Effects of Dietary Fats on Blood Lipids: a Review of Direct Comparison Trials

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Dietary Fats on Blood Lipids: a Review of Direct Comparison Trials Open access Editorial Open Heart: first published as 10.1136/openhrt-2018-000871 on 25 July 2018. Downloaded from Effects of dietary fats on blood lipids: a review of direct comparison trials James J DiNicolantonio, James H O’Keefe To cite: DiNicolantonio JJ, INTRODUCTION very LDL (VLDL) and HDL are also inconsis- O’Keefe JH. Effects of dietary Saturated fat has been demonised as a dietary tent.11 Thus, it is impossible to know what the fats on blood lipids: a review of overall health impact is when saturated fat is direct comparison trials. Open culprit in heart disease due to its ability to Heart 2018;5:e000871. raise low-density lipoprotein cholesterol replaced with omega-6 PUFA. doi:10.1136/ (LDL-C), whereas omega-6 polyunsaturated openhrt-2018-000871 fatty acid (PUFA) has been regarded as MONOUNSATURATED FAT VERSUS SATURATED heart healthy due to its ability to lower total FAT Accepted 3 July 2018 and LDL-C. And replacing saturated fat with Monounsaturated fat ((MUFA) such as oleic omega-6 has consistently been found to lower 1 2 acid, which is found in olive oil, has classically total cholesterol and LDL-C levels. This has been thought of as being heart healthy as been the cornerstone for the belief that the olive oil is the main dietary fat used in the omega-6 PUFA linoleic acid is heart healthy. Mediterranean region, which is well known However, the changes in LDL-C do not take for its low risk for cardiovascular disease. into account the overall changes in the entire Meals high in both MUFA and satu- lipoprotein profile. For example, saturated rated fat lead to what’s called ‘postprandial fat appears to decrease small-dense LDL lipaemia’ or a rise in chylomicrons, chylo- (sdLDL) and increase large buoyant LDL.3 micron remnants and triglycerides, which As a high concentration of sdLDL and a low are thought to be harmful to the arteries. concentration of large buoyant LDL is associ- One study showed that compared with satu- ated with an increased risk of coronary heart 4 rated fat, oleic acid causes a greater secretion disease (CHD), saturated fat may not neces- of chylomicrons that are larger in size and http://openheart.bmj.com/ sarily increase the risk of CHD. Furthermore, contain greater amounts of TGs.12 Chylomi- compared with LDL-C, sdLDL (and oxidised crons are the largest of the lipoproteins and LDL) seem to have a greater impact on ather- 5 they carry exogenous dietary TGs, whereas osclerosis and cardiovascular disease. VLDL carries TGs from the liver. Despite a While saturated fat (particularly lauric acid) higher peak, postprandial TG content with has been shown to increase total and LDL-C, the consumption of olive oil, adhering to a there is also an increase in high-density lipo- 6 Mediterranean diet results in a faster decrease protein cholesterol (HDL-C). Moreover, in TG levels. In other words, the postprandial on October 4, 2021 by guest. Protected copyright. unsaturated fatty acids have a less prominent rise in TGs returns to baseline levels quicker effect for increasing HDL-C compared with with a high MUFA (oleic acid) test meal saturated fat. Thus, it is hard to interpret compared with a meal high in saturated fat.13 the overall risk of consuming foods high in Thus, while the peak TG level may be higher saturated fat versus omega-6 PUFA when the with olive oil, the level drops faster with oleic former may improve sdLDL and HDL-C, © Author(s) (or their acid. This may partially explain some of the employer(s)) 2018. Re-use whereas the latter may lower LDL-C but health benefits of MUFA versus saturated fat. permitted under CC BY-NC. No increases LDL susceptibility to oxidation and The increased clearance of TGs from the 7 8 commercial re-use. See rights may lower HDL-C. Indeed, high concentra- blood with the consumption of oleic acid is and permissions. Published tions of HDL-C are associated with greater by BMJ. likely the result of the formation of larger protection from coronary artery disease and sized chylomicrons compared with smaller Preventive Cardiology, Saint 9 10 Lukes Mid America Heart other cardiovascular diseases. Thus, the more ‘VLDL-sized’ chylomicrons from satu- Institute, Kansas City, Missouri, overall effect on the lipoprotein profile must rated fat. This suggests that consuming a USA be considered when assessing cardiovascular diet high in butter and cream, and low in risk with dietary fats and fatty acids. MUFA, may increase the risk of chylomicrons Correspondence to The effects of replacing saturated fat Dr James J DiNicolantonio; penetrating into the endothelium, as smaller jjdinicol@ gmail. com with omega-6 PUFA on triglycerides (TG), particles are more likely to penetrate, which DiNicolantonio JJ, O’Keefe JH. Open Heart 2018;5:e000871. doi:10.1136/openhrt-2018-000871 