Bacillus Thuringiensis Cry1ac Protein and the Genetic Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Food Poisoning Toxins of Bacillus Cereus
toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease. -
Natural History and Conservation Genetics of the Federally Endangered Mitchell’S Satyr Butterfly, Neonympha Mitchellii Mitchellii
NATURAL HISTORY AND CONSERVATION GENETICS OF THE FEDERALLY ENDANGERED MITCHELL’S SATYR BUTTERFLY, NEONYMPHA MITCHELLII MITCHELLII By Christopher Alan Hamm A DISSRETATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Entomology Ecology, Evolutionary Biology and Behavior – Dual Major 2012 ABSTRACT NATURAL HISTORY AND CONSERVATION GENETICS OF THE FEDERALLY ENDANGERED MITCHELL’S SATYR BUTTERFLY, NEONYMPHA MITCHELLII MITCHELLII By Christopher Alan Hamm The Mitchell’s satyr butterfly, Neonympha mitchellii mitchellii, is a federally endangered species with protected populations found in Michigan, Indiana, and wherever else populations may be discovered. The conservation status of the Mitchell’s satyr began to be called into question when populations of a phenotypically similar butterfly were discovered in the eastern United States. It is unclear if these recently discovered populations are N. m. mitchellii and thus warrant protection. In order to clarify the conservation status of the Mitchell’s satyr I first acquired sample sizes large enough for population genetic analysis I developed a method of non- lethal sampling that has no detectable effect on the survival of the butterfly. I then traveled to all regions in which N. mitchellii is known to be extant and collected genetic samples. Using a variety of population genetic techniques I demonstrated that the federally protected populations in Michigan and Indiana are genetically distinct from the recently discovered populations in the southern US. I also detected the presence of the reproductive endosymbiotic bacterium Wolbachia, and surveyed addition Lepidoptera of conservation concern. This survey revealed that Wolbachia is a real concern for conservation managers and should be addressed in management plans. -
Fragmentation and Seed Dispersal in Freshwater Wetlands
Fragmentation and seed dispersal in freshwater wetlands Fragmentatie en zaadverspreiding in zoetwaterwetlands ISBN: 978-94-6108-290-9 Cover: Hester Soomers Grafische vormgeving: Gildeprint Enschede Figuren: Geomedia, Faculteit Geowetenschappen, Universiteit Utrecht Foto’s: Hester Soomers Printed by: Gildeprint, Enschede Printed on FSC certified paper © 2012 Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enig wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen, of op enig andere manier, zonder voorafgaande schriftelijke toestemming van de rechthebbende. Fragmentation and seed dispersal in freshwater wetlands Fragmentatie en zaadverspreiding in zoetwaterwetlands (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 30 mei 2012 des middags te 4.15 uur door Hester Soomers geboren op 5 augustus 1977 te Heerlen Promotoren: Prof.dr. M.J. Wassen Prof.dr. J.T.A. Verhoeven Co-promotor: Dr. P.A. Verweij CONTENTS Chapter 1 Introduction 7 Chapter 2 The effect of habitat fragmentation and abiotic factors on fen plant occurrence 29 Chapter 3 Factors influencing the seed source and sink functions of a floodplain nature reserve in the Netherlands 51 Chapter 4 The dispersal and deposition of hydrochorous -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
Control of Anticarsia Gemmatalis Hubner with Recommended And
CONTROL OF Anticarsia gemmatalis hubner with recommended AND EXPERIMENTAL CHEMICAL AND MICROBIAL PESTICIDES AND THEIR EFFECTS ON THE PREDATORY SPECIES IN SOYBEAN AGROECOSYSTEMS YUSOH BIN SALLEH A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1980 ACKNOWLEDGMENTS I am very grateful to my chairman, Dr. G. E. Allen, and co-chairman. Dr. D. C. Herzog, and committee members, Drs. D. H. Habeck and E. B. Whitty for their assistance and guidance throughout my program. Other faculty members whose council has been invaluable are Drs, R. L. Lipsey, S. H. Kerr, and W. H. Whitcomb. My most sincere thanks are extended to Dr. D. C. Herzog for his invaluable guidance in my field work. Thanks are also due to Mr. Andrew Brown for his help in the field; Mr. Skip Choate for his help in identifications of some of my specimens; and Mr. P. J. d'Almada for his help in statistical analysis. Thanks are also due to MARDI for financial support which made this study possible. A very special gratitude is extended to my family in Malaysia for their encouragement and understanding; and to dear friends Ms. Thelma Carlysle and Ms. Frances Ward for their encour- agement and comforts. Last but not least, my love and appreciation goes to my wife Rohani and my daugthers Sharila and Melissa who always flower me with love, patience, and encouragement. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS , j_i LIST OF TABLES V LIST OF FIGURES "^^^ ABSTRACT -
Spore Dispersal Vectors
