Lepidoptera: Noctuoidea) En Plantas De Soja Y Su Relación Con La Fenología Del Cultivo

Total Page:16

File Type:pdf, Size:1020Kb

Lepidoptera: Noctuoidea) En Plantas De Soja Y Su Relación Con La Fenología Del Cultivo DistribuciónRev. FCA UNCUYO. de huevos 2017. 49(2): de lepidópteros 319-330. ISSN defoliadores impreso 0370-4661. en soja ISSN (en línea) 1853-8665. Distribución de los huevos de lepidópteros defoliadores (Lepidoptera: Noctuoidea) en plantas de soja y su relación con la fenología del cultivo Distribution of the eggs of defoliating Lepidoptera (Noctuoidea) in soybean plants and its relation to crop phenology Liliana Valverde 1, Eduardo Virla 1, 2, Guido Van Nieuwenhove 1, 3 Originales: Recepción: 30/11/2015 - Aceptación: 16/11/2016 Resumen La soja es un cultivo estratégico en la economía de varios países sudamericanos. Las larvas de lepidópteros afectan el rendimiento del cultivo siendo Anticarsia gemmatalis (Hübner) (Erebidae: Eulepidotinae), Rachiplusia nu (Guenée) y Chrysodeixis includens (Walker) (Noctuidae: Plusiinae) las principales plagas en el área subtropical de Sudamérica. El objetivo del estudio fue determinar, a partir de muestras de campo, la ubicación de huevos de lepidópteros noctuoideos en los diferentes órganos de la planta de soja, así como su abundancia y distribución considerando el estado fenológico. Se realizaron muestreos semanales, durante tres campañas, en una parcela de 80 ha de lassoja tres manejadas especies con defoliadoras prácticas agrícolasson depositados convencionales. en los folíolos La identificación y ubicados de mayormente los huevos ende lepidópterosel nivel superior se realizó y medio siguiendo de las plantas.claves específicas. A lo largo Más del deldesarrollo 90% de del los cultivo,huevos lasde mayores densidades de huevos se registraron en etapas tempranas (estado vegetativo - bución de los huevos de estas especies plaga en la planta aporta información necesaria paray floración) establecer siendo estrategias menos abundantespreventivas durantepara su control.la fructificación. El estudio de la distri Palabras clave Glycine max • plagas • oviposición • distribución • densidades Tucumán, Argentina. [email protected] 1 Inst. Entomología, Fundación M. Lillo. Miguel Lillo 251, 4000, San Miguel de de Tucumán, Argentina. [email protected]. 2 PROIMI-Biotecnología, CONICET. Av. Belgrano & Pje. Caseros, 4000, San Miguel 3 Facultad de Ciencias Naturales e Instituto Miguel Lillo. Miguel Lillo 205. San Miguel de Tucumán, Argentina. Tomo 49 • N° 2 • 2017 319 L. Valverde, E. Virla, G. Van Nieuwenhove Abstract Soybean is a strategic crop for the economy of several South American countries. Phytophagous Lepidoptera are an important taxon affecting crop yield, being Anticarsia gemmatalis (Hübner) (Erebidae: Eulepidotinae), Rachiplusia nu (Guenée) and Chrysodeixis includens (Walker) (Noctuidae: Plusiinae) their main pests in Subtropical region of south America. The objectives of this study were to determine the location its abundance and distribution in the plants considering the growth stage of the crop. Samplesin field of were eggs taken of Lepidoptera weekly during Noctuids three in crop different seasons, organs on a ofplot the of soybean 80 ha of plant soybean and speciesmanaged are with deposited conventional in the folioles,farming andpractices. especially The inidentification those located of onlepidopteran the middle eggs and upperwas performed level of the following plants. Throughout specific keys. the More development than 90% of of the eggs crop, of the highestthree defoliating densities at fruiting. The study of the egg distribution of these pest species at the plant provides necessaryof eggs were information recorded toin establish early stages preventive (vegetative strategies and flowering) for their control. being less abundant Keywords Glycine max • pests • oviposition • distribution • densities Introducción Para el Norte argentino se mencionan Existen numerosos aportes sobre al menos 11 especies de lepidópteros selección o preferencia de poblaciones de que afectan a la soja, pero solo Anticarsia gemmatalis (Hübner) (Erebidae: Eulepi- plantas hospedadoras (8, 40), y sobre dotinae), Rachiplusia nu (Guenée), y Chryso- una misma especie fitófaga por diferentes deixis includens (Walker) (Noctuidae: abundancia en el ensamble de especies Plusiinae) son consideradas plagas princi- presentescómo influye en laun riquezacierto ecosistemade plantas (41).y su pales del cultivo (20, 22, 23, 37). A pesar de ello, son pocos los estudios En las áreas productoras tropicales que han profundizado en los fenómenos y subtropicales de América del Sur estas especies son consideradas el principal especie de planta hospedadora por varios problema del cultivo de soja (13, 15, 25); lepidópterosque influyen enal lamismo elección tiempo, de una y únicamás sus larvas se alimentan de un amplio - rango taxonómico de hospedadores culti- vados y silvestres (3, 5), y muchas de esas plantaescasos como aún sustratoaquellos de sobreoviposición la compe (21). plantas son utilizadas como sustrato de tenciaEl comportamientointer-específica depor oviposición una misma ha oviposición por las hembras. sido motivo de muchos debates en ecología Se han propuesto varias hipótesis y evolución de la interacción entre insectos para explicar la selección de las plantas y plantas. Algunos autores (6, 32) sugieren hospedadoras por los insectos, una de estas que la preferencia de oviposición y las es la de "concentración de recursos" (14). posibilidades de desarrollo larval puede 320 Revista de la Facultad de Ciencias Agrarias Distribución de huevos de lepidópteros defoliadores en soja variar de acuerdo con la elección de la distribución y ubicación de huevos de hembra optando por plantas en las cuales lepidópteros y su relación con el desarrollo sus larvas tengan mayor posibilidad de del cultivo que atacan (27); además, la sobrevivir los primeros días de vida. mayoría de los estudios de campo sobre Indudablemente la supervivencia estas plagas se realizan con base a datos de las larvas va a depender del sustrato obtenidos a través de la colecta de larvas donde la hembra pone sus huevos; y adultos, siendo muy limitada la infor- estudios del comportamiento de mación que existe acerca de los huevos oviposición consideran que la compe- tencia entre hembras de una misma o elcomo conocimiento parámetro demográficode la distribución (26). de la ubicación de los huevos (35). Pero, el huevosEn concordanciade noctuoideos con en esto las plantasúltimo, patrónde distintas de distribución especies tiene de huevosinfluencia en lasen de soja permitiría desarrollar técnicas de muestreo que permitan realizar por un sitio de oviposición en particular, aplicaciones preventivas de insecticidas plantas no siempre refleja la preferencia dirigidas tanto al huevo como a las larvas factores, como por ejemplo: la densidad de los primeros estadios que, al emerger, poblacionalpudiendo estar de influenciadola plaga y/o porde especiesdiversos producen daños en tejidos cercanos al con los mismos hábitos alimenticios (27). sitio de oviposición (11). y/o químicas de las plantas hospedadoras Objetivos puedenTambién, determinar ciertas características la elección de físicassitios de oviposición, o hasta la inhibición de las hembras para oviponer [pubescencia de información tomada de campo sobre diferentesEn virtud aspectos de la significativade la oviposición carencia de la calidad de la planta hospedera (nivel de las especies de lepidópteros noctuoideos nitrógeno,de la planta carbono, que actúa componentes como barrera defen y/o- defoliadores más representativas del sivos, etc.)] (9); por ejemplo, en Tricho- cultivo de soja, los objetivos de este plusia ni (Hübner) (Noctuidae) la densidad trabajo son: y longitud de los tricomas de hojas de soja a) conocer la distribución de sus constituyen parámetros de resistencia en huevos en los diferentes órganos de la la oviposición (18). planta. Entre los estudios que mencionan b) determinar, para las diferentes posibles causas que determinan la distri- especies, la ubicación de sus huevos bución y ubicación de los huevos de considerando la arquitectura de la planta y lepidópteros plaga se pueden mencionar los realizados sobre Trichoplusia ni del cultivo a lo largo de tres campañas. (Hübner) (Noctuidae) (18), A. gemmatalis la posible influencia del estado fenológico (4, 13, 38), Helicoverpa zea Hipótesis citada como Heliothis zea), Crocidosema (=Epinotia) aporema (Walsingham)(Boddie) (33, Las especies de noctuoideos defolia- (27), Helicoverpa