1 Open Heart Open Heart: first published as 10.1136/openhrt-2018-000871 on 25 July 2018. Downloaded from EPA/DHA also reduced VLDL, increased LDL particle Box 1 The benefits of a high-monounsaturated fatty acid size and increased HDL2. These benefits were not found meal (eg, oleic acid, olive oil) versus a high-saturated fat meal with ALA. Moreover, increasing the intake of linoleic acid (such as cream/butter) from 4.7% to 7% energy reduced the protective HDL2 (35.2% vs 31.7%).18 ► Larger (less atherogenic) chylomicrons/very low-density lipoprotein (LDL) particles. LIPGENE was a multicentre, randomised controlled ► Reduced postprandial lipaemia (faster clearance of postprandial trial in Europe testing four isocaloric diets in 99 patients 19 lipids). with the metabolic syndrome. The diets consisted of ► Greater reduction in fasting triglyceride levels. (1) a high-fat (38% energy) saturated fat-rich diet; (2) a ► Reduction in coagulation factors (factor VIIc and factor VIIa). high-fat MUFA-enriched diet, (3) a low-fat (28% energy) ► Increased fat oxidation rate (greater fat burning and less fat storage). high-complex carbohydrate diet (that also contained ► A greater shift from small-dense LDL to large buoyant LDL. 1.24 g/day of high oleic sunflower oil) and (4) the same low-fat diet but with an additional 1.24 g/day of long- chain omega-3 PUFAs for 12 weeks. LDL phenotype B then become stuck under the endothelium, oxidise and (sdLDL) shifted to phenotype A (large-buoyant LDL) can lead to atherosclerosis. Another study showed that in both the high-fat MUFA-enriched diet and the low-fat compared with a meal high in saturated fat, a MUFA-rich long-chain omega-3 diet. The LDL density was also meal leads to a greater fat oxidation rate at 3 and 4 hours reduced in these groups. The frequency of LDL pheno- postdose, as well as lower blood coagulation factors, such type B was lowered by 37% in the long-chain omega-3 as factor VIIc and factor VIIa, suggesting that MUFAs may PUFA group and by 15% in the high-fat MUFA rich diet. promote less weight gain and a reduction in the risk for TGs were also lowered in both of these groups, which thrombosis versus saturated fat.14 Similar results were may have partially explained the results. Opposite effects found in another study where the consumption of MUFA were found in both the high-saturated fat diet as well as lead to a lower postprandial rise in coagulation factors the low-fat, high-oleic sunflower oil diet, which increased versus saturated fat.12 LDL density, despite the latter lowering total cholesterol. In a 4-week trial in 38 healthy volunteers, an oleic The LIPGENE study concluded, ‘This study demonstrates acid-enriched diet as compared with a saturated fat diet the efficacy of dietary omega-3 PUFA to modify proath- reduced factor VII; however, this benefit was not found erogenic to less atherogenic LDL phenotype in patients with an omega-6-enriched diet.15 In another study, with metabolic syndrome’.19 compared with diets rich in saturated fat (lauric or Considering that LDL particle size predicts cardiovas- palmitic acid), diets rich in oleic acid reduced factor VII cular risk and progression of CHD,20 21 omega-6 vegetable again, whereas plasminogen activator inhibitor-1 (PAI- oils reducing LDL particle size may increase the risk of 1), which is an inhibitor of the fibrinolytic system, was http://openheart.bmj.com/ CHD and ischaemic stroke.22 This is because sdLDL parti- higher in diets rich in palmitic acid versus oleic acid and cles are more susceptible to oxidation. Indeed, sdLDL lauric acid.16 Finally, a high MUFA Mediterranean Diet particles remain out in the blood longer due to a reduced has been found to increase flow-mediated dilation and affinity for the LDL receptors in the liver and also more reduce LDL, apolipoprotein B and P-selectin compared readily cross the subendothelial space to oxidise and with a baseline diet high in saturated fat.17 These studies cause atherosclerotic plaque formation.23 suggest that MUFA, as compared with saturated fat, The heart healthy properties of marine omega-3s have improves the lipid profile and the hypercoagulable state. been questioned due to their ability to increase LDL-C, The benefits of a meal rich in oleic acid versus saturated however their ability to transform atherogenic small- on October 4, 2021 by guest. Protected copyright. fat are summarised in box 1. dense LDL (pattern B) to large-buoyant LDL (pattern A) likely outweighs any harm with a higher LDL-C level. The OMEGA-3 VERSUS OMEGA-6 increase in large buoyant LDL with marine omega-3 may The optimal n−6/n−3 ratio in the UK Diet (OPTILIP) be due to an increased lipoprotein lipase gene expres- was a randomised parallel design trial in 258 patients sion in plasma.24 aged 45–70.18 OPTILIP compared four diets providing The effect of omega-3 PUFAs on the susceptibility of approximately 6% energy as PUFAs but with varying LDL oxidation is controversial.
