Rules for Driving Roundabouts

Total Page:16

File Type:pdf, Size:1020Kb

Rules for Driving Roundabouts RULES FOR DRIVING ROUNDABOUTS www.wisconsinroundabouts.gov General information for all roundabouts Steps for driving a roundabout: Roundabouts are becoming more common 1. Slow down. Obey traffic signs. in the U.S. because they provide safer and 2. Yield to pedestrians and bicyclists. more efficient traffic flow than standard 3. Yield to traffic on your left intersections. By keeping traffic moving one-way already in the roundabout. in a counterclockwise direction, there are fewer 4. Enter the roundabout when conflict points and traffic flows smoothly. there is a safe gap in traffic. Crash statistics show that roundabouts 5. Keep your speed low reduce fatal crashes about 90%, reduce within the roundabout. injury crashes about 75%, and reduce overall 6. As you approach your exit, crashes about 35%, when compared Draft 5 February 2, 2009 turn on your right turn signal. to other types of intersection control. 7. Yield to pedestrians and When driving a roundabout, the same bicycles as you exit. general rules apply as for maneuvering Emergency vehicles in the roundabout through any other type of intersection. P Always yield to emergency vehicles. Truck apron P If you have not entered the roundabout, pull Large vehicles need more space when driving over and allow emergency vehicles to pass. in a roundabout. A truck apron is a paved area P If you have entered the roundabout, on the inside of the roundabout for the rear wheels continue to your exit, then pull over of large trucks to use when turning, sometimes and allow emergency vehicles to pass. referred to as off-tracking. Truck aprons are P Avoid stopping in the roundabout. not to be used by cars, SUVs or pickup trucks. << Driving a one-lane roundabout Driving a one-lane roundabout This example shows the traffic movement patterns through Oak Street Pedestrians a one-lane roundabout. » Pedestrians at the curb side look left for oncoming traffic The one-lane roundabout before crossing is known as one of the safest Crosswalk: » Pedestrians within the Yield to pedestrians crosswalk island area and most efficient intersections. look right for oncoming traffic before crossing. Maple Avenue ONE WAY Maple Avenue t ruc k apron Bicycles Bicyclists can continue YIELD » through the roundabout YIELD taking the travel lane, or Traffic circulates » may exit the roadway ONE counterclockwise and use the crosswalk. WAY in a roundabout Oak Street Yield to all traffic before entering roundabout! Driving a roundabout with two or more lanes >>> Choose the proper lane before entering: As you get closer to the roundabout entrance, it is very important to observe the signs and arrows to determine which lane to use before entering a roundabout. Black and white signs on the side of the road and white arrows on the road will show the correct lane to use. In general, if you want to make a left turn, you should be in the left lane or other lanes that are signed and marked as left turn lanes. If you want to make a right turn, you should be in the right lane or other lanes that are signed and marked as right turn lanes. If you want to go straight, observe the signs and arrows to see what lane is correct. Left turns/u-turns: Going straight: Right turns: Large vehicles use left lane use right lane use right lane or left lane » Large vehicles need more » When approaching the » When approaching the space in a roundabout. roundabout, use the left » When approaching the roundabout, use the right » All drivers should be lane, or other lanes that roundabout, choose lane, or other lanes that cautious and avoid driving are signed and marked the correct lane for are signed and marked next to or passing large as a left turn lane. your desired exit. as a right turn lane. trucks while approaching » Yield to pedestrians » Yield to pedestrians » Yield to pedestrians and maneuvering in the crosswalk. in the crosswalk. in the crosswalk. through a roundabout. » Yield to all traffic on » Yield to all traffic on » Yield to all traffic on » A truck apron is a paved your left before entering your left before entering your left before entering area inside a roundabout. the roundabout. the roundabout. the roundabout. » It is for the rear wheels » Enter the roundabout » Enter the roundabout » Enter the roundabout of large trucks to use when there is a safe when there is a safe when there is a safe when turning. gap in traffic. gap in traffic. gap in traffic. » Trucks may cross into » Stay in your lane. » Stay in your lane. » Stay in your lane. other lanes or onto » Use your right turn signal » Use your right turn signal » Use your right turn signal the truck apron. to exit the roundabout. to exit the roundabout. to exit the