Rab17 Mediates Differential Antigen Sorting Following Efferocytosis and Phagocytosis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Characterization of Efferosome Maturation and the Processing of Apoptotic Bodies
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-15-2014 12:00 AM Characterization of Efferosome Maturation and the Processing of Apoptotic Bodies Yohan Kim The University of Western Ontario Supervisor Dr. Bryan Heit The University of Western Ontario Graduate Program in Microbiology and Immunology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Yohan Kim 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Cell Biology Commons, Immunity Commons, and the Other Immunology and Infectious Disease Commons Recommended Citation Kim, Yohan, "Characterization of Efferosome Maturation and the Processing of Apoptotic Bodies" (2014). Electronic Thesis and Dissertation Repository. 2268. https://ir.lib.uwo.ca/etd/2268 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. CHARACTERIZATION OF EFFEROSOME MATURATION AND THE PROCESSING OF APOPTOTIC BODIES (Thesis format: Monologue) by Yohan Kim Graduate Program in Microbiology and Immunology A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Yohan Kim 2014 Abstract Every day billions of cells in our bodies undergo apoptosis and are cleared through efferocytosis – a phagocytosis-like process in which phagocytes engulf and degrade apoptotic cells. Proper processing of efferosomes prevents inflammation and immunogenic presentation of antigens. -
Transcytosis of Ngcam in Epithelial Cells Reflects Differential Signal
Published August 8, 2005 JCB: ARTICLE Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways Eric Anderson, Sandra Maday, Jeff Sfakianos, Michael Hull, Bettina Winckler, David Sheff, Heike Fölsch, and Ira Mellman Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT 06520 gCAM is a cell adhesion molecule that is largely ability to interact with clathrin adaptors. Based on the be- axonal in neurons and apical in epithelia. In Ma- havior of various NgCAM mutants, it appears that after Ndin-Darby canine kidney cells, NgCAM is tar- arrival at the basolateral surface, the AP-1B interaction geted to the apical surface by transcytosis, being first in- site is silenced by phosphorylation of Tyr33. This slows en- serted into the basolateral domain from which it is docytosis and inhibits basolateral recycling from endo- internalized and transported to the apical domain. Initial somes, resulting in NgCAM transcytosis due to a cryptic basolateral transport is mediated by a sequence motif apical targeting signal in its extracellular domain. Thus, Downloaded from (Y33RSL) decoded by the AP-1B clathrin adaptor complex. transcytosis of NgCAM and perhaps other membrane This motif is a substrate in vitro for tyrosine phosphoryla- proteins may reflect the spatial regulation of recognition tion by p60src, a modification that disrupts NgCAM’s by adaptors such as AP-1B. on March 10, 2017 Introduction The generation and maintenance of cellular polarity is an es- ously resorted in endosomes to maintain their polarized distri- sential aspect of multicellular life. -
Elucidating the Signalling Pathway of Mer Tyrosine Kinase Receptor in Efferocytosis
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-19-2014 12:00 AM Elucidating the Signalling Pathway of Mer Tyrosine Kinase Receptor in Efferocytosis Ekenedelichukwu Azu The University of Western Ontario Supervisor Dr. Bryan Heit The University of Western Ontario Graduate Program in Microbiology and Immunology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Ekenedelichukwu Azu 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Cell Biology Commons, Immunity Commons, Molecular Biology Commons, and the Other Immunology and Infectious Disease Commons Recommended Citation Azu, Ekenedelichukwu, "Elucidating the Signalling Pathway of Mer Tyrosine Kinase Receptor in Efferocytosis" (2014). Electronic Thesis and Dissertation Repository. 2260. https://ir.lib.uwo.ca/etd/2260 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. ELUCIDATING THE SIGNALLING PATHWAY OF MER TYROSINE KINASE RECEPTOR IN EFFEROCYTOSIS Thesis format: Monograph by Ekenedelichukwu Azu Graduate Program in Microbiology and Immunology A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Ekenedelichukwu Azu 2014 Abstract Efferocytosis is the clearance of apoptotic cells and is necessary for homeostasis. Mer Tyrosine Kinase (MerTK) is a crucial efferocytic receptor whose loss is associated with chronic inflammatory diseases and autoimmunity. While previous studies have shown that MerTK mediates efferocytosis through a unique mechanism that requires integrins, MerTK signalling pathway remains unknown. -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
Apical-To-Basolateral Transcytosis of Photoreceptor Outer Segments Induced by Lipid Peroxidation Products in Human Retinal Pigment Epithelial Cells