Recommended publications
  • Correlation Between Blood Lipid Levels and Chronic Pancreatitis a Retrospective Case–Control Study of 48 Cases
    MD-D-14-00445; Total nos of Pages: 6; MD-D-14-00445 Correlation Between Blood Lipid Levels and Chronic Pancreatitis A Retrospective Case–Control Study of 48 Cases Qingqiang Ni, MD, Lin Yun, MD, Rui Xu, MD, and Dong Shang, MD Abstract: The incidence of chronic pancreatitis (CP) is increasing, and high-density lipoprotein-cholesterol, LDL-c = low-density dyslipidemia severely affects the health of middle-agedand elderly people. lipoprotein-cholesterol, NC group = normal control group, TC = We investigated the association between blood lipid levels and CP. total cholesterol, TG = triglyceride, UAMY = urine amylase. The serum lipid metabolic indices of 48 patients with CP (CP group) were summarized retrospectively. The physical examination results of 40 randomly selected healthy individuals were used as the normal control (NC) group. Statistical analyses of the blood lipid data were performed INTRODUCTION between the 2 groups using the case–control study method. hronic pancreatitis (CP) refers to limiting, segmental, High-density lipoprotein-cholesterol (HDL-c) levels decreased and C diffusing, progressive inflammatory damage, necrosis, fasting blood glucose (GLU) levels increased in the CP group compared and interstitial fibrous lesion of the pancreatic parenchyma with those in the NC group (P < 0.01). Pearson correlation analysis because of many causes, usually accompanied by stenosis results showed that serum amylase (AMY) was positively correlated with and dilation of the pancreatic duct, pancreatic calcification, low-density lipoprotein-cholesterol (LDL-c; r ¼ 0.414, P < 0.05), and and pancreatic stone formation. The necrosis of pancreatic urine AMY (UAMY) was positively correlated with total cholesterol acinar cells, the atrophy or loss of pancreatic islet cells, and (TC; r ¼ 0.614, P < 0.01) and LDL-c (r ¼ 0.678, P < 0.01).
    [Show full text]
  • Glycemia and Blood Lipids
    Journal of Hong Kong Institute of Medical Laboratory Sciences 2013-2014 Volume 14 No 1 & 2 Glycemia and Blood Lipids Britten Chung-Wai Lam1, Stanley Leung1, Daniel Chuen-Chu Tam2 1 Clinical Laboratory, Tsuen Wan Adventist Hospital 2 Genepath Technology Limited Address for correspondence: E-mail: [email protected] Abstract Diabetes mellitus (DM) is a heterogenous disease with a common hyperglycemic manifestation. 90% of DM is due to type 2 diabetes and it has become a common disease worldwide. The aim of this study was to investigate the relationship between blood glucose level and the concentration of the various blood lipid fractions in non-diabetic and diabetic patients. This study also observed and evaluated the correlation between FBG and HbA1c as a diagnostic tool in diabetes. This is a retrospective study of data collected in a private hospital from 788 non-diabetic and diabetic patients (451 males and 337 females) aged 18 to 90. Fasting blood glucose, HbA1c assays and lipid profile (total cholesterol, HDL-C, LDL-C, and triglyceride (TG) were analyzed simultaneously in all subjects. Data analysis was performed by SPSS (Version 17). A P values ≤ 0.05 was considered as statistically significant between tested groups. Female patients in borderline and diabetes groups had significantly higher TG, lower HDL-C levels and higher TG/HDL-C ratio (P<0.05) when compared with the normal group. Male diabetes group had significantly higher TG, lower HDL-C levels and higher TG/HDL-C ratio (P<0.05) when compared with corresponding normal and borderline groups. No significant difference was observed in the rest of tested parameters.
