Toxicokinetics of 11 Gelsemium Alkaloids in Rats by UPLC-MS/MS
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Dr. Lena Struwe Cv
Biographical Sketch Dr. Lena Struwe PROFESSIONAL PREPARATION Stockholm University, Sweden, Biology and Earth Science, B.Sc. 1991 Stockholm University, Sweden, Systematic Botany, Ph.D. 1999 The New York Botanical Garden, NY, Systematic Botany, postdoc 1998-2001 APPOINTMENTS (SELECTED) 2007-current Associate Professor, Dept. of Ecology, Evolution, and Natural Resources, and Dept. of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ. 2004-current Director, Chrysler Herbarium, Rutgers University. 2013-current Elected Member, Rutgers University Senate (representing Graduate School of New Brunswick) & Research, Graduate and Professional Education Committee. 2012-current Associate Editor, Botanical Journal of Linnean Society. 2009-current Co-PI, Admissions chair (2009-2010, 2013) and Coordinator of Sustainability and Ecological Impact Track, NSF-funded IGERT program titled Renewable and Sustainable Fuels for the 21st Century, Rutgers. 2010-2013 Associate Editor, TAXON. 2006-2010 Associate Editor, Systematic Botany. 2001-2007 Assistant Professor, Dept. of Ecology, Evolution, and Natural Resources, and Dept. of Plant Biology and Pathology, Rutgers University. SELECTED PEER-REVIEWED PUBLICATIONS 1. Struwe, L. 2014. Classification and evolution of the Gentianaceae. Pages: 13-35. In: The Gentianaceae: characterization, conservation, propagation, genetic manipulation and application, vol. 1 (J. J. Rybczyński et al., eds.), Springer Verlag, New York. 2. Beck, A., P. Divakar, N. Zhang, M.C. Molina, & L. Struwe. 2014. Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga Trebouxia. Org Div Evol. doi:10.1007/s13127- 014-0199-x 3. Struwe, L., L.S. Poster, N. Howe, C.B. Zambell, & P.W. Sweeney. 2014. The hands-on, online learning project Flora of Rutgers Campus: campus floras as a student learning tool for plant systematics. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Morphological Study of Loganiaceae Diversities in West Africa
Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.10, 2013 Morphological Study of Loganiaceae Diversities in West Africa Olusola Thomas Oduoye 1*, Oluwatoyin T. Ogundipe 2. and James D. Olowokudejo 2. 1National Centre for Genetic Resources and Biotechnology (NACGRAB), PMB 5382, Moor plantation, Apata, Ibadan. 2Molecular Systematic Laboratory, Department of Botany, Faculty of Science, University of Lagos, Nigeria. *E-mail: [email protected] The authors want to sincerely acknowledge: i. The conservator general, officials and rangers of National Parks and Foresters in all Forests visited. ii. The NCF / Chevron – Chief S. L. Edu. (2011) award for this work. iii. STEPB – IOT, Research and Technology Development Grant, 2011. Abstract Loganiaceae belongs to the Order Gentianales which consists of the families Apocynaceae, Gelsemiaceae, Loganiaceae, Gentianaceae and Rubiaceae. Several Herbaria samples were studied prior to collection from Forest Reserves and National Parks in Nigeria, Republic of Benin and Ghana – with the aid of collection bags, cutlass, secateurs and ropes. Plants parts, both vegetative and reproductive were assessed with the aid of meter rule and tape rule in their natural environment and in the laboratory. Strychnos species collected were 47 individuals; 35 species were adequately identified. Anthocleista genus consists of nine species, Mostuea - three species while Nuxia, Spigelia and Usteria were monotypic genera. The leaf surfaces within the family are: hirsute, pilose, pubescent, tomentose and glabrous as found in Mostuea hirsuta, Strychnos phaeotricha, Strychnos innocua, Strychnos spinosa and members of Anthocleista species respectively. Morphological characters show 10 clusters at threshold of 47 % similarity. -
Chapter One 1.0 Introduction and Background to The