armigera (Hübner) y dores depositan más huevos en la lámina H. punctigera (Wallengren) (11). de los folíolos que en otros órganos aéreos En el neotrópico, y especialmente en de la planta de soja. Argentina, es escasa la información sobre Tomo 49 • N° 2 • 2017 321 L. Valverde, E. Virla, G. Van Nieuwenhove Las principales especies de noctuoideos diferentes, abarcando los distintos estados que utilizan al cultivo de soja como fenológicos del cultivo. Las plantas fueron sustrato de oviposición tienen densidades acondicionadas individualmente y trans- ecológicas similares entre ellas. portadas al laboratorio en bolsas plásticas, Las hembras de lepidópteros defolia- y a continuación revisadas bajo estéreo dores de la soja depositan un mayor de las plantas. losmicroscopio huevos (la (Nikon metodología SMZ 745) para a 30x identi a fin- númeroEl estado de huevos fenológico en el estrato del superiorcultivo de determinar el número y ubicación de describe más adelante). noctuoideos que oviponen en la soja. ficarPara a niveldeterminar específico la elecciónlos huevos de losse influyeEl cultivo en la de densidad soja es utilizado ecológica de manerade los sitios de oviposición se discriminó
Recommended publications
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Coleoptera: Coccinellidae) in the Palearctic Region
    Oriental Insects ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/toin20 Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region Amir Biranvand, Oldřich Nedvěd, Romain Nattier, Elizaveta Nepaeva & Danny Haelewaters To cite this article: Amir Biranvand, Oldřich Nedvěd, Romain Nattier, Elizaveta Nepaeva & Danny Haelewaters (2021) Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region, Oriental Insects, 55:2, 293-304, DOI: 10.1080/00305316.2020.1763871 To link to this article: https://doi.org/10.1080/00305316.2020.1763871 Published online: 15 May 2020. Submit your article to this journal Article views: 87 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=toin20 ORIENTAL INSECTS 2021, VOL. 55, NO. 2, 293–304 https://doi.org/10.1080/00305316.2020.1763871 Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region Amir Biranvanda, Oldřich Nedvěd b,c, Romain Nattierd, Elizaveta Nepaevae and Danny Haelewaters b aYoung Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran; bFaculty of Science, University of South Bohemia, České Budějovice, Czech Republic; cBiology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic; dInstitut de Systématique, Evolution, Biodiversité, ISYEB, Muséum National d’Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France; eAltai State University, Barnaul, Russian Federation ABSTRACT ARTICLE HISTORY Hippodamia Chevrolat, 1836 currently comprises 19 species. Received 9 December 2019 Four species of Hippodamia are native to the Palearctic region: Accepted 29 April 2020 Hippodamia arctica (Schneider, 1792), H.
    [Show full text]
  • Cross-Crop Resistance of Spodoptera Frugiperda Selected on Bt Maize To
    www.nature.com/scientificreports OPEN Cross‑crop resistance of Spodoptera frugiperda selected on Bt maize to genetically‑modifed soybean expressing Cry1Ac and Cry1F proteins in Brazil Eduardo P. Machado1, Gerson L. dos S. Rodrigues Junior1, Fábio M. Führ1, Stefan L. Zago1, Luiz H. Marques2*, Antonio C. Santos2, Timothy Nowatzki3, Mark L. Dahmer3, Celso Omoto4 & Oderlei Bernardi1* Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field‑evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt‑maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/ Cry2Ab2) events and F­ 1 hybrids of the selected and susceptible strains (heterozygotes) on DAS‑ 444Ø6‑6 × DAS‑81419‑2 soybean with tolerance to 2,4‑d, glyphosate and ammonium glufosinate herbicides (event DAS‑444Ø6‑6) and insect‑resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS‑81419‑2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F‑ soybean. However, homozygous‑resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F‑soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous‑resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and fnite rates of population increase on Cry1Ac/Cry1F‑soybean and non‑Bt soybean. In contrast, heterozygotes had their fertility life table parameters signifcantly reduced on Cry1Ac/Cry1F‑soybean.