Glime, J. M. 2017. Adaptive Strategies: Spore Dispersal Vectors. Chapt. 4-9. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-9-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 3 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-9 ADAPTIVE STRATEGIES: SPORE DISPERSAL VECTORS TABLE OF CONTENTS Dispersal Types ............................................................................................................................................ 4-9-2 Wind Dispersal ............................................................................................................................................. 4-9-2 Splachnaceae ......................................................................................................................................... 4-9-4 Liverworts ............................................................................................................................................. 4-9-5 Invasive Species .................................................................................................................................... 4-9-5 Decay Dispersal............................................................................................................................................ 4-9-6 Animal Dispersal .......................................................................................................................................... 4-9-9 Earthworms .......................................................................................................................................... -
Cross-Crop Resistance of Spodoptera Frugiperda Selected on Bt Maize To
www.nature.com/scientificreports OPEN Cross‑crop resistance of Spodoptera frugiperda selected on Bt maize to genetically‑modifed soybean expressing Cry1Ac and Cry1F proteins in Brazil Eduardo P. Machado1, Gerson L. dos S. Rodrigues Junior1, Fábio M. Führ1, Stefan L. Zago1, Luiz H. Marques2*, Antonio C. Santos2, Timothy Nowatzki3, Mark L. Dahmer3, Celso Omoto4 & Oderlei Bernardi1* Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field‑evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt‑maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/ Cry2Ab2) events and F 1 hybrids of the selected and susceptible strains (heterozygotes) on DAS‑ 444Ø6‑6 × DAS‑81419‑2 soybean with tolerance to 2,4‑d, glyphosate and ammonium glufosinate herbicides (event DAS‑444Ø6‑6) and insect‑resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS‑81419‑2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F‑ soybean. However, homozygous‑resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F‑soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous‑resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and fnite rates of population increase on Cry1Ac/Cry1F‑soybean and non‑Bt soybean. In contrast, heterozygotes had their fertility life table parameters signifcantly reduced on Cry1Ac/Cry1F‑soybean. -
197 Section 9 Sunflower (Helianthus
SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow. -
Aedes Aegypti Mos20 Cells Internalizes Cry Toxins by Endocytosis, and Actin Has a Role in the Defense Against Cry11aa Toxin
Toxins 2014, 6, 464-487; doi:10.3390/toxins6020464 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Aedes aegypti Mos20 Cells Internalizes Cry Toxins by Endocytosis, and Actin Has a Role in the Defense against Cry11Aa Toxin Adriana Vega-Cabrera 1, Angeles Cancino-Rodezno 2, Helena Porta 1 and Liliana Pardo-Lopez 1,* 1 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca 62250, Morelos, Mexico; E-Mails: [email protected] (A.V.-C.); [email protected] (H.P.) 2 Facultad de Ciencias, Universidad Nacional Autónoma de México; Av. Universidad 3000, Coyoacán, Distrito Federal 04510, Mexico; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-777-3291-624; Fax: +52-777-3291-624. Received: 14 October 2013; in revised form: 11 January 2014 / Accepted: 16 January 2014 / Published: 28 January 2014 Abstract: Bacillus thuringiensis (Bt) Cry toxins are used to control Aedes aegypti, an important vector of dengue fever and yellow fever. Bt Cry toxin forms pores in the gut cells, provoking larvae death by osmotic shock. Little is known, however, about the endocytic and/or degradative cell processes that may counteract the toxin action at low doses. The purpose of this work is to describe the mechanisms of internalization and detoxification of Cry toxins, at low doses, into Mos20 cells from A. aegypti, following endocytotic and cytoskeletal markers or specific chemical inhibitors. Here, we show that both clathrin-dependent and clathrin-independent endocytosis are involved in the internalization into Mos20 cells of Cry11Aa, a toxin specific for Dipteran, and Cry1Ab, a toxin specific for Lepidoptera. -
Knockdown of the MAPK P38 Pathway Increases the Susceptibility of Chilo
