support from The ALS Association. Dr Horak’s ABSTRACT institution receives a grant from the Centers for Disease Purpose of Review: This review describes the most common motor neuron disease, Control and Prevention. ALS. It discusses the diagnosis and evaluation of ALS and the current understanding of its Unlabeled Use of pathophysiology, including new genetic underpinnings of the disease. This article also Products/Investigational covers other motor neuron diseases, reviews how to distinguish them from ALS, and Use Disclosure: Drs Tiryaki and Horak discuss discusses their pathophysiology. the unlabeled use of various Recent Findings: In this article, the spectrum of cognitive involvement in ALS, new concepts drugs for the symptomatic about protein synthesis pathology in the etiology of ALS, and new genetic associations will be management of ALS. * 2014, American Academy covered. This concept has changed over the past 3 to 4 years with the discovery of new of Neurology. genes and genetic processes that may trigger the disease. As of 2014, two-thirds of familial ALS and 10% of sporadic ALS can be explained by genetics. TAR DNA binding protein 43 kDa (TDP-43), for instance, has been shown to cause frontotemporal dementia as well as some cases of familial ALS, and is associated with frontotemporal dysfunction in ALS. Summary: The anterior horn cells control all voluntary movement: motor activity, res- piratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells.
    [Show full text]
  • Microglia Control Glutamatergic Synapses in the Adult Mouse Hippocampus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429096; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Microglia control glutamatergic synapses in the adult mouse hippocampus Short title: Microglia and glutamatergic synapses Bernadette Basilico1†*‡, Laura Ferrucci1‡, Patrizia Ratano2‡, Maria T. Golia1, Alfonso Grimaldi3, Maria Rosito3, Valentina Ferretti4, Ingrid Reverte1,5, Maria C. Marrone6, Maria Giubettini3,7, Valeria De Turris3, Debora Salerno3, Stefano Garofalo1, Marie-Kim St-Pierre8, Micael Carrier8, Massimiliano Renzi1, Francesca Pagani3, Marcello Raspa9, Ferdinando Scavizzi9, Cornelius T. Gross10, Silvia Marinelli5, Marie E. Tremblay8,11, Daniele Caprioli1,5, Laura Maggi1, Cristina Limatola1,2, Silvia Di Angelantonio1,3§, Davide Ragozzino1,5*§ 1Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy. 2IRCCS Neuromed, Via Atinese 18, 86077, Pozzilli, IS, Italy. 3Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy. 4Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza University of Rome, Rome, Italy. 5Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. 6European Brain Research Institute-Rita Levi Montalcini, Rome, Italy. 7CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy. 8Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada; Département de médecine moléculaire, Université Laval Québec, QC, Canada. 9National Research Council, Institute of Biochemistry and Cell Biology (CNR- IBBC/EMMA/Infrafrontier/IMPC), International Campus “A. Buzzati-Traverso”, Monterotondo (Rome) Italy.
    [Show full text]
  • Neurons and Glia
    CHAPTER TWO Neurons and Glia INTRODUCTION THE NEURON DOCTRINE The Golgi Stain Cajal’s Contribution BOX 2.1 OF SPECIAL INTEREST: Advances in Microscopy THE PROTOTYPICAL NEURON The Soma The Nucleus Neuronal Genes, Genetic Variation, and Genetic Engineering BOX 2.2 BRAIN FOOD: Expressing One’s Mind in the Post-Genomic Era BOX 2.3 PATH OF DISCOVERY: Gene Targeting in Mice, by Mario Capecchi Rough Endoplasmic Reticulum Smooth Endoplasmic Reticulum and the Golgi Apparatus The Mitochondrion The Neuronal Membrane The Cytoskeleton Microtubules BOX 2.4 OF SPECIAL INTEREST: Alzheimer’s Disease and the Neuronal Cytoskeleton Microfilaments Neurofilaments The Axon The Axon Terminal The Synapse Axoplasmic Transport BOX 2.5 OF SPECIAL INTEREST: Hitching a Ride with Retrograde Transport Dendrites BOX 2.6 OF SPECIAL INTEREST: Intellectual Disability and Dendritic Spines CLASSIFYING NEURONS Classification Based on Neuronal Structure Number of Neurites Dendrites Connections Axon Length Classification Based on Gene Expression BOX 2.7 BRAIN FOOD: Understanding Neuronal Structure and Function with Incredible Cre GLIA Astrocytes Myelinating Glia Other Non-Neuronal Cells CONCLUDING REMARKS 23 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 24 PART ONE FOUNDATIONS INTRODUCTION All tissues and organs in the body consist of cells. The specialized func- tions of cells and how they interact determine the functions of organs. The brain is an organ—to be sure, the most sophisticated and complex organ that nature has devised. But the basic strategy for unraveling its functions is no different from that used to investigate the pancreas or the lung. We must begin by learning how brain cells work individually and then see how they are assembled to work together.
