Internet of Things: State of Technological Art Analysis, in Order to Identify Current and Future Technologies and Platforms of the Iot Sector

Total Page:16

File Type:pdf, Size:1020Kb

Internet of Things: State of Technological Art Analysis, in Order to Identify Current and Future Technologies and Platforms of the Iot Sector INTERNET OF THINGS: STATE OF TECHNOLOGICAL ART ANALYSIS, IN ORDER TO IDENTIFY CURRENT AND FUTURE TECHNOLOGIES AND PLATFORMS OF THE IOT SECTOR State of the technological art Analysis Data: 07/23/2019 The ERDF project 2023 Beacon Südtirol (CUP: B31H17000060001) was funded by the European Development FundRegional Autonomous Province of Bolzano, Investing for Growth and employment 2014-2020 ERDF. 1 Progetto: Beacon Südtirol - Alto Adige Codice: FESR-2023 CUP: B31H17000060001 NOI | Report Project partner Planned and carried out by Giovanni Giannotta, Gruppo FOS Gabriele Scarton, Gruppo FOS Giorgio Allasia, Gruppo FOS Federico Boero, Gruppo FOS Andrea Sansalone, Gruppo FOS Stefano Seppi, NOI S.p.a. Patrick Ohnewein, NOI S.p.a. Italian to English translation by Emma Victoria Rawlinson In collaboration with Riccardo Brozzi, Fraunhofer Italia David Forti, Fraunhofer Italia Dominik Matt, Fraunhofer Italia 2 Progetto: Beacon Südtirol - Alto Adige Codice: FESR-2023 CUP: B31H17000060001 NOI | Report Index 1 Introduction.....................................................................................................................................4 2 The study.........................................................................................................................................6 3 A bit of history.................................................................................................................................7 4 Evolutionary trends of the IoT.........................................................................................................9 5 IoT Alliances and Consortia..........................................................................................................12 5.1 Alliances and IoT consortia comparison................................................................................15 6 IoT technologies/platforms............................................................................................................18 6.1 From small to large distances................................................................................................19 6.2 IoT Architecture.....................................................................................................................20 6.2.1 Architettura a 3 e 5 livelli...............................................................................................22 6.2.2 Security..........................................................................................................................22 6.2.3 Architectures based on Cloud, FOG and EDGE............................................................28 7 Examination Comparison of the technological specifications and protocol in IoT landscape......31 7.1 Network Access Layer...........................................................................................................31 7.2 Communication Models.........................................................................................................32 7.2.1 Analyzed technologies that define the Medium Access Control level (MAC)..............32 Ethernet 802.3...................................................................................................................32 WLAN – Wifi 802.11 a/b/g/n............................................................................................33 Ingenu/RPMA...................................................................................................................34 Radio Frequency Identification (RFID)............................................................................35 Near Field Communication (NFC)....................................................................................36 Bluetooth IEEE 802.15.1 e successive versioni................................................................36 Bluetooth Low Energy......................................................................................................37 Z-Wave..............................................................................................................................37 M-Bus / WM-Bus..............................................................................................................40 Weightless W-N-P.............................................................................................................43 NB-IoT...............................................................................................................................44 LTE - Long Term Evolution..............................................................................................44 EC-GSM-IoT.....................................................................................................................45 LoRa — Long Range Protocol..........................................................................................46 Sigfox................................................................................................................................46 7.2.2 Analyzed technologies that are based on other standards..............................................47 Dash7.................................................................................................................................47 Zigbee, Zigbee Pro, Zigbee 3.0.........................................................................................48 DigiMesh®........................................................................................................................51 Thread / OpenThread.........................................................................................................53 Ant / Ant+..........................................................................................................................54 Wireless-HART..................................................................................................................57 7.2.3 Comparative Tables........................................................................................................57 7.3 Transport Layer......................................................................................................................64 7.3.1 IPV4...............................................................................................................................65 7.3.2 