A Stearic Acid-Rich Diet Improves Thrombogenic and Atherogenic Risk Factor Profiles in Healthy Males

Total Page:16

File Type:pdf, Size:1020Kb

A Stearic Acid-Rich Diet Improves Thrombogenic and Atherogenic Risk Factor Profiles in Healthy Males European Journal of Clinical Nutrition (2001) 55, 88±96 ß 2001 Nature Publishing Group All rights reserved 0954±3007/01 $15.00 www.nature.com/ejcn A stearic acid-rich diet improves thrombogenic and atherogenic risk factor pro®les in healthy males FD Kelly1, AJ Sinclair1*, NJ Mann1, AH Turner2, L Abedin1 and D Li1 1Department of Food Science, RMIT University, Melbourne, Australia; and 2Medical Laboratory Science, RMIT University, Melbourne, Australia Objective: To determine whether healthy males who consumed increased amounts of dietary stearic acid compared with increased dietary palmitic acid exhibited any changes in their platelet aggregability, platelet fatty acid pro®les, platelet morphology, or haemostatic factors. Design: A randomized cross-over dietary intervention. Subjects and interventions: Thirteen free-living healthy males consumed two experimental diets for 4 weeks with a 7 week washout between the two dietary periods. The diets consisted of 30% of energy as fat (66% of which was the treatment fat) providing 6.6% of energy as stearic acid (diet S) or 7.8% of energy as palmitic acid (diet P). On days 0 and 28 of each dietary period, blood samples were collected and anthropometric and physiological measurements were recorded. Results: Stearic acid was increased signi®cantly in platelet phospholipids on diet S (by 22%), while on diet P palmitic acid levels in platelet phospholipids also increased signi®cantly (8%). Mean platelet volume, coagulation factor FVII activity and plasma lipid concentrations were signi®cantly decreased on diet S, while platelet aggregation was signi®cantly increased on diet P. Conclusion: Results from this study indicate that stearic acid (19 g=day) in the diet has bene®cial effects on thrombogenic and atherogenic risk factors in males. The food industry might wish to consider the enrichment of foods with stearic acid in place of palmitic acid and trans fatty acids. Sponsorship: Grant from Meat Research Corporation, Australia and margarines donated by Meadow Lea Foods Ltd, Australia. Descriptors: stearic acid; palmitic acid; platelets; fatty acids; haemostatic factors; lipoproteins; platelet aggrega- tion; mean platelet volume European Journal of Clinical Nutrition (2001) 55, 88±96 Introduction (Hegsted et al, 1965; Keys et al, 1965). This was attributed to the stearic acid in the cocoa butter. Since then, various The relationship between dietary fatty acids and blood predictive equations incorporating individual saturated fatty cholesterol levels was reported in the late 1950s when acid contributions to plasma cholesterol changes show Keys et al (1957) found that saturated fatty acids (SFA) stearic acid as neutral (Kris-Etherton & Mustad, 1994). from 12 to 18 carbon atoms were potent cholesterol-raising The risk of coronary events however is not solely agents. Subsequently, it was found that the predictive dependent on plasma cholesterol levels. Carefully con- equations for dietary fatty acids on plasma cholesterol ducted autopsy studies have demonstrated that thrombotic levels were inadequate when cocoa butter was used obstruction of the coronary artery is involved in most cases of sudden cardiac death (Davies & Thomas, 1984). Arterial *Correspondence: AJ Sinclair, Department of Food Science, RMIT thrombosis involves clot formation based around existing University, GPO Box 2476V, Melbourne, Victoria 3001, Australia. plaque and arterial lesions with the ®rst step involving E-mail: [email protected] Guarantor: AJ Sinclair. platelet aggregation, followed by ®brin formation through Contributors: FDK, AJS, NJM and AHT initiated the study. FDK prepared activation of the coagulation pathways. Any factor leading the drafts of the paper, did dietary analysis, collected data, helped in to increased platelet activity or up-regulation of the coagu- laboratory assays and did the statistical analysis. AJS selected the study site, lation cascade will thus increase the risk of thrombotic supervised the project and secured the funding. LA and DL helped in events. laboratory assays. All authors contributed to the drafts of the paper. Received 13 June 2000; revised 6 October 2000; Early studies suggested that stearic acid was prothrom- accepted 9 October 2000 botic based on three levels of evidence. Firstly, Connor Stearic acid-rich diet FD Kelly et al 89 (1962) reported that stearic acid was particularly effective at Subjects were counselled prior to commencement of the shortening thrombus formation time during in vitro studies ®rst intervention period on which foods were to be excluded using citrated blood and sodium salts of fatty acids. Sec- from the diet (included in a detailed information booklet). ondly, Renaud and Gautherton (1975) reported that diets Advice was provided on suitable low-fat alternatives to rich in stearic acid were associated with increased coagula- substitute for foods normally eaten, such as regular fat tion in New Zealand rabbits. This change was