    [Show full text]
  • Skeletal Muscle Physiology
    This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. Skeletal Muscle Physiology First of all, which muscle is which - Skeletal muscle: o Well-developed cross-striations o Does not contract in absence of a nerve stimulus o The individual muscle fibers DO NOT connect functionally or anatomically (i.e. they don’t form a single sheet of cells, and one fiber’s action potential wont get transmitted to the next) o Generally, skeletal muscle is under voluntary control - Cardiac muscle: o Also has cross-striations o Is functionally syncytial: cells are connected well enough to conduct action potentials to one another o Can contract on its own, without stimulus (but this is under some control via the autonomic nervous system, which modulates its activity) - Smooth muscle: o Has no cross-striations o Two broad types: . VISCERAL or “unitary” smooth muscle: Functionally syncytial, action potentials propagate from cell to cell Contains pacemakers which discharge irregularly, but remains under control of the autonomic nervous system Found in most hollow viscera . MULTI-UNIT SMOOTH MUSCLE Found in the eye and some other locations Does NOT activate spontaneously SKELETAL MUSCLE ORGANIZATION - Each muscle is a bundle of fibers - Each fiber is a long, multinucleated single cell - Each fiber is surrounded by a SARCOLEMMA- the cell membrane - There are NO SYNCYTIAL BRIDGES between the cells. When one cell goes off, the others don’t follow. TRANSVERSE TUBULES: T-tubules, invaginations of SARCOLEMMA: the muscle cell membrane the sarcolemma, they form part of the T-system; the space inside is an extension of the extracellular space.
    [Show full text]
  • Back-To-Basics: the Intricacies of Muscle Contraction
    Back-to- MIOTA Basics: The CONFERENCE OCTOBER 11, Intricacies 2019 CHERI RAMIREZ, MS, of Muscle OTRL Contraction OBJECTIVES: 1.Review the anatomical structure of a skeletal muscle. 2.Review and understand the process and relationship between skeletal muscle contraction with the vital components of the nervous system, endocrine system, and skeletal system. 3.Review the basic similarities and differences between skeletal muscle tissue, smooth muscle tissue, and cardiac muscle tissue. 4.Review the names, locations, origins, and insertions of the skeletal muscles found in the human body. 5.Apply the information learned to enhance clinical practice and understanding of the intricacies and complexity of the skeletal muscle system. 6.Apply the information learned to further educate clients on the importance of skeletal muscle movement, posture, and coordination in the process of rehabilitation, healing, and functional return. 1. Epithelial Four Basic Tissue Categories 2. Muscle 3. Nervous 4. Connective A. Loose Connective B. Bone C. Cartilage D. Blood Introduction There are 3 types of muscle tissue in the muscular system: . Skeletal muscle: Attached to bones of skeleton. Voluntary. Striated. Tubular shape. Cardiac muscle: Makes up most of the wall of the heart. Involuntary. Striated with intercalated discs. Branched shape. Smooth muscle: Found in walls of internal organs and walls of vascular system. Involuntary. Non-striated. Spindle shape. 4 Structure of a Skeletal Muscle Skeletal Muscles: Skeletal muscles are composed of: • Skeletal muscle tissue • Nervous tissue • Blood • Connective tissues 5 Connective Tissue Coverings Connective tissue coverings over skeletal muscles: .Fascia .Tendons .Aponeuroses 6 Fascia: Definition: Layers of dense connective tissue that separates muscle from adjacent muscles, by surrounding each muscle belly.