www.nature.com/scientificreports OPEN Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis Received: 07 November 2016 Accepted: 31 January 2017 larvae to Bacillus thuringiensis Published: 06 March 2017 Cry1Ca toxin Lin Qiu1,2, Jinxing Fan2, Lang Liu2, Boyao Zhang2, Xiaoping Wang2, Chaoliang Lei2, Yongjun Lin1 & Weihua Ma1,2 The bacterium Bacillus thuringiensis (Bt) produces a wide range of toxins that are effective against a number of insect pests. Identifying the mechanisms responsible for resistance to Bt toxin will improve both our ability to control important insect pests and our understanding of bacterial toxicology. In this study, we investigated the role of MAPK pathways in resistance against Cry1Ca toxin in Chilo suppressalis, an important lepidopteran pest of rice crops. We first cloned the full-length ofC. suppressalis mitogen-activated protein kinase (MAPK) p38, ERK1, and ERK2, and a partial sequence of JNK (hereafter Csp38, CsERK1, CsERK2 and CsJNK). We could then measure the up-regulation of these MAPK genes in larvae at different times after ingestion of Cry1Ca toxin. Using RNA interference to knockdown Csp38, CsJNK, CsERK1 and CsERK2 showed that only knockdown of Csp38 significantly increased the mortality of larvae to Cry1Ca toxin ingested in either an artificial diet, or after feeding on transgenic rice expressed Cry1Ca. These results suggest that MAPK p38 is responsible for the resistance of C. suppressalis larvae to Bt Cry1Ca toxin. Pore-forming toxins (PFT) play an important role in bacterial pathogenesis and the development of pest resistant strains of crops1–3. Several previous studies have shown that PFTs such as streptolysin O (Streptococcus pyogenes), α -hemolysin (Escherichia coli), α -toxin (Staphylococcus aureus) and Crystal (Cry) toxin (Bacillus thuringien- sis) (Bt) have high toxicity to insect pests4–7. -
Evolução Do Veneno Em Cnidários Baseada Em Dados De Genomas E Proteomas
Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data São Paulo 2015 i Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências, na Área de Zoologia. Orientador: Prof. Dr. Antonio C. Marques São Paulo 2015 ii Jaimes-Becerra, Adrian J. Evolução do veneno em cnidários baseada em dados de genomas e proteomas. 103 + VI páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Veneno; 2. Evolução; 3. Proteoma. 4. Genoma I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques iii Agradecimentos Eu gostaria de agradecer ao meu orientador Antonio C. Marques, pela confiança desde o primeiro dia e pela ajuda tanto pessoal como profissional durantes os dois anos de mestrado. Obrigado por todo. Ao CAPES, pela bolsa de mestrado concedida. Ao FAPESP pelo apoio financeiro durante minha estadia em Londres. Ao Instituto de Biociências da Universidade de São Paulo, pela estrutura oferecida durante a execução desde estudo. Ao Dr. Paul F. Long pelas conversas, por toda sua ajuda, por acreditar no meu trabalho. Aos colegas e amigos de Laboratório de Evolução Marinha (LEM), Jimena Garcia, María Mendoza, Thaís Miranda, Amanda Cunha, Karla Paresque, Marina Fernández, Fernanda Miyamura e Lucília Miranda, pela amizade, dicas e ajuda em tudo e por me fazer sentir em casa, muito obrigado mesmo! Aos meus amigos fora do laboratório, John, Soly, Chucho, Camila, Faride, Cesar, Angela, Camilo, Isa, Nathalia, Susana e Steffania, pelo apoio e por me fazer sentir em casa. -
ATTRACTIVENESS and INJURY of Phaseolus Vulgaris L. GENOTYPES by Anticarsia Gemmatalis HÜBNER (LEPIDOPTERA: EREBIDAE)
ATTRACTIVENESS AND INJURY OF Phaseolus vulgaris L. GENOTYPES BY Anticarsia gemmatalis HÜBNER (LEPIDOPTERA: EREBIDAE) J. G. E. A. R. Aiala1, L. Nogueira1*, G. A. P. Bernardes1, C. C. Melville2, N. T. Oliveira3, T. L. P. O. Souza4 1 Univ. Estadual de Goiás, UEG, Laboratório de Entomologia Agrícola, Rod. GO 330, Km 241, s/n°, Ipameri, GO, 75780-000, Brazil; 2Univ. Est. Paulista, UNESP/FCAV, Via de Acesso Prof. Paulo Donato Castellane s/nº, Jaboticabal, SP, 14884-900, Brazil; 3Univ. Federal de Lavras, Lavras, MG, 37200-000, Brazil; 4Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, 75375- 000, Brazil; *corresponding author: [email protected] INTRODUCTION The Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae) is the most defoliator pest, causing economic damage to many species of crop plants, including preferentially, soybeans – [Glycine max (L.) Merrill] and common bean - Phaseoulus vulgaris L. (Herzog; Todd, 1980; Panizzi et al., 2004). These crops are extensively cultivated in Brazil, thus forming very simplified and vulnerable agroecosystems, resulting in problems such as the excessive and indiscriminate use of pesticides, with adverse ecological consequences to the environment. In an attempt to diminish pesticide use in cropping systems, alternative control methods have been investigated, and host plant resistance is one of them (Boiça Júnior et al., 2014). Searching genotypes that express tolerance and/or resistance to insect pest represents an important step for plant breeding. Thus, the aim of this study we evaluated the attractiveness and the leaf injury caused by A. gemmatalis larvae in bean genotypes. MATERIAL AND METHODS Assays were conducted in the agricultural entomology Laboratory, UEG, Ipameri, GO, Brazil, under environmentally controlled conditions.