roundabout. » Truck aprons are not » Yield to pedestrians in » Yield to pedestrians in » Yield to pedestrians in to be used by cars, the crosswalk at the exit. the crosswalk at the exit. the crosswalk at the exit. SUVs or pickup trucks. Lane choice is critical at roundabouts » Right lane is for right turns only. Crosswalk: Maple Avenue Pedestrians » Left lane is for Yield to pedestrians » Pedestrians at the left turns, u-turns, curb side look left or through traffic only. for oncoming traffic before crossing » Pedestrians within the crosswalk island area look right for oncoming » Right lane is for right Oak Street traffic before crossing. turns or through traffic only. » Left lane is for left turns, u-turns, or ONE WAY Oak Street through traffic only. Bicycles Bicyclists can continue tru ck a » through the roundabout pron » Right lane is taking the travel lane, or for right turns or » may exit the roadway YIELD through traffic. and use the crosswalk. YIELD Left turns/u-turns: use left lane » Left lane is for left ONE turns or u-turns only. WAY Going straight: follow the pavement Traffic circulates markings, arrows or signs counterclockwise in a roundabout Right turns: use right lane Black and white signs: » at the side Maple Avenue of the road Choose your lane and yield to all traffic in both lanes before entering roundabout!.
Recommended publications
  • A Behavior-Based Framework for Assessing Barrier Effects to Wildlife from Vehicle Traffic Volume 1 Sandra L
    CONCEPTS & THEORY A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume 1 Sandra L. Jacobson,1,† Leslie L. Bliss-Ketchum,2 Catherine E. de Rivera,2 and Winston P. Smith3,4 1 1USDA Forest Service, Pacific Southwest Research Station, Davis, California 95618 USA 1 2Department of Environmental Science & Management, School of the Environment, 1 Portland State University, Portland, Oregon 97207-0751 USA 1 3USDA Forest Service, Pacific Northwest Research Station, La Grande, Oregon 97850 USA 1 Citation: Jacobson, S. L., L. L. Bliss-Ketchum, C. E. de Rivera, and W. P. Smith. 2016. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7(4):e01345. 10.1002/ecs2.1345 Abstract. Roads, while central to the function of human society, create barriers to animal movement through collisions and habitat fragmentation. Barriers to animal movement affect the evolution and tra- jectory of populations. Investigators have attempted to use traffic volume, the number of vehicles passing a point on a road segment, to predict effects to wildlife populations approximately linearly and along taxonomic lines; however, taxonomic groupings cannot provide sound predictions because closely related species often respond differently. We assess the role of wildlife behavioral responses to traffic volume as a tool to predict barrier effects from vehicle-caused mortality and avoidance, to provide an early warning system that recognizes traffic volume as a trigger for mitigation, and to better interpret roadkill data. We propose four categories of behavioral response based on the perceived danger to traffic: Nonresponders, Pausers, Speeders, and Avoiders.
    [Show full text]
  • Roundabout Planning, Design, and Operations Manual
    Roundabout Planning, Design, and Operations Manual December 2015 Alabama Department of Transportation ROUNDABOUT PLANNING, DESIGN, AND OPERATIONS MANUAL December 2015 Prepared by: The University Transportation Center for of Alabama Steven L. Jones, Ph.D. Abdulai Abdul Majeed Steering Committee Tim Barnett, P.E., ALDOT Office of Safety Operations Stuart Manson, P.E., ALDOT Office of Safety Operations Sonya Baker, ALDOT Office of Safety Operations Stacey Glass, P.E., ALDOT Maintenance Stan Biddick, ALDOT Design Bryan Fair, ALDOT Planning Steve Walker, P.E., ALDOT R.O.W. Vince Calametti, P.E., ALDOT 9th Division James Brown, P.E., ALDOT 2nd Division James Foster, P.E., Mobile County Clint Andrews, Federal Highway Administration Blair Perry, P.E., Gresham Smith & Partners Howard McCulloch, P.E., NE Roundabouts DISCLAIMER This manual provides guidelines and recommended practices for planning and designing roundabouts in the State of Alabama. This manual cannot address or anticipate all possible field conditions that will affect a roundabout design. It remains the ultimate responsibility of the design engineer to ensure that a design is appropriate for prevailing traffic and field conditions. TABLE OF CONTENTS 1. Introduction 1.1. Purpose ...................................................................................................... 1-5 1.2. Scope and Organization ............................................................................... 1-7 1.3. Limitations ...................................................................................................