    [Show full text]
  • Blood Fats Explained
    Blood Fats Explained HEART UK – The Cholesterol Charity providing expert support, education and influence 2 | Fats in the blood At risk of cardiovascular disease? | 3 Fats in the blood At risk of cardiovascular disease? Fats that circulate in the blood are called lipids. Very low density lipoproteins (VLDL) transport Cardiovascular disease (CVD) is the medical Blood pressure is a measure of the resistance Cholesterol and triglycerides are both lipids. mainly triglycerides made by the liver to where name for circulatory diseases such as coronary to the flow of blood around your body. It is They have essential roles in the body. In excess they are either used to fuel our muscles or stored heart disease (CHD), stroke, mini stroke (transient measured in millimetres of mercury (mmHg). Your they are harmful. for later use. ischaemic attack or TIA), angina and peripheral doctor or nurse will measure both your systolic vascular disease (PVD). You are more likely to (upper figure) and diastolic (lower figure) blood Cholesterol is needed to build cell walls and Low density lipoproteins (LDL) carry most of the develop CVD the more risk factors you have. pressure. About a third of adults have high blood to make hormones and vitamin D. Some of our cholesterol in our body from the liver to the cells pressure. If untreated it increases the risk of cholesterol comes from the food we eat; but most that need it. The cholesterol that is carried on LDLs There are two types of risk factors: heart attack and stroke. High blood pressure is is made in the liver.
    [Show full text]
  • Saturated, Unsaturated, and Trans Fat
    Lifestyle Coach Facilitation Guide: Post-Core Fats - Saturated, Unsaturated, and Trans Fat Content Overview This session answers the question “what is fat?” It explores the different types of fat, and shows which fats are healthy (monounsaturated and polyunsaturated) and which fats are unhealthy (saturated and trans fat). Participants learn tips for choosing foods with healthy fats and avoiding foods with unhealthy fats. More information on cholesterol appears in Post-Core Session: Heart Health. Lifestyle Coach Preparation Checklist Materials Post-core handouts: What is Fat? Healthy Fats: Omega-3, Monounsaturated and Polyunsaturated Fats to Avoid: Saturated and Trans Fat Identifying Healthier Alternatives Tips for Choosing the Best Types of Fat “Food and Activity Trackers” “Lifestyle Coach’s Log” Balance scale Post-Core: Fats – Saturated, Unsaturated, and Trans Fat Key messages to reinforce A completely fat-free diet would not be healthy, yet it is important that fat be consumed in moderation. The main types of “healthy” fats are monounsaturated and polyunsaturated. The main types of “unhealthy” fats are saturated and trans fat. Saturated fats are primarily found in foods that come from animals, such as meat and dairy. Try to switch to lower-fat versions of these foods. In order to avoid trans fat, look on nutrition labels for ingredients such as “partially hydrogenated” oils or shortening. In addition, look for trans fat in the nutritional information in products like commercially baked cookies, crackers, and pies, and fried foods. After the session At the completion of this session, do the following: Use the “Notes and Homework Page” for notes and follow-up tasks.