speculated to dairy products, pastries and cakes etc. Subjects were given result from an enhanced activity of platelet factor 3 (PF3) training in recording their food intakes and completed a 7 due to an increase in stearic acid in the platelet phospholi- day weighed food record of their habitual diet prior to the pids. Thirdly, Renaud et al (1978) found that saturated fat study. Seven day weighed food records were also obtained and especially stearic acid were signi®cantly correlated with during each intervention period and washout phase. Dietary clotting activity and platelet aggregation in several popula- composition was determined using Diet 1 (Version 4, tion comparisons in man. These data alerted researchers to NUTTAB 95, Xyris Software Pty Ltd, Queensland, Austra- potentially negative effects of stearic acid on thrombotic lia) based on Composition of Foods, Australia (National factors and resulted in several short-term studies being Food Authority, 1995). The database was modi®ed by the conducted in humans (Tholstrup et al, 1994, 1996; Schoene inclusion of fatty acid data, for a wider variety of foods, for et al, 1992; Mutanen & Aro, 1997; Dougherty et al, 1995). C12:0 to C18:0 (lauric, myristic, palmitic and stearic acids), However, few of these have examined more than one palmitoleic acid (C16:ln-7) and oleic acid (C18:ln-9), lino- measure of thrombosis tendency. Because there are often leic acid (18:2n-6) and alpha linolenic acid (18:3n-3) interactions involving more than one component of the obtained from Dr M James, University of Adelaide. haemostatic system, there is no single screening test During the two intervention stages, the percentage which can be used to identify a thrombotic tendency. energy derived from fat, carbohydrate and protein was Therefore a range of screening tests should be adopted to kept constant for each individual, based on habitual food detect markers known to be associated with cardiovascular records. The high stearic and high palmitic acid test fats risk (Giddings & Yamamoto, 1995). were supplied by Meadow Lea Foods (Sydney, Australia). The aim of this study was to compare the thrombosis Test fats were supplied to subjects in the form of baking and potential of diets rich in stearic acid with palmitic acid-rich spreading margarines and incorporated into biscuits, cakes diets by measuring platelet aggregation, platelet volume and and muf®ns given as snacks and in salad rolls supplied for other key components of the haemostatic pathways. weekday lunches. Breakfasts, dinners and weekend lunches were left to the subjects' discretion following dietary modi®cation advice. The remaining fat intake was obtained Methods from commercially available foods low in fat. Subjects Test fats Thirteen free-living healthy males were recruited following The stearic acid-enriched baking margarine was produced advertisement of the study throughout RMIT University. by an interesteri®ed blend of 35% hardened canola (100% Subjects were aged 35 Æ 12 y (mean Æ s.d.), of normal body hydrogenated) and 65% Sunola1 (a high oleic acid variety weight (body mass index (BMI) 26.0 Æ 3.3 kg=m2. Sub- of sun¯ower seed oil), and the stearic acid-enriched spread- jects had no known metabolic, endocrine or haematological ing margarine was a blend of 30% hardened canola and 70% diseases, were non-smokers, not on any form of medication Sunola1. The palmitic acid-enriched baking margarine was and had a moderate activity level. Subjects were advised not produced by interesterifying a blend of 55% palm stearin, to take any form of non-steroidal anti-in¯ammatory drugs 20% palm olein and 25% Sunola1. The palmitic acid- 14 days prior to commencement and during the study. enriched spreading margarine was produced as a mixture Subjects were counselled to maintain their usual intake of of interesteri®ed palm stearine (50%) and Sunola1 (50%). alcohol and to abstain from consuming alcohol 24 h prior to Both stearic acid and palmitic acid levels in their respective blood sampling. All subjects were required to give written margarines were maximized within the limits of physical consent to participate and were free to withdraw at any time. property characteristics conducive to normal use. The oleic The study protocol was approved by the Human Research acid content in the stearic acid-rich fats and biscuits was Ethics Committee of RMIT University (approval number higher than for the palmitic acid-rich fats and biscuits in 17=96). order for stearic acid products to be spreadable at room temperature. The fatty acid pro®le of the margarines used is Experimental design shown in Table 1. The dietary intervention consisted of subjects consuming both a high stearic (diet S) and a high palmitic acid diet (diet Physiological measurements P) for 4 weeks in a random crossover design, with a 7 week Subjects had their weight, height and body mass index wash-out (habitual diet) period between the two phases. (BMI, kg=m2) determined, and percentage body fat mea- Subjects consumed the equivalent of approximately two- sured using a bioimpedence fat analyser=scale (TBF-501 thirds of their habitual fat intake, as the test fats, during the Tanita Corporation, Illinois, USA).