    [Show full text]
  • Structure of a Skeletal Muscle
    STRUCTURE OF A SKELETAL MUSCLE Skeletal muscles are not made of muscle cells alone • Skeletal muscle contains blood vessels that supply muscle cells with oxygen and glucose, and remove wastes, and nerves that coordinate muscle contraction • 1 § Each individual muscle cell (fiber) is surrounded by the _____________ § Several muscle cells are bundled together into a _________ by the _____________ § All fascicles that make up a muscle are, in turn, enclosed by the _____________ § Interconnected connective tissues taper down and connect to tendons or other connective tissues; attach muscle to bone or other structure to be moved Figure 9.1 Position and structure of a skeletal muscle. 2 FUNCTIONS OF SKELETAL MUSCLES • Muscle contractions are involved in more than just movement of bones at a joint: § § Contraction of diaphragm muscle is a vital function associated with respiratory system § _________________ – sitting, standing, holding head upright § Skeletal muscles attached to facial skin allow for facial expression; muscles in throat assist with swallowing § Sphincters composed of skeletal muscle allow conscious control over opening and closing of body openings § Support of soft tissue – abdominal walls, pelvic floor 3 • Functional groups of muscles: generally takes cooperation of several individual muscles working as a group to perform a movement or action § __________________ provide most force for a given muscle action § _____________have opposite action of agonist; allows for modulation and control of agonist movement § _____________aid agonists by supplying supplemental force, minimizing unwanted movement, and by helping to stabilize joints § _____________also provide stabilizing force that anchors a bone; protection from injury due to unnecessary movements Figure 9.3 Functional groups of muscles.
    [Show full text]
  • A System for Studying Mechanisms of Neuromuscular Junction Development and Maintenance Valérie Vilmont1,‡, Bruno Cadot1, Gilles Ouanounou2 and Edgar R
    © 2016. Published by The Company of Biologists Ltd | Development (2016) 143, 2464-2477 doi:10.1242/dev.130278 TECHNIQUES AND RESOURCES RESEARCH ARTICLE A system for studying mechanisms of neuromuscular junction development and maintenance Valérie Vilmont1,‡, Bruno Cadot1, Gilles Ouanounou2 and Edgar R. Gomes1,3,*,‡ ABSTRACT different animal models and cell lines (Chen et al., 2014; Corti et al., The neuromuscular junction (NMJ), a cellular synapse between a 2012; Lenzi et al., 2015) with the hope of recapitulating some motor neuron and a skeletal muscle fiber, enables the translation of features of neuromuscular diseases and understanding the triggers chemical cues into physical activity. The development of this special of one of their common hallmarks: the disruption of the structure has been subject to numerous investigations, but its neuromuscular junction (NMJ). The NMJ is one of the most complexity renders in vivo studies particularly difficult to perform. studied synapses. It is formed of three key elements: the lower motor In vitro modeling of the neuromuscular junction represents a powerful neuron (the pre-synaptic compartment), the skeletal muscle (the tool to delineate fully the fine tuning of events that lead to subcellular post-synaptic compartment) and the Schwann cell (Sanes and specialization at the pre-synaptic and post-synaptic sites. Here, we Lichtman, 1999). The NMJ is formed in a step-wise manner describe a novel heterologous co-culture in vitro method using rat following a series of cues involving these three cellular components spinal cord explants with dorsal root ganglia and murine primary and its role is basically to ensure the skeletal muscle functionality.