    [Show full text]
  • Saturated Fat and Beef Fat As Related to Human Health a Review of the Scientifi C Literature
    FRI BRIEFINGS Saturated Fat and Beef Fat as Related to Human Health A Review of the Scientifi c Literature Ellin Doyle, Ph.D. Food Research Institute, University of Wisconsin Madison, WI 53706 [email protected] TABLE OF CONTENTS Summary ...........................................................................................................2 Introduction ............................................................................................................5 Fat Structure and Function ..................................................................................5 Fatty Acids and Triacylglycerol (Triglyceride) Structure ..................................5 Beef Fat ............................................................................................................7 Digestion and Absorption of Dietary Fats ..........................................................7 Physiological Fate of Saturated Fatty Acids ......................................................9 Research on Saturated Fat and Health — General Considerations ...................9 Cancer ..........................................................................................................10 Colorectal Cancer .............................................................................................10 Pancreatic Cancer .............................................................................................15 Lung Cancer .....................................................................................................15 Breast Cancer ...................................................................................................16
    [Show full text]
  • The Scoop on Coconut Oil Coconut Oil Is an Edible Oil Extracted from the “Meat” of Matured Coconuts
    Family and Consumer Science/Extension Homemakers Club May/June 2016 The Scoop on Coconut Oil Coconut oil is an edible oil extracted from the “meat” of matured coconuts. It has several appli- cations in the food industry. It is used in processed foods because it is relatively inexpensive and can provide crisp texture to foods. Coconut oil has a high smoke point, the temperature where it starts to break down, which makes it shelf stable and ideal for foods that need a longer shelf-life. Hydrogenated and partially hydrogenated coconut oil are found in cereals, baked goods, biscuits, salty snacks, soaps, cosmetics and moisturizers. According to some health food promoters and celebrity doctors, coconut oil is the latest miracle food, claiming it can cure everything from heart disease to obesity and cancer. However, the ef- fects of coconut oil on health have not been well studied. These health claims tend to be based more on personal testimonials than on scientific evidence. In fact, there are very few studies in people showing benefits of coconut oil – most of these studies are epidemiology studies (e.g., population studies) that show a link between high coconut-consuming countries and longevity [1 -2]. Coconut oil is considered a saturated fat and contains 9 calories per gram. There are two basic types of fats – saturated and unsaturated. Unsaturated fats are healthy fats and include plant- based fats (such as vegetable oils and fats found in nuts, avocados and seeds) and fish oils. These fats should be the primary fats in your diet because they either do not affect cholesterol levels or they raise HDL (good) cholesterol without raising LDL (bad) cholesterol.
    [Show full text]
  • A Clinical Trial of Oat Bran and Niacin in the Treatment of Hyperlipidemia Joseph M
    A Clinical Trial of Oat Bran and Niacin in the Treatment of Hyperlipidemia Joseph M. Keenan, MD, Joyce B. Wenz, RD, MS, Cynthia M. Ripsin, MS, MPH, Zhiquan Huang, MD, and David J. McCaffrey Minneapolis, Minnesota Background. Previous studies have demonstrated the showed greater than expected lipid improvement on lipid-lowering potential of wax-matrix controlled-rc- combination therapy. From baseline to the end of the leasc forms of nicotinic acid, but questions have been final phase, significant reductions (P < .05) occurred raised about the risks associated with long-term use. for total cholesterol (—10%) and low-density lipopro­ This report describes a 38-week trial that was designed tein cholesterol (—16%). High-density lipoprotein cho­ as a follow-up to a shorter 16-wcek clinical trial of lesterol rose significantly at the end of the oat bran wax-matrix controlled-rclcasc niacin. The present study plus niacin phase, but returned to near baseline by the also tested the hypothesis that niacin (1500 mg/d) and end of the study. The liver enzymes alkaline phos­ oat bran (56 g/d [2 oz/day]) may have a synergistic ef­ phatase, lactate dehydrogenase, and aspartate ami­ fect on improving scrum lipid levels. notransferase all showed a tendency to rise throughout Methods. Ninety-eight subjects began the following the study. protocol: oat bran alone (6 weeks), oat bran plus nia­ Conclusions. The results of this 38-week trial suggest cin (6 weeks), and niacin alone (32 weeks). Blood lip­ that the relatively inexpensive wax-matrix form of nia­ ids, blood chemistries, nutritional variables, and side- cin is effective and reasonably well tolerated.