Recommended publications
  • Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties
    Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017 Supporting information. Tailored Microstructure of Colloidal Lipid Particles for Pickering Emulsions with Tunable Properties Anja A.J. Schröder1,2, Joris Sprakel2, Karin Schroën1, Claire C. Berton-Carabin1 1. Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands. 2. Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Email addresses: [email protected], [email protected], [email protected], [email protected] S1 S1. Tripalmitin CLP dispersions produced with 0.5% w/w (left) and 1% w/w (right) Tween40 in the aqueous phase. S2. Fatty acid composition of palm stearin. Component name Percentage average C14:0 1.16 C16:0 82.18 C18:0 5.12 C18:1 9.03 C18:2 1.83 C18:3 0.02 C20:0 0.32 C22:0 0.25 C22:1 0.04 C24:0 0.05 S3. Hydrodynamic diameter (z-average) measured by dynamic light scattering, and, D[4,3], D[3,2], D10, D50 and D90 measured by static light scattering of CLPs composed of (a) tripalmitin, (b) tripalmitin/tricaprylin 4:1, (c) palm stearin. S2 Type of z-average PdI D[4,3] A D[3,2] D10 D50 D90 lipid (μm) (μm) (μm) (μm) (μm) (μm) Tripalmitin 0.162 ± 0.112 ± 0.130 ± 0.118 ± 0.082 ± 0.124 ± 0.184 ± 0.005 0.02 0.004 0.003 0.002 0.004 0.005 Tripalmitin/ 0.130 ± 0.148 ± 0.131 ± 0.117 ± 0.080 ± 0.124 ± 0.191 ± tricaprylin 0.011 0.02 0.003 0.001 0.004 0.002 0.010 (4:1) Palm 0.158 ± 0.199 ± 0.133 ± 0.119 ± 0.081 ± 0.127 ± 0.195 ± stearin 0.007 0.02 0.002 0.002 0.005 0.000 0.010 A B S4.
    [Show full text]
  • Fatty Acids and Risk of Prostate Cancer in a Nested Case-Control Study in Male Smokers
    1422 Vol. 12, 1422–1428, December 2003 Cancer Epidemiology, Biomarkers & Prevention Fatty Acids and Risk of Prostate Cancer in a Nested Case-Control Study in Male Smokers Satu Ma¨nnisto¨,1,3 Pirjo Pietinen,1 Mikko J. Virtanen,1 serum or dietary ␣-linolenic acid or any other Irma Salminen,2 Demetrius Albanes,5 unsaturated fatty acid and prostate cancer risk, but high Edward Giovannucci,3,4,6 and Jarmo Virtamo1 serum linoleic acid was associated with lower risk in men ␣ Departments of 1Epidemiology and Health Promotion, and 2Health and supplemented with -tocopherol. High serum myristic Functional Capacity, National Public Health Institute, Helsinki, Finland; acid associated with an increased risk of prostate cancer. Departments of 3Nutrition and 4Epidemiology, Harvard School of Public Health, Boston, Massachusetts; 5National Cancer Institute, NIH, Bethesda, Maryland; and 6Department of Medicine, Harvard Medical School, Boston, Introduction Massachusetts Migrant studies and ecologic evidence that incidence rates of clinical prostate cancer vary geographically much more than Abstract that of latent prostate cancer suggest that environmental factors play an important role at least in late prostatic carcinogenesis There is some evidence that ␣-linolenic acid might be (1). Some dietary factors especially have been observed to positively related to prostate cancer risk. Associations increase prostate cancer risk (2). between serum fatty acid composition as well as fatty The evidence on an association between fat intake and acid intakes and prostate cancer risk were examined in prostate cancer risk is mainly based on epidemiological studies. the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Most case-control studies have associated high intakes of ani- Study.