CHAPTER ONE 1.0 INTRODUCTION AND BACKGROUND TO THE STUDY Loganiaceae is a family of flowering plants classified in the Order Gentianales (Bendre, 1975). The family was first suggested by Robert Brown in 1814 and validly published by von Martius in 1827 (Nicholas and Baijnath, 1994). Members habits are in form of trees, shrubs, woody climbers and herbs. Some are epiphytes while some members are furnished with spines or tendrils (Bendre, 1975). They are distributed mainly in the tropics, subtropics and a few in temperate regions (Backlund et al., 2000). Earlier treatments of the family have included up to 30 genera, 600 species (Leeuwenberg and Leenhouts, 1980; Mabberley, 1997) but were later reduced to 400 species in 15 genera, with some species extending into temperate Australia and North America (Struwe et al., 1994; Dunlop, 1996; Backlund and Bremer, 1998). Morphological studies have demonstrated that this broadly defined Loganiaceae was a polyphyletic assemblage and numerous genera have been removed from it to other families (sometimes to other Orders), e.g. Gentianaceae, Gelsemiaceae, Plocospermataceae, Tetrachondraceae, Buddlejaceae, and Gesneriaceae (Backlund and Bremer, 1998; Backlund et al., 2000). The family has undergone numerous revisions that have expanded and contracted its circumscription, ranging from one genus at its smallest (Takhtajan, 1997; Smith et al., 1997) to 30 at its largest (Leeuwenberg and Leenhouts, 1980). One of the current infrafamilial classifications contains four tribes: Antonieae Endl., Loganieae Endl., Spigelieae Dum. (monotypic), and Strychneae Dum. (Struwe et al., 1994). The tribes Loganieae and Antonieae are supported by molecular data, but Strychneae is not (Backlund et al., 2000). -
Studies on Thai Pteleocarpaceae
Tropical Natural History 14(1): 1-6, April 2014 2014 by Chulalongkorn University Studies on Thai Pteleocarpaceae 1 2,* KANOKORN RUEANGSAWANG AND PRANOM CHANTARANOTHAI 1 Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, THAILAND 2 Applied Taxonomic Research Center, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, THAILAND * Corresponding Author: Pranom Chantaranothai ([email protected]) Received: 25 December 2013; Accepted: 27 February 2014 Abstract.– The taxonomy of Pteleocarpaceae in Thailand is presented. The family has a single species, Pteleocarpa lamponga (Miq.) K. Heyne that is similar to Boraginaceae, but differs by its fruit characteristics. A description and illustration of P. lamponga from Thailand is provided. The pollen is monad, radially symmetrical, isopolar, prolate spheroidal, 3-colporate and with reticulate sculpturing. The epidermal cells are rectangular to polygonal and square on both leaf surfaces and the anomocytic stomata are restricted to the lower surface. KEY WORDS: Boraginaceae, epidermis, Pteleocarpaceae, pollen INTRODUCTION MATERIALS AND METHODS The family Pteleocarpaceae is a Morphological data was collected from monotypic tree genus that is narrowly herbarium material at AAU, BCU, BK, distributed in southern Thailand, Peninsular BKF, BM, C, K, KKU, L, PSU and SING Malaysia, Sumatra, Java and Borneo. The (acronyms according to Thiers, 2013), as genus Pteleocarpa Oliv. has been formerly well as from the available literature. The placed in various other families, such as pollen was prepared according to the Boraginaceae, Icacinaceae, Olacaceae, acetolysis method (Erdtman, 1960), and Cardiopteridaceae, Lophopyxidaceae and measured and studied under both light and Sapindaceae (Veldkamp, 1988). Recent scanning electron microscopes. -
Effects of Dietary Gelsemium Elegans Alkaloids on Growth Performance, Immune Responses and Disease Resistance of Megalobrama
Fish and Shellfish Immunology 91 (2019) 29–39 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Effects of dietary Gelsemium elegans alkaloids on growth performance, immune responses and disease resistance of Megalobrama amblycephala T Qiao Yea,b, Yongyong Fenga,b, Zhenlu Wanga,b, Aiguo Zhoua,b, Shaolin Xiea,b, Yue Zhangc, ∗ Qiong Xiangd, Enfeng Songd, Jixing Zoua,b, a College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China b Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China c Department of Pharmacology, Department Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA d Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China ARTICLE INFO ABSTRACT Keywords: The present study aim to investigate the effects of dietary Gelsemium elegans alkaloids supplementation in G. elegans alkaloids Megalobrama amblycephala. A basal diet supplemented with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids were Megalobrama amblycephala fed to M. amblycephala for 12 weeks. The study indicated that dietary 20 mg/kg and 40 mg/kg G. elegans al- Growth performance kaloids supplementation could significantly improve final body weight (FBW), weight gain rate (WGR), specific Plasma biochemical indices growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER) (P < 0.05). The 20 mg/kg and Immune responses 40 mg/kg G. elegans alkaloids groups showed significantly higher whole body and muscle crude protein and Aeromonas hydrophila crude lipid contents compared to the control group (P < 0.05). -