    [Show full text]
  • Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: a Physiological, Biochemical and Molecular View
    fpls-12-702841 July 22, 2021 Time: 10:8 # 1 REVIEW published: 21 July 2021 doi: 10.3389/fpls.2021.702841 Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View Cristhian Camilo Chávez-Arias, Gustavo Adolfo Ligarreto-Moreno, Augusto Ramírez-Godoy and Hermann Restrepo-Díaz* Edited by: Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Bogotá, Fabricio Eulalio Leite Carvalho, Colombia Corporacion Colombiana de Investigacion Agropecuaria (Agrosavia) – CI La Suiza, Colombia Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for Reviewed by: human and animal nutrition and also as biofuel. However, as a direct consequence of Shabir Hussain Wani, Sher-e-Kashmir University global climate change, increased abiotic and biotic stress events have been reported of Agricultural Sciences in different regions of the world, which have become a threat to world maize yields. and Technology, India Drought and heat are environmental stresses that influence the growth, development, Martina Spundova, Palacký University, Olomouc, Czechia and yield processes of maize crops. Plants have developed dynamic responses Ana Karla M. Lobo, at the physiological, biochemical, and molecular levels that allow them to escape, São Paulo State University, Brazil avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can *Correspondence: Hermann Restrepo-Díaz generate resistance or tolerance responses in plants that are associated with inducible [email protected] and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate Specialty section: This article was submitted to critical variations in plant-insect interactions.
    [Show full text]
  • Project Update: June 2013 the Monte Iberia Plateau at The
    Project Update: June 2013 The Monte Iberia plateau at the Alejandro de Humboldt National Park (AHNP) was visited in April and June of 2013. A total of 152 butterflies and moths grouped in 22 families were recorded. In total, 31 species of butterflies belonging to five families were observed, all but two new records to area (see list below). Six species and 12 subspecies are Cuban endemics, including five endemics restricted to the Nipe-Sagua- Baracoa. In total, 108 species of moths belonging to 17 families were registered, including 25 endemic species of which five inhabit exclusively the NSB Mountains (see list below). In total, 52 butterflies and endemic moth species were photographed to be included in a guide of butterflies and endemic moths inhabiting Monte Iberia. Vegetation types sampled were the evergreen forests, rainforest, and charrascals (scrub on serpentine soil) at both north and southern slopes of Monte Iberia plateau Sixteen butterfly species were observed in transects. Park authorities were contacted in preparation on a workshop to capacitate park staff. Butterfly and moth species recorded at different vegetation types of Monte Iberia plateau in April and June of 2013. Symbols and abbreviations: ***- Nipe-Sagua-Baracoa endemic, **- Cuban endemic species, *- Cuban endemic subspecies, F- species photographed, vegetation types: DV- disturbed vegetation, EF- evergreen forest, RF- rainforest, CH- charrascal. "BUTTERFLIES" PAPILIONIDAE Papilioninae Heraclides pelaus atkinsi *F/EF/RF Heraclides thoas oviedo *F/CH Parides g. gundlachianus **F/EF/RF/CH HESPERIIDAE Hesperiinae Asbolis capucinus F/RF/CH Choranthus radians F/EF/CH Cymaenes tripunctus EF Perichares p. philetes F/CH Pyrginae Burca cubensis ***F/RF/CH Ephyriades arcas philemon F/EF/RF Ephyriades b.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth
    Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth S Niveyro & A Salvo Neotropical Entomology ISSN 1519-566X Volume 43 Number 6 Neotrop Entomol (2014) 43:532-540 DOI 10.1007/s13744-014-0248-3 1 23 Your article is protected by copyright and all rights are held exclusively by Sociedade Entomológica do Brasil. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Neotrop Entomol (2014) 43:532–540 DOI 10.1007/s13744-014-0248-3 ECOLOGY, BEHAVIOR AND BIONOMICS Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth 1 2 SNIVEYRO ,ASALVO 1Fac de Agronomía, Univ Nacional de La Pampa, Santa Rosa, La Pampa, Argentina 2Centro de Investigaciones Entomológicas de Córdoba, Instituto Multidisciplinario de Biología Vegetal, CONICET, Fac de Ciencias Exactas Físicas y Naturales, Univ Nacional de Córdoba, Córdoba, Argentina Keywords Abstract Amaranthus, herbivory, insect guilds, stem Amaranthus are worldwide attacked mainly by leaf chewers and sucker borer insects. Stem borers and leaf miners follow in importance, while minor Correspondence herbivores are leaf rollers, folders, and rasping-sucking insects.