    [Show full text]
  • Zahnmedizinische Produkte Und Ihre Inhaltsstoffe
    Medikamente Zahnmedizinische Produkte III–8.3 Zahnmedizinische Produkte und ihre Inhaltsstoffe Produktname Anbieter/ Inhaltsstoffe Verwendung Hersteller/ (Elemente in Massen-%, Vertrieb seit x = keine Angabe) Adaptic LC Johnson & John­ Ba-Glas Kunststoff son AH 26 DeTrey Dentsply Pulver: Silber, Wismutoxid, Methenamin, Wurzelkanal- Titandioxid, Harz: Epoxybisphenolharz Füllungsmasse Alba KF Heraeus/Heraeus/ Pd: 40,0; Ag: 53,0; Sn: x; Zn: 3,5; In: 2,0 Zahnlegierung 1988 Alba Lot 810 Heraeus Kulzer Au: 10,00; Pd: 1,00; Cu: 11,00; Ag: 69,00; Dentallot In: 6,00; Zn: 3,00 Alba Lot 880 Heraeus Kulzer Au: 12,00; Pd: 4,00; Cu: 11,00; Ag: 69,00; Dentallot In: 4,00 Alba SG Heraeus/Heraeus/ Au: 10,0; Pd: 21,0; Ag: 57,0; Cu: 10,0; Zn: Zahnlegierung 1953 2,0 Albabond Heraeus/Heraeus/ Pd: 60,5; Ag: 28,0; Sn: 3,0; In: 7,0; Ga: x Zahnlegierung 1980 Albabond A Heraeus/Heraeus/ Pd: 57,0; Ag: 32,8; Sn: 6,8; In: 3,4 Zahnlegierung 1989 Albabond E Heraeus/Heraeus/ Au: 1,6; Pd: 78,4; Cu: 11,0; Sn: x; In: x; Ga: Zahnlegierung 1983 7,5 Albabond EH Heraeus/Heraeus/ Au: 2,0; Pd: 79,0; Cu: 10,0; Ga: 8,8 Zahnlegierung 1984 Albabond GF Heraeus/Heraeus/ Pd: 60,5; Ag: 19,5; Cu: 7,5; Sn: 3,0; In: 9,5 Zahnlegierung 1987 Albabond U Heraeus/Heraeus/ Au: 2,0; Pd: 75,0; Cu: 9,5; Sn: 3,0; In: 7,0; Zahnlegierung 1982 Ga: 3,5 Albiotic Upjohn Lincomycin Antibiotikum Aleram 2 Allgemeine Gold- Au: x; Pd: 78,5; Cu: 10,5; Sn: x; Ga: 8,0 Zahnlegierung u.