    [Show full text]
  • The Histology of the Neuromuscular Junction In
    75 THE HISTOLOGY OF THE NEUROMUSCULAR JUNCTION Downloaded from https://academic.oup.com/brain/article/84/1/75/372729 by guest on 27 September 2021 IN DYSTROPHIA MYOTONICA BY VIOLET MACDERMOT Department of Neurology, St. Thomas' Hospital, London, S.E.I (1) INTRODUCTION DYSTROPJHC MYOTONICA is a familial disease affecting males and females, usually presenting in adult life, characterized by muscular wasting and weakness together with certain other features. The muscles mainly in- volved are the temporal, masseter, facial, sternomastoid and limb muscles, in the latter those mainly affected being peripheral in distribution. A widespread disorder of muscular contraction, myotonia, is also present but is noticed chiefly in the tongue and in the muscles involved in grasping. The other features of the condition are some degree of mental defect, dysphonia, cataracts, frontal baldness, sparse body hair and testicular atrophy. Any of the manifestations of the disease may be absent and the order of presentation of symptoms is variable. The myotonia may precede muscular wasting by many years or may occur independently. In those muscles which are severely wasted the myotonia tends to disappear. The interest of dystrophia myotonica lies in the peculiar distribution of muscle involvement and in the combination of a disorder of muscle function with endocrine and other dysplasic features. The results of histological examination of biopsy and post-mortem material have been described and reviewed by numerous workers, notably Steinert (1909), Adie and Greenfield (1923), Keschner and Davison (1933), Hassin and Kesert (1948), Wohlfart (1951), Adams, Denny-Brown and Pearson (1953), Greenfield, Shy, Alvord and Berg (1957).
    [Show full text]
  • Lancl1 Promotes Motor Neuron Survival and Extends the Lifespan of Amyotrophic Lateral Sclerosis Mice
    Cell Death & Differentiation (2020) 27:1369–1382 https://doi.org/10.1038/s41418-019-0422-6 ARTICLE LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice 1 1 1 1 1 1 1 Honglin Tan ● Mina Chen ● Dejiang Pang ● Xiaoqiang Xia ● Chongyangzi Du ● Wanchun Yang ● Yiyuan Cui ● 1,2 1 1,3 4 4 3 1,5 Chao Huang ● Wanxiang Jiang ● Dandan Bi ● Chunyu Li ● Huifang Shang ● Paul F. Worley ● Bo Xiao Received: 19 November 2018 / Revised: 3 September 2019 / Accepted: 6 September 2019 / Published online: 30 September 2019 © The Author(s) 2019. This article is published with open access Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of fl 1234567890();,: 1234567890();,: LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroin ammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.
    [Show full text]
  • Part III: Modeling Neurotransmission – a Cholinergic Synapse
    Part III: Modeling Neurotransmission – A Cholinergic Synapse Operation of the nervous system is dependent on the flow of information through chains of neurons functionally connected by synapses. The neuron conducting impulses toward the synapse is the presynaptic neuron, and the neuron transmitting the signal away from the synapse is the postsynaptic neuron. Chemical synapses are specialized for release and reception of chemical neurotransmitters. For the most part, neurotransmitter receptors in the membrane of the postsynaptic cell are either 1.) channel-linked receptors, which mediate fast synaptic transmission, or 2.) G protein-linked receptors, which oversee slow synaptic responses. Channel-linked receptors are ligand-gated ion channels that interact directly with a neurotransmitter and are called ionotropic receptors. Alternatively, metabotropic receptors do not have a channel that opens or closes but rather, are linked to a G-protein. Once the neurotransmitter binds to the metabotropic receptor, the receptor activates the G-protein which, in turn, goes on to activate another molecule. 3a. Model the ionotropic cholinergic synapse shown below. Be sure to label all of the following: voltage-gated sodium channel, voltage-gated potassium channel, neurotransmitter, synaptic vesicle, presynaptic cell, postsynaptic cell, potassium leak channel, sodium-potassium pump, synaptic cleft, acetylcholine receptor, acetylcholinesterase, calcium channel. When a nerve impulse (action potential) reaches the axon terminal, it sets into motion a chain of events that triggers the release of neurotransmitter. You will next model the events of neurotransmission at a cholinergic synapse. Cholinergic synapses utilize acetylcholine as the chemical of neurotransmission. MSOE Center for BioMolecular Modeling Synapse Kit: Section 3-6 | 1 Step 1 - Action potential arrives at the Step 2 - Calcium channels open in the terminal end of the presynaptic cell.
    [Show full text]