IPV6...............................................................................................................................65 IPV6..........................................................................................................................................65 7.3.3 6LoWPAN......................................................................................................................66 7.3.4 RPL................................................................................................................................66 7.4 Session/communication.........................................................................................................67 1 Progetto: Beacon Südtirol - Alto Adige Codice: FESR-2023 CUP: B31H17000060001 NOI | Report 7.4.1 HTTP..............................................................................................................................68 7.4.2 MQTT............................................................................................................................68 7.4.3 CoAP..............................................................................................................................72 7.4.4 AMQP............................................................................................................................72 7.4.5 NATS / NATS 2.0...........................................................................................................73 7.4.6 DDS................................................................................................................................74 7.4.7 XMPP.............................................................................................................................76 7.4.8 Comparative tables.........................................................................................................77 7.5 Data Aggregation / Processing Layer....................................................................................78 7.6 Data Storage Layer................................................................................................................80 7.7 Final tables.............................................................................................................................83 8 The security issue..........................................................................................................................88 8.1 IoT Communication Technologies.........................................................................................88 8.1.1 ZigBee............................................................................................................................88 8.1.2 Bluetooth........................................................................................................................89 8.1.3 WSN in generale............................................................................................................89 8.1.4 Wireless Fidelity (Wi-Fi)................................................................................................89 8.1.5 LoRaWan........................................................................................................................90 8.1.6 Sigfox.............................................................................................................................95
Recommended publications
  • A DASH7-Based Power Metering System
    A DASH7-based Power Metering System Oktay Cetinkaya Ozgur B. Akan Next-generation and Wireless Communications Laboratory Department of Electrical and Electronics Engineering Koc University, Istanbul, Turkey Email: fokcetinkaya13, [email protected] Abstract—Considering the inability of the existing energy non-embedded structure. When considering the cost of HEMS, resources to satisfy the current needs, the right and efficient use power meters can be defined as cheap and cost effective of the energy has become compulsory. To make energy sustain- products, undoubtedly. ability permanent, management and planning activities should be carried out by arranging the working hours and decreasing There are several wireless communication protocols in liter- the energy wasting. For all these, power metering, managing ature to actualize the remote control of plugged gadgets. The and controlling systems or plugs has been proposed in recent communication between ‘master and slave’ or equivalently efforts. Starting from this point, a new DASH7-based Smart Plug ‘user and device’ is realized over any of these wireless (D7SP) is designed and implemented to achieve a better structure communication protocols based modules. 2.4 GHz frequency compared to ZigBee equipped models and reduce the drawbacks of current applications. DASH7 technology reaches nearly 6 times is frequently preferred for this goal and ZigBee can be referred farther distances in comparison with 2.4 GHz based protocols and as the most popular member of this band. With a brief provides multi-year battery life as a result of using limited energy definition, ZigBee is a low cost and high reliable technology during transmission. Performing in the 433 MHz band prevents based on IEEE 802.15.4 [1].
    [Show full text]
  • Internet of Underground Things in Precision Agriculture: Architecture and Technology Aspects Mehmet C
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Journal Articles Computer Science and Engineering, Department of 2018 Internet of underground things in precision agriculture: Architecture and technology aspects Mehmet C. Vuran University of Nebraska-Lincoln, [email protected] Abdul Salam Purdue University, [email protected] Rigoberto Wong University of Nebraska-Lincoln, [email protected] Suat Irmak University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/csearticles Part of the Bioresource and Agricultural Engineering Commons, Computer and Systems Architecture Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Robotics Commons Vuran, Mehmet C.; Salam, Abdul; Wong, Rigoberto; and Irmak, Suat, "Internet of underground things in precision agriculture: Architecture and technology aspects" (2018). CSE Journal Articles. 189. https://digitalcommons.unl.edu/csearticles/189 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Internet of underground things in precision agriculture: Architecture and technology aspects Mehmet C. Vuran,1 Abdul Salam,2 Rigoberto Wong,1 and Suat Irmak 3 1 Cyber-physical Networking Laboratory, Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA 2 Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA 3 Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE 68583, USA Corresponding author — A. Salam, [email protected] Email addresses: [email protected] (M.C.