    [Show full text]
  • Stearic Acid Acceptance Criteria: 194–212 Portions of This Monograph That Are National USP Text, and • C
    Stage 6 Harmonization Official May 1, 2016 Stearic 1 L . = molecular weight of potassium hydroxide, Mr 56.11LNF34 Stearic Acid Acceptance criteria: 194±212 Portions of this monograph that are national USP text, and • C. The retention times of the major peaks of the Sample are not part of the harmonized text, are marked with solution correspond to those of the Standard solution, as N symbols ( .N) to specify this fact. obtained in the Assay. Octadecanoic acid; ASSAY Stearic acid [57-11-4]. • PROCEDURE DEFINITION Boron trifluoride±methanol solution: 140 g/L of bo- ron trifluoride in methanol Sample solution: Dissolve 100 mg of Stearic Acid in a Change to read: small conical flask fitted with a suitable reflux attach- ment with 5 mL of Boron trifluoride±methanol solution. Mixture consisting of stearic (octadecanoic) acid (C18H36O2; Boil under reflux for 10 min. Add 4.0 mL of heptane Mr, 284.5) and palmitic (hexadecanoic) acid (C16H32O2; through the condenser, and boil again under reflux for Mr, 256.4) obtained from fats or oils of vegetable or 10 min. Allow to cool. Add 20 mL of a saturated solu- animal origin. tion of sodium chloride. Shake, and allow the layers to Content: separate. Remove about 2 mL of the organic layer, and dry it over 0.2 g of anhydrous sodium sulfate. Dilute 1.0 mL of this solution with heptane to 10.0 mL. Stearic acid: 40.0%±60.0%. Sum of the Standard solution: Prepare as directed in the Sample contents of stearic acid and palmitic acids: solution using 50 mg of USP Stearic Acid RS and 50 mg Stearic acid 50 NLT 90.0%.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Blood Fats Explained
    Blood Fats Explained HEART UK – The Cholesterol Charity providing expert support, education and influence 2 | Fats in the blood At risk of cardiovascular disease? | 3 Fats in the blood At risk of cardiovascular disease? Fats that circulate in the blood are called lipids. Very low density lipoproteins (VLDL) transport Cardiovascular disease (CVD) is the medical Blood pressure is a measure of the resistance Cholesterol and triglycerides are both lipids. mainly triglycerides made by the liver to where name for circulatory diseases such as coronary to the flow of blood around your body. It is They have essential roles in the body. In excess they are either used to fuel our muscles or stored heart disease (CHD), stroke, mini stroke (transient measured in millimetres of mercury (mmHg). Your they are harmful. for later use. ischaemic attack or TIA), angina and peripheral doctor or nurse will measure both your systolic vascular disease (PVD). You are more likely to (upper figure) and diastolic (lower figure) blood Cholesterol is needed to build cell walls and Low density lipoproteins (LDL) carry most of the develop CVD the more risk factors you have. pressure. About a third of adults have high blood to make hormones and vitamin D. Some of our cholesterol in our body from the liver to the cells pressure. If untreated it increases the risk of cholesterol comes from the food we eat; but most that need it. The cholesterol that is carried on LDLs There are two types of risk factors: heart attack and stroke. High blood pressure is is made in the liver.
    [Show full text]
  • Effects of Butter Oil Blends with Increased Concentrations of Stearic, Oleic and Linolenic Acid on Blood Lipids in Young Adults
    European Journal of Clinical Nutrition (1999) 53, 535±541 ß 1999 Stockton Press. All rights reserved 0954±3007/98 $12.00 http://www.stockton-press.co.uk/ejcn Effects of butter oil blends with increased concentrations of stearic, oleic and linolenic acid on blood lipids in young adults CC Becker1, P Lund1, G Hùlmer1*, H Jensen2 and B SandstroÈm2 1Department of Biochemistry and Nutrition, Center for Food Research, Technical University of Denmark, Denmark; and 2Research Department of Human Nutrition, Center for Food Research, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark Objective: The aim of this present project was to evaluate a more satisfactory effect on plasma lipoprotein pro®le of spreads based on dairy fat. Design: This study was designed as a randomised cross-over experiment with a three-week treatment separated by a three-week wash-out period. Sixty ®ve grams of the fat content of the habitual diets was replaced by either butter=grapeseed oil (90 : 10) (BG); butter oil and low erucic rapeseed oil (65 : 35) (BR) or butter blended in a 1 : 1 ratio with a interesteri®ed mixture of rapeseed oil and fully hydrogenated rapeseed oil (70 : 30) (BS). Subjects: Thirteen healthy free-living young men (age 21±26 y) ful®lled the study. Interventions: At the beginning and end of each diet period two venous blood samples were collected. Triacylglycerol and cholesterol concentrations in total plasma and VLDL, LDL, IDL and HDL fractions were measured, as were apo A-1 and apo B concentrations. Fatty acid composition of plasma phospholipids, plasma cholesterol ester and platelets was also determined.