    [Show full text]
  • Module 6. Hov Treatments
    Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations ..........................................
    [Show full text]
  • City Maintained Street Inventory
    City Maintained Streets Inventory DATE APPROX. AVG. STREET NAME ACCEPTED BEGINNING AT ENDING AT LENGTH WIDTH ACADEMYText0: ST Text6: HENDERSONVLText8: RD BROOKSHIREText10: ST T0.13 Tex20 ACADEMYText0: ST EXT Text6: FERNText8: ST MARIETTAText10: ST T0.06 Tex17 ACTONText0: WOODS RD Text6:9/1/1994 ACTONText8: CIRCLE DEADText10: END T0.24 Tex19 ADAMSText0: HILL RD Text6: BINGHAMText8: RD LOUISANAText10: AVE T0.17 Tex18 ADAMSText0: ST Text6: BARTLETText8: ST CHOCTAWText10: ST T0.16 Tex27 ADAMSWOODText0: RD Text6: CARIBOUText8: RD ENDText10: OF PAVEMENT T0.16 Tex26 AIKENText0: ALLEY Text6: TACOMAText8: CIR WESTOVERText10: ALLEY T0.05 Tex12 ALABAMAText0: AVE Text6: HANOVERText8: ST SWANNANOAText10: AVE T0.33 Tex24 ALBEMARLEText0: PL Text6: BAIRDText8: ST ENDText10: MAINT T0.09 Tex18 ALBEMARLEText0: RD Text6: BAIRDText8: ST ORCHARDText10: RD T0.2 Tex20 ALCLAREText0: CT Text6: ENDText8: C&G ENDText10: PVMT T0.06 Tex22 ALCLAREText0: DR Text6: CHANGEText8: IN WIDTH ENDText10: C&G T0.17 Tex18 ALCLAREText0: DR Text6: SAREVAText8: AVE CHANGEText10: IN WIDTH T0.18 Tex26 ALEXANDERText0: DR Text6: ARDIMONText8: PK WINDSWEPTText10: DR T0.37 Tex24 ALEXANDERText0: DR Text6: MARTINText8: LUTHER KING WEAVERText10: ST T0.02 Tex33 ALEXANDERText0: DR Text6: CURVEText8: ST ARDMIONText10: PK T0.42 Tex24 ALLENText0: AVE 0Text6:/18/1988 U.S.Text8: 25 ENDText10: PAV'T T0.23 Tex19 ALLENText0: ST Text6: STATEText8: ST HAYWOODText10: RD T0.19 Tex23 ALLESARNText0: RD Text6: ELKWOODText8: AVE ENDText10: PVMT T0.11 Tex22 ALLIANCEText0: CT 4Text6:/14/2009 RIDGEFIELDText8:
    [Show full text]
  • Shared Streets and Alleyways – White Paper
    City of Ashland, Ashland Transportation System Plan Shared Streets and Alleyways – White Paper To: Jim Olson, City of Ashland Cc: Project Management Team From: Adrian Witte and Drew Meisel, Alta Planning + Design Date: February 2, 2011 Re: Task 7.1.O White Paper: “Shared Streets and Alleyways” - DRAFT Direction to the Planning Commission and Transportation Commission Five sets of white papers are being produced to present information on tools, opportunities, and potential strategies that could help Ashland become a nationwide leader as a green transportation community. Each white paper will present general information regarding a topic and then provide ideas on where and how that tool, strategy, and/or policy could be used within Ashland. You will have the opportunity to review the content of each white paper and share your thoughts, concerns, questions, and ideas in a joint Planning Commission/Transportation Commission meeting. Based on discussions at the meeting, the material in the white paper will be: 1) Revised and incorporated into the alternatives analysis for the draft TSP; or 2) Eliminated from consideration and excluded from the alternatives analysis. The overall intent of the white paper series is to explore opportunities and discuss the many possibilities for Ashland. Shared Streets Introduction Shared Streets aim to provide a better balance of the needs of all road users to improve safety, comfort, and livability. They are similar to European concepts such as the Dutch based ‘Woonerf’ and the United Kingdom’s ‘Home Zone’, with some distinct differences. This balance is accomplished through integration rather than segregation of users. By eschewing many of the traditional roadway treatments such as curbs, signs, and pavement markings, the distinction between modes is blurred.