    [Show full text]
  • Internet of Things: a Scientometric Review
    S S symmetry Article Internet of Things: A Scientometric Review Juan Ruiz-Rosero 1,* ID , Gustavo Ramirez-Gonzalez 1 ID , Jennifer M. Williams 2 ID , Huaping Liu 2, Rahul Khanna 3 ID and Greeshma Pisharody 3 ID 1 Departamento de Telemática, Universidad del Cauca, Popayán, Cauca 190002, Colombia; [email protected] 2 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA; [email protected] (J.M.W.); [email protected] (H.L.) 3 Intel Corporation, 2111 NE 25th Ave., Hillsboro, OR 97124, USA; [email protected] (R.K.); [email protected] (G.P.) * Correspondence: [email protected]; Tel.: +57-(2)-820-9900 Received: 31 August 2017; Accepted: 23 November 2017; Published: 6 December 2017 Abstract: Internet of Things (IoT) is connecting billions of devices to the Internet. These IoT devices chain sensing, computation, and communication techniques, which facilitates remote data collection and analysis. wireless sensor networks (WSN) connect sensing devices together on a local network, thereby eliminating wires, which generate a large number of samples, creating a big data challenge. This IoT paradigm has gained traction in recent years, yielding extensive research from an increasing variety of perspectives, including scientific reviews. These reviews cover surveys related to IoT vision, enabling technologies, applications, key features, co-word and cluster analysis, and future directions. Nevertheless, we lack an IoT scientometrics review that uses scientific databases to perform a quantitative analysis. This paper develops a scientometric review about IoT over a data set of 19,035 documents published over a period of 15 years (2002–2016) in two main scientific databases (Clarivate Web of Science and Scopus).
    [Show full text]
  • A Changing Landscape: the Internet of Things (Iot)
    A Changing Landscape: the Internet of Things (IoT) Prof Sanjay Jha Deputy Director, Australian Center for Cyber Security, UNSW Director of Cyber Security and Privacy Laboratory, School of Computer Science and Engineering University Of New South Wales [email protected] http://www.cse.unsw.edu.au/~sanjay SecureCanberra@MilCIS 2014, Australia 13th Nov 2014 Internet of Things • Connected devices • Smoke alarms, light bulbs, power switches, motion sensors, door locks etc. 2 Outline • Introduction to IoT • History of IoT (and M2M) and Wireless Sensor Networks • Security Challenges in IoT • Sample Research Projects at UNSW History (IoT) • Early 90s or prior: SCADA systems, Telemetry applications • Late 90s- Products/services from mobile operators (Siemens) to connect devices via cellular network – Primarily automotive telematics • Mid- 2000s – Many tailored products for logistics, fleet management, car safety, healthcare, and smart metering of electricity consumption • Since 2010 – A large number of consortiums mushrooming up to bid for a large market share – ABI Projects US$198M by 2018 – Berg Insight US$187M by 2014…… History of Wireless Sensor Net • 1999: Kahn, Katz,Pister: Vision for Smart Dust • 2002 Sensys CFP: Wireless Sensor Network research as being composed of ”distributed systems of numerous smart sensors and actuators connecting computational capabilities to the physical world have the potential to revolutionise a wide array of application areas by providing an unprecedented density and fidelity of instrumentation”. Typical Application Roadmap to IoT • Supply Chain Applications – Routing, inventory, loss prevention. • Vertical Market Helpers – Healthcare, Transport, Energy, Agriculture, Security, Home Network. • Ubiquitous Position – Location of people and objects and possible tailored services • Teleoperations/Telepresence - Ability to interact/control with remote objects.