    [Show full text]
  • Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors
    International Journal of Environmental Research and Public Health Article Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors Dariusz Kotl˛ega 1,* , Barbara Peda 1, Joanna Palma 2 , Agnieszka Zembro ´n-Łacny 3 , Monika Goł ˛ab-Janowska 4, Marta Masztalewicz 4, Przemysław Nowacki 4 and Małgorzata Szczuko 2 1 Department of Neurology, District Hospital, 67-200 Glogow, Poland; [email protected] 2 Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; [email protected] (J.P.); [email protected] (M.S.) 3 Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-001 Zielona Góra, Poland; [email protected] 4 Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] (M.G.-J.); [email protected] (M.M.); [email protected] (P.N.) * Correspondence: [email protected] Abstract: Ischemic stroke is a leading cause of motor impairment and psychosocial disability. Al- though free fatty acids (FFA) have been proven to affect the risk of stroke and potentially dementia, the evidence of their impact on cognitive functions in stroke patients is lacking. We aimed to establish such potential relationships. Seventy-two ischemic stroke patients were prospectively analysed. Their cognitive functions were assessed seven days post-stroke and six months later as follow-up (n = 41). Seven days post-stroke analysis of serum FFAs levels showed direct correlations between Citation: Kotl˛ega,D.; Peda, B.; Cognitive Verbal Learning Test (CVLT) and the following FFAs: C20:4n6 arachidonic acid and Palma, J.; Zembro´n-Łacny, A.; C20:5n3 eicosapentaenoic acid, while negative correlations were observed for C18:3n3 linolenic acid Goł ˛ab-Janowska,M.; Masztalewicz, (ALA), C18:4 n3 stearidonic acid and C23:0 tricosanoic acid.
    [Show full text]
  • II. Phosphoglyceride Fatty Acids
    Pediat. Res. 8: 93-102 (1974) Arachidonic acid ethanolamine phosphoglycerides brain lipids choline phosphoglycerides Some Chemical Aspects of Human Brain Development. II. Phosphoglyceride Fatty Acids MANUELAMARTINEZ, CARMEN CONDE, AND ANGELBALLABRIGA[~~~ Autonomous University, School of Medicine, Children's Hospital of the "Seguridad Social," Barcelona, Spain Extract The fatty acids of total phosphoglycerides (TPG), ethanolamine phosphoglycerides (EPG), and choline phosphoglycerides (CPG) were obtained by mild alkaline trans- methylation from lipid extracts of whole cerebrum and then analyzed by gas chroma- tography. A complete brain hemisphere from each of the 34 newborn infants reported previously was homogenized and its lipids extracted according to the procedure speci- fied in that report. As the gestational age of the children went up, a statistically significant increase of the n-3/n-6 ratio and, especially, of the 22:4(n-6)/22:5(n-6) index was observed. Other ratios, such as the n-6/n-9 and the 18:0/18: 1(n-9), were also studied in the fatty acid patterns of EPG and CPG. Both of them showed sig- nificant increases with the gestational age of the infants. The [22 :4(n-6) + 22 :5(n-6)]/ 20:4(n-6) index, an indicator of the elongation process of arachidonic acid, on the other hand, did not show appreciable changes with maturation in TPG during this period of life. When ethanolamine and choline phosphoglycerides were analyzed separately, however, the elongation of arachidonic acid did rise with the gestational age in the former whereas it decreased in the latter. As intrauterine maturation of the human brain progresses, changes in the polyun- saturated fatty acid patterns, contrary to those observed in undernourished animals, take place.