    [Show full text]
  • ATTRACTIVENESS and INJURY of Phaseolus Vulgaris L. GENOTYPES by Anticarsia Gemmatalis HÜBNER (LEPIDOPTERA: EREBIDAE)
    ATTRACTIVENESS AND INJURY OF Phaseolus vulgaris L. GENOTYPES BY Anticarsia gemmatalis HÜBNER (LEPIDOPTERA: EREBIDAE) J. G. E. A. R. Aiala1, L. Nogueira1*, G. A. P. Bernardes1, C. C. Melville2, N. T. Oliveira3, T. L. P. O. Souza4 1 Univ. Estadual de Goiás, UEG, Laboratório de Entomologia Agrícola, Rod. GO 330, Km 241, s/n°, Ipameri, GO, 75780-000, Brazil; 2Univ. Est. Paulista, UNESP/FCAV, Via de Acesso Prof. Paulo Donato Castellane s/nº, Jaboticabal, SP, 14884-900, Brazil; 3Univ. Federal de Lavras, Lavras, MG, 37200-000, Brazil; 4Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, 75375- 000, Brazil; *corresponding author: [email protected] INTRODUCTION The Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae) is the most defoliator pest, causing economic damage to many species of crop plants, including preferentially, soybeans – [Glycine max (L.) Merrill] and common bean - Phaseoulus vulgaris L. (Herzog; Todd, 1980; Panizzi et al., 2004). These crops are extensively cultivated in Brazil, thus forming very simplified and vulnerable agroecosystems, resulting in problems such as the excessive and indiscriminate use of pesticides, with adverse ecological consequences to the environment. In an attempt to diminish pesticide use in cropping systems, alternative control methods have been investigated, and host plant resistance is one of them (Boiça Júnior et al., 2014). Searching genotypes that express tolerance and/or resistance to insect pest represents an important step for plant breeding. Thus, the aim of this study we evaluated the attractiveness and the leaf injury caused by A. gemmatalis larvae in bean genotypes. MATERIAL AND METHODS Assays were conducted in the agricultural entomology Laboratory, UEG, Ipameri, GO, Brazil, under environmentally controlled conditions.
    [Show full text]
  • Bacillus Thuringiensis Cry1ac Protein and the Genetic Material
    BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean [PC Code 006532] U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division September 2010 Bacillus thuringiensis Cry1Ac in MON 87701 Soybean Biopesticide Registration Action Document TABLE of CONTENTS I. OVERVIEW ............................................................................................................................................................ 3 A. EXECUTIVE SUMMARY .................................................................................................................................... 3 B. USE PROFILE ........................................................................................................................................................ 4 C. REGULATORY HISTORY .................................................................................................................................. 5 II. SCIENCE ASSESSMENT ......................................................................................................................................... 6 A. PRODUCT CHARACTERIZATION B. HUMAN HEALTH ASSESSMENT D. ENVIRONMENTAL ASSESSMENT ................................................................................................................. 15 E. INSECT RESISTANCE MANAGEMENT (IRM) ............................................................................................