    [Show full text]
  • Reversible Traffic Lanes
    Traffic Management System Efficiency Reversible Traffic Lanes REVERSIBLE TRAFFIC LANES Description Reversible traffic lanes add capacity to a road and decrease congestion by borrowing capacity from the other (off- peak) direction. Reversing lanes reduces congestion during morning and evening commutes, when there is an incident blocking a lane of traffic, or when construction or maintenance is being done on the road. Roads can be adjusted to become a one- way street or have one middle lane operate in the peak direction. These adjustments, indicated by changeable message signs and/or Cost: arrows, occur at specified times of the day or when volume Time: Short exceeds certain limits. Impact: Corridor Target Market Who: City/State . Congested work zone areas or during incidents Hurdles: Public Awareness/ . Roads with highly directional congestion Operation . Bridges, tunnels, and toll booth areas difficult to widen . Surrounding or leading to/from special event centers Reversible lanes work well in corridors where traffic flow is heavily imbalanced for a short period of time, and there are few other solution options. How Will This Help? . Reduce congestion by temporarily “borrowing” capacity from the other direction. Increase safety in work zones. Postpone the need to add capacity through conventional lane additions. Implementation Issues Success Story Proper communication and public participation are crucial to Arlington, Texas, installed reversible ensuring the strategy’s success. Local agencies should identify lanes to mediate congestion around two the best locations for implementation and ensure the public and professional sports stadiums agencies understand the concept and operation. The endpoint . FM 157/Collins Street treatment requires particular care and attention—common .
    [Show full text]
  • What Are the Advantages of Roundabouts?
    What is a roundabout? A roundabout is an intersection where traffic travels around a Circulatory central island in a counter- Truck Apron Roadway clockwise direction. Vehicles entering or exiting the roundabout must yield to vehicles, bicyclists, and pedestrians. Figure 1 presents the elements of a roundabout. Yield Line Splitter Island Figure 1: Elements of a Roundabout What are the advantages of roundabouts? • Less Traffic Conflict: Figure 2 compares the conflict points between a conventional intersection and a modern roundabout. The lower number of conflict points translates to less potential for accidents. • Greater safety(1): Primarily achieved by slower speeds and elimination of left turns. Design elements of the roundabouts cause drivers to reduce their speeds. • Efficient traffic flow: Up to 50% increase in traffic capacity • Reduced Pollution and fuel usage: Less stops, shorter queues and no left turn storage. • Money saved: No signal equipment to install or maintain, plus savings in electricity use. • Community benefits: Traffic calming and enhanced aesthetics by landscaping. (1) Statistics published by the U.S. Dept. of transportation, Federal Highway Administration shows roundabouts to have the following advantages over conventional intersections: • 90% reduction in fatalities • 76% reduction in injuries • 35% reduction in pedestrian accidents. Signalized Intersection Roundabout Figure 2: Conflict Point Comparison How to Use a Roundabout Driving a car • Slow down as you approach the intersection. • Yield to pedestrians and bicyclists crossing the roadway. • Watch for signs and pavement markings. • Enter the roundabout if gap in traffic is sufficient. • Drive in a counter-clockwise direction around the roundabout until you reach your exit. Do not stop or pass other vehicles.