    [Show full text]
  • Effects of Dietary Fats on Blood Lipids: a Review of Direct Comparison Trials
    Open access Editorial Open Heart: first published as 10.1136/openhrt-2018-000871 on 25 July 2018. Downloaded from Effects of dietary fats on blood lipids: a review of direct comparison trials James J DiNicolantonio, James H O’Keefe To cite: DiNicolantonio JJ, INTRODUCTION very LDL (VLDL) and HDL are also inconsis- O’Keefe JH. Effects of dietary Saturated fat has been demonised as a dietary tent.11 Thus, it is impossible to know what the fats on blood lipids: a review of overall health impact is when saturated fat is direct comparison trials. Open culprit in heart disease due to its ability to Heart 2018;5:e000871. raise low-density lipoprotein cholesterol replaced with omega-6 PUFA. doi:10.1136/ (LDL-C), whereas omega-6 polyunsaturated openhrt-2018-000871 fatty acid (PUFA) has been regarded as MONOUNSATURATED FAT VERSUS SATURATED heart healthy due to its ability to lower total FAT Accepted 3 July 2018 and LDL-C. And replacing saturated fat with Monounsaturated fat ((MUFA) such as oleic omega-6 has consistently been found to lower 1 2 acid, which is found in olive oil, has classically total cholesterol and LDL-C levels. This has been thought of as being heart healthy as been the cornerstone for the belief that the olive oil is the main dietary fat used in the omega-6 PUFA linoleic acid is heart healthy. Mediterranean region, which is well known However, the changes in LDL-C do not take for its low risk for cardiovascular disease. into account the overall changes in the entire Meals high in both MUFA and satu- lipoprotein profile.
    [Show full text]
  • Control of Differentiation of a Mammary Cell Line by Lipids
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 3, pp. 1551-1555, March 1980 Cell Biology Control of differentiation of a mammary cell line by lipids (domes/tumor promoters/fatty acids/lysolecithins) RENATO DULBECCO*, MAURO BOLOGNAt, AND MICHAEL UNGER The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037 Contributed by Renato Dulbecco, December 17, 1979 ABSTRACT A rat mammary cell line (LA7) undergoes profound effect on cultured cells of various types (13, 14). These spontaneous differentiation into domes due to production of effects include stimulation of growth (15), suppression of several specific inducers by the cells. Some of these inducers may be kinds of differentiation and induction of some other lipids, and we show that lipids regulate this differentiation as (16-24), both inducers and inhibitors. One inhibitor is the tumor pro- kinds of differentiation (25-27). TPA also induces a phenotype moter tetradecanoyl-13 phorbol 12-acetate. The inducers are similar to that of transformed cells (28-30), with a reduced saturated fatty acids of two groups: butyric acid and acids with contact inhibition of growth (31), increased production of chain lengths from C13 to C16, especially myristic acid (C14). plasminogen activator (32-35), increased phospholipid turnover Other inducers are myristoyl and palmitoyl lysolecithins, (36-38), decrease of LETS protein (39), and induction of myristic acid methyl ester, and two cationic detergents with a polyamine synthesis (40). TPA may alter the function of the cell tetradecenyl chain. We propose that the lipids with a C14-CI6 plasma membrane, as its alkyl chain affect differentiation by recognizing specific re- suggested by ability to inhibit the ceptors through their alkyl chains and that the effects obtained binding of epidermal growth factor to its receptors at the cell depend on the head groups.
    [Show full text]
  • Oleochemicals Series
    OLEOCHEMICALS FATTY ACIDS This section will concentrate on Fatty Acids produced from natural fats and oils (i.e. not those derived from petroleum products). Firstly though, we will recap briefly on Nomenclature. We spent some time clarifying the structure of oleochemicals and we saw how carbon atoms link together to form carbon chains of varying length (usually even numbered in nature, although animal fats from ruminant animals can have odd-numbered chains). A fatty acid has at least one carboxyl group (a carbon attached to two oxygens (-O) and a hydrogen (-H), usually represented as -COOH in shorthand) appended to the carbon chain (the last carbon in the chain being the one that the oxygen and hydrogen inhabit). We will only be talking about chains with one carboxyl group attached (generally called “monocarboxylic acids”). The acids can be named in many ways, which can be confusing, so we will try and keep it as simple as possible. The table opposite shows the acid designations as either the “length of the carbon chain” or the “common name”. While it is interesting to know the common name for a particular acid, we will try to use the chainlength in any discussion so you do not have to translate. Finally, it is usual to speak about unsaturated acids using their chainlength suffixed with an indication of the number of double bonds present. Thus, C16=1 is the C16 acid with one double bond; C18=2 is the C18 acid with two double bonds and so on. SELECTING RAW MATERIALS FOR FATTY ACID PRODUCTION In principle, fatty acids can be produced from any oil or fat by hydrolytic or lipolytic splitting (reaction with water using high pressure and temperature or enzymes).
    [Show full text]