    [Show full text]
  • List of Other Pests of Interest
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 8 - Other interesting findings: -pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU -pests of interest for other crops identified during the study 1 Pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU Information was extracted from the datasheets prepared for the Alert list. Please refer to the datasheets for more information (e.g. on Distribution, full host range, etc). Pest (taxonomic group) Hosts/damage Alert List Aegorhinus superciliosus A. superciliosus is mentioned as the most important pest of Apple (Coleoptera: raspberry and blueberry in the South of Chile. It is also a pest on Vaccinium Curculionidae) currant, hazelnut, fruit crops, berries, gooseberries. Amyelois transitella A. transitella is a serious pest of some nut crops (e.g. almonds, Grapevine (Lepidoptera: Pyralidae) pistachios, walnut) Orange- mandarine Archips argyrospilus In the past, heavy damage in the USA and Canada, with serious Apple (Lepidoptera: Tortricidae) outbreaks mostly on Rosaceae (especially apple and pear with Orange- 40% fruit losses in some cases) mandarine Argyrotaenia sphaleropa This species also damage Diospyrus kaki and pear in Brazil Grapevine (Lepidoptera: Tortricidae) Orange- mandarine Vaccinium Carpophilus davidsoni Polyphagous. Belongs to most serious pests of stone fruit in South Grapevine (Coleoptera: Nitidulidae) Australia (peaches, nectarines and apricots).
    [Show full text]
  • Bacillus Thuringiensis Cry1ac Protein and The
    BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean [PC Code 006532] U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division September 2010 Bacillus thuringiensis Cry1Ac in MON 87701 Soybean Biopesticide Registration Action Document TABLE of CONTENTS I. OVERVIEW ............................................................................................................................................................ 3 A. EXECUTIVE SUMMARY .................................................................................................................................... 3 B. USE PROFILE ........................................................................................................................................................ 4 C. REGULATORY HISTORY .................................................................................................................................. 5 II. SCIENCE ASSESSMENT ......................................................................................................................................... 6 A. PRODUCT CHARACTERIZATION B. HUMAN HEALTH ASSESSMENT D. ENVIRONMENTAL ASSESSMENT ................................................................................................................. 15 E. INSECT RESISTANCE MANAGEMENT (IRM) ............................................................................................
    [Show full text]
  • Anticarsia Gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of Formulations, Water Ph, Volume and Time of Application, and Type of Spray Nozzle
    January - March 2002 75 BIOLOGICAL CONTROL Field Efficacy of the Nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of Formulations, Water pH, Volume and Time of Application, and Type of Spray Nozzle MAURO TADEU BRAGA SILVA1 & FLÁVIO MOSCARDI2 1Fundacep Fecotrigo, C. postal 10, 98100-970, Cruz Alta, RS 2Embrapa Soja, C. postal 231, 86001-970, Londrina, PR Neotropical Entomology 31(1): 075-083 (2002) Eficiência do Nucleopoliedrovirus de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) em Campo: Efeito de Formulações do Vírus, pH da Água, Volume e Horário de Aplicação, e Tipo de Bico de Pulverização RESUMO – Avaliou-se o controle de Anticarsia gemmatalis Hübner através do seu nucleopoliedrovirus (AgMNPV), em função de diferentes parâmetros envolvidos com o uso desse inseticida biológico, visando elucidar alguns casos de baixa eficiência em determinadas regiões do País, principalmente no Rio Grande do Sul (RS). O trabalho foi conduzido em quatro safras, de 1994/95 a 97/98, em Cruz Alta – RS, avaliando-se os seguintes fatores sobre a eficiência do AgMNPV: formulações comerciais disponíveis; pH da calda; volume de calda; horário de aplicação; ponta de pulverização; e da mistura do vírus com óleo mineral. As parcelas consistiram de 28 fileiras de soja com 10 m de comprimento e espaçamento de 40 cm, adotando-se delineamento de blocos completamente casualizados, com quatro repetições. As amostragens foram realizadas pelo método do pano, determinando-se o número de lagartas infectadas pelo vírus (LI). As formulações comerciais produzidas pela Nitral, Nova Era, Coodetec e Embrapa controlaram adequadamente a praga, em comparação à testemunha; no entanto, foram significativamente inferiores à preparação do vírus obtida por maceração e filtragem de lagartas, demonstrando que essas formulações necessitam aperfeiçoamento.
    [Show full text]