    [Show full text]
  • Highway Traffic Operations and Freeway Management
    HIGHWAY TRAFFIC OPERATIONS AND FREEWAY MANAGEMENT STATE-OF-THE-PRACTICE FINAL REPORT March 2003 Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers. Trade and manufacturers’ names appear in this report only because they are considered essential to the object of the document. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-OP-03-076 4. Title and Subtitle 5. Report Date Highway Traffic Operations and Freeway Management: State-of-the-Practice March 2003 Final Report 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Leslie N. Jacobson Report 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) PB Farradyne 999 Thrid Avenue, Suite 2200 11. Contract or Grant No. Seattle, WA 98104 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Transportation Management Research Federal Highway Administration Room 3404 HOTM 400 Seventh Street, S.W. 14. Sponsoring Agency Code Washington D.C., 20590 15. Supplementary Notes Jon Obenberger, FHWA Office of Transportation Management, Contracting Officers Technical Representative (COTR) 16. Abstract This paper focuses on the proactive management of freeway facilities to balance the capacity of the transportation system and the prevailing demands, and response to out-of-the-ordinary conditions (e.g., incidents, adverse weather, work zones, special events, and emergency evacuations).
    [Show full text]
  • How to Drive in a Roundabout America in the Spring of 1990 by Constructing the First Circular Intersection in Summerlin, a Suburb of Las Vegas
    The Modern Roundabout Nevada introduced the modern roundabout to How to drive in a Roundabout America in the spring of 1990 by constructing the first circular intersection in Summerlin, a suburb of Las Vegas. Still many drivers in Nevada are unfamiliar with them despite the many benefits offered by the modern roundabout. New roundabouts have been constructed at Kietzke Lane & Neil Road in Reno and at Eagle Canyon and La Posada Drives off the Pyramid Highway. These roundabouts have improved traffic flow and safety on these roadways. Modern roundabouts offer many proven benefits: improved safety, reduction in delays and lower maintenance costs. Roundabouts can be a single lane or multi-lane intersection. Studies have shown roundabouts reduce vehicle collisions by 39% and injury producing accidents by 76%. Roundabouts also improve traffic flow when replacing stop signs or traffic signals at intersections by as much as 75%. There are significant savings in maintenance costs of up to $5000 annually versus the costs Artist rendering of Kietzke Lane/Neil Road Roundabout associated with traffic signals. This brochure provides you with information about how to safely drive in a roundabout. An Simple tips for driving a roundabout instructional video is available on rtcwashoe.com or at any Washoe County library. 1 Slow down To learn more visit rtcwashoe.com and click the 5 Watch for pedestrians Streets and Highways tab for information on Roundabouts. To obtain additional copies of as you approach the 2 this brochure or the instructional video, e-mail roundabout Michael Moreno, RTC Community Relations at Look to your left when [email protected] or call 775-335-1869.
    [Show full text]
  • Access Control
    Access Control Appendix D US 54 /400 Study Area Proposed Access Management Code City of Andover, KS D1 Table of Contents Section 1: Purpose D3 Section 2: Applicability D4 Section 3: Conformance with Plans, Regulations, and Statutes D5 Section 4: Conflicts and Revisions D5 Section 5: Functional Classification for Access Management D5 Section 6: Access Control Recommendations D8 Section 7: Medians D12 Section 8: Street and Connection Spacing Requirements D13 Section 9: Auxiliary Lanes D14 Section 10: Land Development Access Guidelines D16 Section 11: Circulation and Unified Access D17 Section 12: Driveway Connection Geometry D18 Section 13: Outparcels and Shopping Center Access D22 Section 14: Redevelopment Application D23 Section 15: Traffic Impact Study Requirements D23 Section 16: Review / Exceptions Process D29 Section 17: Glossary D31 D2 Section 1: Purpose The Transportation Research Board Access Management Manual 2003 defines access management as “the systematic control of the location, spacing, design, and operations of driveways, median opening, interchanges, and street connections to a roadway.” Along the US 54/US-400 Corridor, access management techniques are recommended to plan for appropriate access located along future roadways and undeveloped areas. When properly executed, good access management techniques help preserve transportation systems by reducing the number of access points in developed or undeveloped areas while still providing “reasonable access”. Common access related issues which could degrade the street system are: • Driveways or side streets in close proximity to major intersections • Driveways or side streets spaced too close together • Lack of left-turn lanes to store turning vehicles • Deceleration of turning traffic in through lanes • Traffic signals too close together Why Access Management Is Important Access management balances traffic safety and efficiency with reasonable property access.