    [Show full text]
  • Understanding Iot Security Through the Data Crystal Ball: Where We Are Now and Where We Are Going to Be
    Understanding IoT Security Through the Data Crystal Ball: Where We Are Now and Where We Are Going to Be Nan Zhang1, Soteris Demetriou2, Xianghang Mi1, Wenrui Diao3, Kan Yuan1, Peiyuan Zong4, Feng Qian1 XiaoFeng Wang1, Kai Chen4, Yuan Tian5, Carl A. Gunter2, Kehuan Zhang3, Patrick Tague5 and Yue-Hsun Lin6 1Indiana University, Bloomington {nz3, xmi, kanyuan, fengqian, xw7}@indiana.edu 2University of Illinois at Urbana-Champaign {sdemetr2, cgunter}@illinois.edu 3The Chinese University of Hong Kong {dw013, khzhang}@ie.cuhk.edu.hk 4Institute of Information Engineering, Chinese Academy of Sciences {zongpeiyuan, chenkai}@iie.ac.cn 5Carnegie Mellon University {yt, tague}@cmu.edu 6Samsung Research America [email protected] Abstract—Inspired by the boom of the consumer IoT market, by the IoT ecosystem is privacy and security. While this many device manufacturers, new start-up companies and tech- domain shares some problems with conventional wireless nology behemoths have jumped into the space. Indeed, in a span sensor networks (WSN), it also has some unique traits. IoT of less than 5 years, we have experienced the manifestation of an array of solutions for the smart home, smart cities and even smart devices are user-centric, are Internet-connected and have more cars. Unfortunately, the exciting utility and rapid marketization complex software/hardware. As such, potential compromises of IoTs, come at the expense of privacy and security. Online and may cause serious harms (e.g., physical property damage [2], industry reports, and academic work have revealed a number of bodily injuries [3], traffic accidents [4]). In addition, remote attacks on IoT systems, resulting in privacy leakage, property loss adversaries become possible due to the connectivity of IoT and even large-scale availability problems on some of the most influential Internet services (e.g.
    [Show full text]
  • Wireless Sensor Networks
    White Paper ® Internet of Things: Wireless Sensor Networks Executive summary Today, smart grid, smart homes, smart water Section 2 starts with the historical background of networks, intelligent transportation, are infrastruc- IoT and WSNs, then provides an example from the ture systems that connect our world more than we power industry which is now undergoing power ever thought possible. The common vision of such grid upgrading. WSN technologies are playing systems is usually associated with one single con- an important role in safety monitoring over power cept, the internet of things (IoT), where through the transmission and transformation equipment and use of sensors, the entire physical infrastructure is the deployment of billions of smart meters. closely coupled with information and communica- Section 3 assesses the technology and charac- tion technologies; where intelligent monitoring and teristics of WSNs and the worldwide application management can be achieved via the usage of net- needs for them, including data aggregation and worked embedded devices. In such a sophisticat- security. ed dynamic system, devices are interconnected to transmit useful measurement information and con- Section 4 addresses the challenges and future trol instructions via distributed sensor networks. trends of WSNs in a wide range of applications in various domains, including ultra large sensing A wireless sensor network (WSN) is a network device access, trust security and privacy, and formed by a large number of sensor nodes where service architectures to name a few. each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, Section 5 provides information on applications. etc. WSNs are regarded as a revolutionary The variety of possible applications of WSNs to the information gathering method to build the real world is practically unlimited.
    [Show full text]
  • Security Vulnerabilities in Lpwans—An Attack Vector Analysis for the Iot Ecosystem
    applied sciences Article Security Vulnerabilities in LPWANs—An Attack Vector Analysis for the IoT Ecosystem Nuno Torres 1 , Pedro Pinto 1,2,3 and Sérgio Ivan Lopes 1,4,* 1 ADiT—Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; [email protected] (N.T.); [email protected] (P.P.) 2 Instituto Universitário da Maia, 4475-690 Maia, Portugal 3 INESC TEC, 4200-465 Porto, Portugal 4 IT—Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal * Correspondence: [email protected] Abstract: Due to its pervasive nature, the Internet of Things (IoT) is demanding for Low Power Wide Area Networks (LPWAN) since wirelessly connected devices need battery-efficient and long-range communications. Due to its low-cost and high availability (regional/city level scale), this type of network has been widely used in several IoT applications, such as Smart Metering, Smart Grids, Smart Buildings, Intelligent Transportation Systems (ITS), SCADA Systems. By using LPWAN technologies, the IoT devices are less dependent on common and existing infrastructure, can operate using small, inexpensive, and long-lasting batteries (up to 10 years), and can be easily deployed within wide areas, typically above 2 km in urban zones. The starting point of this work was an overview of the security vulnerabilities that exist in LPWANs, followed by a literature review with the main goal of substantiating an attack vector analysis specifically designed for the IoT ecosystem. This methodological approach resulted in three main contributions: (i) a systematic review regarding cybersecurity in LPWANs with a focus on vulnerabilities, threats, and typical defense strategies; (ii) a Citation: Torres, N.; Pinto, P.; Lopes, state-of-the-art review on the most prominent results that have been found in the systematic review, S.L.