Poisonous and Injurious Plants of the United States: a Bibliography
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 5-2020 Poisonous and Injurious Plants of the United States: A Bibliography James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Poisonous and Injurious Plants of the United States: A Bibliography" (2020). Botanical Studies. 67. https://digitalcommons.humboldt.edu/botany_jps/67 This Poisonous Plants is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. POISONOUS & INJURIOUS PLANTS OF THE UNITED STATES: A BIBLIOGRAPHY James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 23 May 2020 TABLE OF CONTENTS 1 • Introduction. 1 2 • General References . 2 3 • Symptoms & Sites . 8 4 • Poisonous Principles (Toxins). 12 5 • Food & Beverage Plants . 17 6 • Plants of Home & Garden . 19 7 • Medicinal Plants . 20 8 • Plants Poisonous to Pets & Horses . 21 9 • Purposeful Uses of Poisonous Plants Arrow and Dart Poisons. 22 Fish Poisons (Piscicides) . 23 Insecticides . 24 Rat Poisons (Raticides) . 25 Snail Poisons (Molluscides) . 25 10 • Plants by Major Group and Family Lycophytes . 26 Ferns. 26 Gymnosperms . 28 Flowering Plants . 30 11 • Plants by Region & State. 82 12 • Plants by Common & Scientific Names . 88 13 • Plants by Genus and Family . -
On Gelsemium and Complementary and Alternative Medicine (CAM) in Anxiety and Experimental Neurology
Neurol Ther DOI 10.1007/s40120-014-0025-6 COMMENTARY On Gelsemium and Complementary and Alternative Medicine (CAM) in Anxiety and Experimental Neurology Salvatore Chirumbolo To view enhanced content go to www.neurologytherapy-open.com Received: November 12, 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com ABSTRACT INTRODUCTION A recent discussion expanded the debate about Herbal medicine is widely used in anxiety and the experimental research on Gelsemium in mood disorders, often with contradictory anxiety. Herbal medicine is widely used in evidence [1], although some authors are yet anxiety and mood disorders, often with prompted to promote their full introduction in contradictory evidence, although some pharmacology as a promising therapy [2, 3]. authors are yet prompted to promote their full Complementary and alternative medicine introduction in pharmacology as a promising (CAM) in anxiety is particularly appreciated therapy. Complementary and alternative by individual healthcare [4], but deserves medicine (CAM) in anxiety is particularly further investigation, as many critical issues appreciated by individual healthcare, but have been recently raised. [5, 6]. As a matter of deserves further investigation, as many critical fact, a recent discussion expanded the debate issues have been recently raised. Comments about the experimental research on Gelsemium about the ability of negligible doses of in anxiety [7–11]. This Commentary tries to Gelsemium hydroalcoholic extracts to affect elucidate major issues causing this debate by gene expression were recently reported. addressing the numerous aspects raised in comments published elsewhere in the literature. Keywords: Gelsemium; Gelsemine; GABA The anxiolytic property of Gelsemium plant receptors; Behaviour; Anxiety has been extensively reviewed [11–14]. -
2 ANGIOSPERM PHYLOGENY GROUP (APG) SYSTEM History Of
ANGIOSPERM PHYLOGENY GROUP (APG) SYSTEM The Angiosperm Phylogeny Group, or APG, refers to an informal international group of systematic botanists who came together to try to establish a consensus view of the taxonomy of flowering plants (angiosperms) that would reflect new knowledge about their relationships based upon phylogenetic studies. As of 2010, three incremental versions of a classification system have resulted from this collaboration (published in 1998, 2003 and 2009). An important motivation for the group was what they viewed as deficiencies in prior angiosperm classifications, which were not based on monophyletic groups (i.e. groups consisting of all