    [Show full text]
  • Does Resistance Training Have an Effect on Levels Of
    www.nature.com/scientificreports OPEN Does resistance training have an efect on levels of ferritin and atherogenic lipids in postmenopausal women? – A pilot trial Liam J. Ward1,2*, Mats Hammar1, Lotta Lindh-Åstrand1, Emilia Berin1, Hanna Lindblom3, Marie Rubér1, Anna-Clara Spetz Holm1 & Wei Li1* The objective of this study was to determine if 15 weeks of resistance training (RT) can alter the levels of blood lipids, body iron status, and oxidative stress in postmenopausal women with vasomotor symptoms. Postmenopausal women enrolled in a randomised controlled trial were allocated to either a sedentary control group (n = 29) or a RT group (n = 26). Blood samples were taken at week-0 and week-15 for all participants. Blood lipids and iron status were measured via routine clinical analyses. Immunoassays were used to measure oxidative stress markers. The RT group, with good compliance, was associated with signifcant reductions in ferritin, total cholesterol, low-density lipoprotein, and non-high-density lipoprotein cholesterol. Moreover, ferritin was positively correlated with atherogenic lipids while negatively correlated with high-density lipoprotein in RT women. This occurred without alterations in serum iron, transferrin, transferrin-saturation, C-reactive protein and oxidative stress markers. No diferences were found in control women. This study suggests that RT in postmenopausal women both reduces levels of ferritin and counteracts atherogenic lipid profles independent of an apparent oxidative mechanism. RT may be a benefcial intervention in postmenopausal women via an interaction between ferritin and lipids; however, further investigation in a larger cohort is essential. Te risk for cardiovascular disease (CVD) approximately doubles in women during the 10 years afer menopause, and physical inactivity contributes to this risk1,2.
    [Show full text]
  • Effects of Erythropoietin Therapy on the Lipid Profile in End-Stage Renal Failure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 45 (1994), pp. 897—902 Effects of erythropoietin therapy on the lipid profile in end- stage renal failure CAROL A. POLLOCK, ROGER WYNDHAM, PAUL V. COLLETT, GRAHAME ELDER, MICHAEL J. FIELD, STEVEN KAL0wsKI, JAMES R. LAWRENCE, DAVID A. WAUGH, and CHARLES R.P. GEORGE Department of Renal Medicine, Concord Hospital, New South Wales, Australia Effects of erythropoietin therapy on the lipid profile in end.stage renal on cardiovascular disease in uremia. The resultant increase in failure. To evaluate the effects of erythropoietin (EPO) therapy on the hemoglobin causes improved tissue oxygenation, not only to lipid profile in end-stage renal failure, we undertook a prospective study in patients on both hemodialysis (HD) and continuous ambulatorythe heart, but also to the vascular endothelium. Increased peritoneal dialysis (CAPD). One hundred and twelve patients (81 HD, exercise tolerance is well documented [I] to improve the 31 CAPD) were enrolled into the study. Lipid parameters [that is, total cardiovascular risk profile in nonuremic patients. An improve- cholesterol and the LDL and HDL subfractions, triglycerides, lipopro- ment in the known carbohydrate intolerance of uremia has also tein (a), apoproteins A and B], full blood count, iron studies, Bl2,been demonstrated [2]. folate, blood urea, aluminium and serum parathyroid hormone were measured prior to commencement of EPO therapy. Ninety-five patients Conversely, there are also potentially adverse effects of EPO were reassessed 5.20.3 (mean SEM) months later and 53 patients treatment on cardiovascular risk factors.
    [Show full text]
  • Fatty Acids: Structures and Introductory Article Properties Article Contents
    Fatty Acids: Structures and Introductory article Properties Article Contents . Introduction Arild C Rustan, University of Oslo, Oslo, Norway . Overview of Fatty Acid Structure . Major Fatty Acids Christian A Drevon, University of Oslo, Oslo, Norway . Metabolism of Fatty Acids . Properties of Fatty Acids Fatty acids play a key role in metabolism: as a metabolic fuel, as a necessary component of . Requirements for and Uses of Fatty Acids in Human all membranes, and as a gene regulator. In addition, fatty acids have a number of industrial Nutrition uses. Uses of Fatty Acids in the Pharmaceutical/Personal Hygiene Industries Introduction doi: 10.1038/npg.els.0003894 Fatty acids, both free and as part of complex lipids, play a number of key roles in metabolism – major metabolic fuel (storage and transport of energy), as essential components subsequent one the b carbon. The letter n is also often used of all membranes, and as gene regulators (Table 1). In ad- instead of the Greek o to indicate the position of the double dition, dietary lipids provide polyunsaturated fatty acids bond closest to the methyl end. The systematic nomencla- (PUFAs) that are precursors of powerful locally acting ture for fatty acids may also indicate the location of double metabolites, i.e. the eicosanoids. As part of complex lipids, bonds with reference to the carboxyl group (D). Figure 2 fatty acids are also important for thermal and electrical outlines the structures of different types of naturally insulation, and for mechanical protection. Moreover, free occurring fatty acids. fatty acids and their salts may function as detergents and soaps owing to their amphipathic properties and the for- Saturated fatty acids mation of micelles.