    [Show full text]
  • Overview and Measurement of Mobility in DASH7 Wael Ayoub, Fabienne Nouvel, Abed Ellatif Samhat, Jean-Christophe Prévotet, Mohamad Mroue
    Overview and Measurement of Mobility in DASH7 Wael Ayoub, Fabienne Nouvel, Abed Ellatif Samhat, Jean-Christophe Prévotet, Mohamad Mroue To cite this version: Wael Ayoub, Fabienne Nouvel, Abed Ellatif Samhat, Jean-Christophe Prévotet, Mohamad Mroue. Overview and Measurement of Mobility in DASH7. 2018 25th International Conference on Telecommu- nications (ICT), Jun 2018, St. Malo, France. pp.532-536, 10.1109/ICT.2018.8464846. hal-01991725 HAL Id: hal-01991725 https://hal.archives-ouvertes.fr/hal-01991725 Submitted on 4 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Overview and Measurement of Mobility in DASH7 Wael Ayoub∗y, Fabienne Nouvel∗, Abed Ellatif Samhaty, Jean-christophe Prevotet´ ∗,and Mohamad Mrouey ∗Institut National des Sciences Appliquees´ de Rennes — IETR-INSA, Rennes, France. y Faculty of Engineering - CRSI, Lebanese University, Hadath Campus, Hadath, Lebanon Email∗: fi[email protected] Emaily: [email protected], [email protected] Abstract—Recently, the evolution of low-power wide area net- TABLE I works (LPWANs) provides Internet of Things (IoT) with an D7A PROTOCOL SPECIFICATIONS approach between the short range multi-hop technology and the long-range single-hop cellular network technology.
    [Show full text]
  • Universidad Nacional De Chimborazo Facultad De
    UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA CARRERA DE ELECTRÓNICA Y TELECOMUNICACIONES Proyecto de Investigación previo a la obtención del título de Ingeniero en Electrónica y Telecomunicaciones TRABAJO DE TITULACIÓN “DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA AUTOMÁTICO DE CONTROL Y MONITORIZACIÓN DEL MICROCLIMA DE UN INVERNADERO PARA EL CANTÓN PENIPE-CHIMBORAZO.” Autor: Richard Javier Chasiluisa Macias Tutor: Dr. Marlon Basantes Valverde. PhD Riobamba – Ecuador Año 2020 Los miembros del tribunal de graduación del proyecto de investigación de título: “DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA AUTOMÁTICO DE CONTROL Y MONITORIZACIÓN DEL MICROCLIMA DE UN INVERNADERO PARA EL CANTÓN PENIPE-CHIMBORAZO.”, presentado por: Richard Javier Chasiluisa Macias, dirigido por: Dr. Marlon Basantes Valverde. PhD. Una vez escuchada la defensa oral y revisado el informe final del proyecto de investigación con fines de graduación escrito en la cual se ha constatado el cumplimiento de las observaciones realizadas, remite la presente para uso y custodia en la biblioteca de la Facultad de Ingeniería de la UNACH. Para constancia de lo expuesto firman. PhD. Yesenia Cevallos Presidente del Tribunal Firma Mgs. Giovanny Cuzco Miembro del Tribunal Firma Mgs. Daniel Haro Miembro del Tribunal Firma II DECLARACIÓN EXPRESA DE TUTORÍA En calidad de tutor del tema de investigación “DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA AUTOMÁTICO DE CONTROL Y MONITORIZACIÓN DEL MICROCLIMA DE UN INVERNADERO PARA EL CANTÓN PENIPE- CHIMBORAZO.” realizado por el Sr. Richard Javier Chasiluisa Macias, para optar por el título de Ingeniero en Electrónica y Telecomunicaciones, considero que reúne los requisitos y méritos suficientes para ser sustentada públicamente y evaluada por el jurado examinador que se designe.