the descendants of a common ancestor). APG publications are increasingly influential, with a number of major herbaria changing the arrangement of their collections to match the latest APG system. Angiosperm classification and the APG Until detailed genetic evidence became available, the classification of flowering plants (also known as angiosperms, Angiospermae, Anthophyta or Magnoliophyta) was based on their morphology (particularly that of the flower) and their biochemistry (what kinds of chemical compound they contained or produced). Classification systems were typically produced by an individual botanist or by a small group. The result was a large number of such systems (see List of systems of plant taxonomy). Different systems and their updates tended to be favoured in different countries; e.g. the Engler system in continental Europe; the Bentham & Hooker system in Britain (particularly influential because it was used by Kew); the Takhtajan system in the former Soviet Union and countries within its sphere of influence; and the Cronquist system in the United States. -
The Difference in Cytotoxic Activity Between Two Optical Isomers Of
molecules Communication The Difference in Cytotoxic Activity between Two Optical Isomers of Gelsemine from Gelsemium elegans Benth. on PC12 Cells Li Lin 1, Yan-Chun Liu 1,2 and Zhao-Ying Liu 1,2,* 1 College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; [email protected] (L.L.); [email protected] (Y.-C.L.) 2 Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China * Correspondence: [email protected]; Tel.: +86-151-1117-9464 Academic Editors: Francesco Epifano and Serena Fiorito Received: 2 May 2019; Accepted: 22 May 2019; Published: 25 May 2019 Abstract: Two optical isomers, +/ gelsemine (1, 2), together with one known compound were isolated − from the whole plant of G. elegans. The structures of the separated constituents were elucidated on 1D and 2D (1H-1H COSY, HMBC, HSQC) NMR spectroscopy and high-resolution mass spectrometry (HRMS). The isolated alkaloids were tested in vitro for cytotoxic potential against PC12 cells by the MTT assay. As a result, (+) gelsemine (compound 1) exhibited cytotoxic activity against PC12 cells with an IC value of 31.59 µM, while ( ) gelsemine (compound 2) was not cytotoxic. 50 − Keywords: Gelsemium elegans; gelsemine; koumine; PC12 cells 1. Introduction Gelsemium elegans Benth. (G. elegans), referred to as “Gou-Wen” and “Duan-Chang-Cao” in China, belongs to Loganiaceae family and is a famous toxic plant that is widely distributed in Southeast Asia and southern China [1]. This plant has been used as a traditional medicine for the treatment of pain, spasticity, skin ulcers, migraines, neuralgia, sciatica, cancer, and various types of sores [2–8]. -
The Genus Gelsemium: an Update
P H C O G R E V . PLANT REVIEW The genus Gelsemium: An update V. Dutt, S. Thakur1, V. J. Dhar2, A. Sharma3 Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 1S.D. College of Pharmacy, Barnala, 2Swift School of Pharmacy, Rajpura, Punjab, 3University Institute of Pharmaceutical Science, Punjab University, Chandigarh, India Submitted: 10-03-10 Revised: **** Published: **** ABSTRACT The review includes 103 references on the genus Gelsemium, and comprises ethnopharmacology, morphology, phytoconstituents, pharmacological reports, clinical studies and toxicology of the prominent species of Gelsemium. Alkaloids and iridoids constitute major classes of phytoconstituents of the genus. Most popular species of the genus are the Asian G. elegans and the two North American related species, G. sempervirens and G. rankinii. Gelsemium species are categorized under medicinal as well as poisonous plants. Amongst various species, G. elegans and G. sempervirens possess medicinal value, and have been traditionally used as nervous system relaxant. These plants have been explored exhaustively for their anticancer activity. In the concluding part, the future scope of Gelsemium species has been emphasized with a view to establish their multifarious biological activities and mode of actions Key words: Alkaloids, anticancer, gelsemium, lridoids INTRODUCTION the market. Under every section, Gelsemium species have been arranged in an alphabetical order. The literature review on Gelsemium has been compiled using references from major databases such as Chemical