    [Show full text]
  • Cut Down on Saturated Fats
    DIETARY GUIDELINES Cut Down on FOR AMERICANS 2015-2020 EIGHTH EDITION Saturated Fats Limiting saturated fats is important for your health — and it doesn’t mean you have to cut down on flavor. Learn how to swap out saturated fats for healthier options. The 2015–2020 Dietary Guidelines for Americans recommends limiting calories from saturated fats to less than 10% of the total calories you eat and drink each day. That’s about 200 calories for a 2,000 calorie diet. What are saturated fats? What are unsaturated fats? Saturated fats are one type of fat in the foods we eat and the Unsaturated fats are beverages we drink. Most come from animal products, like dairy, found in some foods and meat, and poultry. To limit the amount of saturated fats you eat, most oils. There are 2 choose lower-fat and lean options of dairy, meat, and poultry — types of unsaturated fats: like skim milk, lean beef, and grilled chicken breast without monounsaturated fatty acids the skin. (MUFA) and polyunsaturated Eating too many foods high in saturated fats can be bad for your fatty acids (PUFA). health. By replacing saturated fats with unsaturated fats, you may While saturated fats have lower your risk of getting heart disease. health risks, unsaturated fats have health benefits. Focus on getting unsaturated What foods and beverages are higher fats from: in saturated fats? • Seafood (like salmon, trout, herring, tuna, and mackerel) • Meats higher in fat, like beef ribs, sausage, and some • W alnuts, almonds, cashews, processed meats and most other nuts • Higher-fat dairy, like regular-fat cheeses and whole or 2% milk • Sesame, pumpkin, and flax • Butter, stick margarine, cream, and cream cheese seeds • Some tropical oils, like coconut and palm kernel oil • Olive, canola, peanut, • Cakes, cookies, and some snack foods sunflower, safflower, corn, soybean, and cottonseed oils* Dishes with many ingredients — like pizza, casseroles, burgers, • A vocados tacos, and sandwiches — tend to have ingredients that are high in saturated fats.
    [Show full text]
  • Omega-6:Omega-3 Fatty Acid Ratio and Total Fat Content of the Maternal Diet Alter Offspring Growth and Fat Deposition in the Rat
    nutrients Article Omega-6:Omega-3 Fatty Acid Ratio and Total Fat Content of the Maternal Diet Alter Offspring Growth and Fat Deposition in the Rat Sally A. V. Draycott 1,2,*, Matthew J. Elmes 1, Beverly S. Muhlhausler 2,3 and Simon Langley-Evans 1 1 Sutton Bonington Campus, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; [email protected] (M.J.E.); [email protected] (S.L.-E.) 2 Food and Nutrition Research Group, Department of Food and Wine Science, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia; [email protected] 3 Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia * Correspondence: [email protected] Received: 1 July 2020; Accepted: 13 August 2020; Published: 19 August 2020 Abstract: Omega-3 long-chain polyunsaturated fatty acids (LCPUFA) have been shown to inhibit lipogenesis and adipogenesis in adult rats. Their possible early life effects on offspring fat deposition, however, remain to be established. To investigate this, female Wistar rats (n = 6–9 per group) were fed either a 9:1 ratio of linoleic acid (LA) to alpha-linolenic acid (ALA) or a lower 1:1.5 ratio during pregnancy and lactation. Each ratio was fed at two total fat levels (18% vs. 36% fat w/w) and offspring were weaned onto standard laboratory chow. Offspring exposed to a 36% fat diet, irrespective of maternal dietary LA:ALA ratio, were lighter (male, 27 g lighter; female 19 g lighter; p < 0.0001) than those exposed to an 18% fat diet between 3 and 8 weeks of age.
    [Show full text]