    [Show full text]
  • Traffic Impact Analysis
    TRANSPORTATION Section 6-1 TRAFFIC IMPACT ANALYSIS The Town Of Buckeye Arizona Engineering Design Standards Section 6-1 Adopted December 2012 Section 6-1 TRAFFIC IMPACT ANALYSIS TABLE OF CONTENTS 6-1.000 GENERAL INFORMATION:..............................3 6-1.600 MASTER STREET PLANS FOR CMPS: ............. 25 6-1.001 INFRASTRUCTURE REQUIREMENTS: ...................... 3 6-1.601 GENERAL INFORMATION: ................................25 6-1.002 DEFINITIONS AND ABBREVIATIONS: ..................... 4 6-1.602 REQUIRED SHEETS: .........................................25 6-1.003 DESIGN POLICY: .............................................. 6 6-1.603 REQUIRED INFORMATION: ...............................25 6-1.004 DILIGENCE: ..................................................... 6 6-1.604 CMP MASTER STREET PLAN REVIEW NOTES:......28 6-1.005 IMPLEMENTATION: ........................................... 6 6-1.006 PRIVATE STREETS: ............................................ 7 6-1.007 STANDARDS: ................................................... 8 6-1.008 TIA PREPARATION PROCESS: ............................. 9 TABLE OF FIGURES FIGURE 1 TOWN ENGINEER SIGNATURE/APPROVAL BLOCK ......11 6-1.100 TRIP GENERATION LETTER: ............................9 6-1.101 REQUIRED SECTIONS: ....................................... 9 6-1.200 TRAFFIC IMPACT ANALYSIS / REPORT: ........ 10 TABLE OF TABLES 6-1.201 GENERAL REQUIREMENTS: .............................. 10 TABLE 1 TRIP GENERATION THRESHOLDS ............................18 6-1.202 REPORT REQUIREMENTS: ...............................
    [Show full text]
  • FLOW Portfolio of Measures: the Role of Walking and Cycling in Reducing
    THE ROLE OF WALKING AND CYCLING IN REDUCING CONGESTION A PORTFOLIO OF MEASURES A PORTFOLIO OF MEASURES FLOW DOCUMENT TITLE The Role of Walking and Cycling in Reducing Congestion: A Portfolio of Measures AUTHORS Thorsten Koska, Frederic Rudolph (Wuppertal Institut für Klima, Umwelt, Energie gGmbH); Case Studies: Benjamin Schreck, Andreas Vesper (Bundesanstalt für Straßenwesen), Tamás Halmos (Budapesti Közlekedési Központ), Tamás Mátrai (Budapesti Műszaki és Gazdaságtudományi Egyetem), Alicja Pawłowska (Municipality of Gdynia), Jacek Oskarbski (Politechnika Gdanska), Benedicte Swennen (European Cyclists’ Federation), Nora Szabo (PTV AG), Graham Cavanagh (Rupprecht Consult GmbH), Florence Lepoudre (Traject), Katie Millard (Transport Research Laboratory), Martin Wedderburn (Walk21), Miriam Müller, David Knor (Wuppertal Institut für Klima, Umwelt, Energie gGmbH) CONTACT Project coordinator: Rupprecht Consult Bernard Gyergyay: [email protected] Kristin Tovaas: [email protected] Project dissemination manager: Polis Daniela Stoycheva: [email protected] CITATION FLOW Project (2016). The Role of Walking and Cycling in Reducing Congestion: A Portfolio of Measures. Brussels. Available at http://www.h2020-flow.eu. IMAGE DISCLAIMER The images in this document are used as a form of visual citation to support and clarify statements made in the text. The authors have made great effort to provide credit for every image used. If, despite our efforts, we have not given sufficient credit to the author of any images used, please contact us directly at [email protected] LAYOUT PEAK Sourcing DATE July 2016 The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the INEA nor the European Commission is responsible for any use that may be made of the information contained therein.
    [Show full text]