    [Show full text]
  • Networking Layer Protocols for Internet of Things: 6Lowpan And
    NetworkingNetworking LayerLayer ProtocolsProtocols forfor InternetInternet ofof Things:Things: . 6LoWPAN6LoWPAN andand RPLRPL Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 13-1 OverviewOverview 6LowPAN Adaptation Layer Address Formation Compression RPL RPL Concepts RPL Control Messages RPL Data Forwarding Note: This is part 3 of a series of class lectures on IoT. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 13-2 IoTIoT EcosystemEcosystem Applications Smart Health, Smart Home, Smart Grid Security Management Smart Transport, Smart Workspaces, … TCG, Session MQTT, CoRE, DDS, AMQP , … IEEE 1905, Oath 2.0, IEEE 1451, Routing 6LowPAN, RPL, 6Lo, 6tsch, Thread, SMACK, … 6-to-nonIP , … SASL, ISASecure, Datalink WiFi, Bluetooth Smart, Zigbee Smart, ace, Z-Wave, DECT/ULE, 3G/LTE, NFC, CoAP, Weightless, HomePlug GP, 802.11ah, DTLS, 802.15.4, G.9959, WirelessHART, Dice DASH7, ANT+ , LoRaWAN, … Software Mbed, Homekit, AllSeen, IoTvity, ThingWorks, EVRYTHNG , … Operating Systems Linux, Android, Contiki-OS, TinyOS, … Hardware ARM, Arduino, Raspberry Pi, ARC-EM4, Mote, Smart Dust, Tmote Sky, … Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 13-3 IEEEIEEE 802.15.4802.15.4 Wireless Personal Area Network (WPAN) Allows mesh networking. Full function nodes can forward packets to other nodes. A PAN coordinator (like WiFi Access Point) allows nodes to join the network.
    [Show full text]
  • LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations
    future internet Review LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations Bharat S. Chaudhari *,1, Marco Zennaro 2 and Suresh Borkar 3 1 School of Electronics and Communication Engineering, MIT World Peace University, Pune 411038, India 2 Telecommunications/ICT4D Laboratory, The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 11-I-34151 Trieste, Italy; [email protected] 3 Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2020; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Low power wide area network (LPWAN) is a promising solution for long range and low power Internet of Things (IoT) and machine to machine (M2M) communication applications. This paper focuses on defining a systematic and powerful approach of identifying the key characteristics of such applications, translating them into explicit requirements, and then deriving the associated design considerations. LPWANs are resource-constrained networks and are primarily characterized by long battery life operation, extended coverage, high capacity, and low device and deployment costs. These characteristics translate into a key set of requirements including M2M traffic management, massive capacity, energy efficiency, low power operations, extended coverage, security, and interworking. The set of corresponding design considerations is identified in terms of two categories, desired or expected ones and enhanced ones, which reflect the wide range of characteristics associated with LPWAN-based applications. Prominent design constructs include admission and user traffic management, interference management, energy saving modes of operation, lightweight media access control (MAC) protocols, accurate location identification, security coverage techniques, and flexible software re-configurability.
    [Show full text]
  • HIP Brief History of the Internet of Things and the Elusive Quest to Measure Performance
    HIP Brief History of the Internet of Things and the Elusive Quest to Measure Performance Shoumen Palit Austin Datta MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA MDPnP Lab, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA Center for Robots & Sensors in Human Well Being, School of Engineering Technology, Purdue University, W. Lafayette, IN ABSTRACT Performance is a purveyor for the progress of civilization. Progress is synonymous with improvement, efficiency and a general sense of being or building better than before. Quantification of states before and after are indicators of the value of performance, which, if positive, may constitute tangible (physical, procedural) or intangible (moral sentiments, security) contribution toward progress. Social and scientific tools to measure performance are a part of our historical progress. In the past few centuries frameworks and tools have been developed. In the 20th century electrification, automobiles, computation and connectivity accelerated our pace of progress. In the 21st century even more tools and technologies are attempting to measure many different aspects of performance. This brief essay is an attempt to selectively discuss a few of these concepts and how they relate to performance measurements. Here we consider the underlying concept of connectivity and how it has germinated the ideas we refer to as the internet of things (IoT), context awareness and the interaction between percepts, environment, actuators and sensors (PEAS). The complexity of these related domains and their convergence shapes performance. Measurement of isolated parts may offer an incomplete glimpse of performance but that is all which is possible, at present.
    [Show full text]