Retinal Cell Biology Apical-to-Basolateral Transcytosis of Photoreceptor Outer Segments Induced by Lipid Peroxidation Products in Human Retinal Pigment Epithelial Cells Tim U. Krohne,1 Frank G. Holz,1 and Ju¨rgen Kopitz2 PURPOSE. Progressive accumulation of extracellular material at posit formation and drusen biogenesis in AMD. (Invest Oph- the basolateral side of the retinal pigment epithelium (RPE) is thalmol Vis Sci. 2010;51:553–560) DOI:10.1167/iovs.09-3755 a key event in the pathogenesis of age-related macular degen- eration (AMD). The authors previously demonstrated that mod- rogressive deposition of extracellular material between the ifications with lipid peroxidation products, such as 4-hy- basolateral side of the retinal pigment epithelium (RPE) droxynonenal (HNE) and malondialdehyde (MDA), stabilize P and adjacent Bruch’s membrane is a hallmark of early-stage photoreceptor outer segment (POS) proteins against lysosomal age-related macular degeneration (AMD).1,2 Among the various degradation. Herein, they tested RPE cells for the basolateral histologically and clinically distinguishable manifestations of release of undegraded modified POS proteins. sub-RPE deposits, basal linear deposits (BLinD) and soft drusen METHODS. Polarized cultures of the human RPE cell line are recognized as specific for AMD.3,4 Both BLinD and soft ARPE-19 on permeable membranes were incubated with io- drusen represent accumulations of material described as mem- dine-125–labeled POS on the apical side. After 24 hours, radio- branous debris5 between the RPE basement membrane and the activity was quantified in apical medium, cell lysates, and inner collagenous layer of Bruch’s membrane and are, there- basolateral medium after separation of undegraded proteins by fore, considered diffuse and focal manifestations, respectively, precipitation. -
A Chemical Proteomic Approach to Investigate Rab Prenylation in Living Systems
A chemical proteomic approach to investigate Rab prenylation in living systems By Alexandra Fay Helen Berry A thesis submitted to Imperial College London in candidature for the degree of Doctor of Philosophy of Imperial College. Department of Chemistry Imperial College London Exhibition Road London SW7 2AZ August 2012 Declaration of Originality I, Alexandra Fay Helen Berry, hereby declare that this thesis, and all the work presented in it, is my own and that it has been generated by me as the result of my own original research, unless otherwise stated. 2 Abstract Protein prenylation is an important post-translational modification that occurs in all eukaryotes; defects in the prenylation machinery can lead to toxicity or pathogenesis. Prenylation is the modification of a protein with a farnesyl or geranylgeranyl isoprenoid, and it facilitates protein- membrane and protein-protein interactions. Proteins of the Ras superfamily of small GTPases are almost all prenylated and of these the Rab family of proteins forms the largest group. Rab proteins are geranylgeranylated with up to two geranylgeranyl groups by the enzyme Rab geranylgeranyltransferase (RGGT). Prenylation of Rabs allows them to locate to the correct intracellular membranes and carry out their roles in vesicle trafficking. Traditional methods for probing prenylation involve the use of tritiated geranylgeranyl pyrophosphate which is hazardous, has lengthy detection times, and is insufficiently sensitive. The work described in this thesis developed systems for labelling Rabs and other geranylgeranylated proteins using a technique known as tagging-by-substrate, enabling rapid analysis of defective Rab prenylation in cells and tissues. An azide analogue of the geranylgeranyl pyrophosphate substrate of RGGT (AzGGpp) was applied for in vitro prenylation of Rabs by recombinant enzyme. -
Thyroid Hormone Synthesis Continues Despite Biallelic Thyroglobulin Mutation with Cell Death
Thyroid hormone synthesis continues despite biallelic thyroglobulin mutation with cell death Xiaohan Zhang, … , Viviana A. Balbi, Peter Arvan JCI Insight. 2021. https://doi.org/10.1172/jci.insight.148496. Research In-Press Preview Endocrinology Graphical abstract Find the latest version: https://jci.me/148496/pdf Thyroid hormone synthesis continues despite biallelic thyroglobulin mutation with cell death Authors: Xiaohan Zhang1, Aaron P. Kellogg1, Cintia E. Citterio1,2,3, Hao Zhang1, Dennis Larkin1, Yoshiaki Morishita1,4, Héctor M. Targovnik2,3, Viviana Balbi5, and Peter Arvan1* Affiliations: 1Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105 2Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética. Buenos Aires, Argentina. 3CONICET, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina 4Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan 5Department of Endocrinology and Growth, Hospital de Niños Sor María Ludovica, La Plata, Argentina Conflict of interest: The authors declare that no conflict of interest exists. Short Title: Thyroxine synthesis from dead cells 1 Complete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from bi-allelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress. Nevertheless, untreated patients somehow continue to synthesize sufficient thyroxine to yield measurable serum levels that sustain life. -
The Role of Stress-Derived Vesicles in the Bystander Effect and Cancer Related Cachexia
THE ROLE OF STRESS-DERIVED VESICLES IN THE BYSTANDER EFFECT AND CANCER RELATED CACHEXIA Thesis is submitted in partial fulfilment of the requirements of the award of Doctor of Philosophy FINDLAY REDVERS BEWICKE-COPLEY Department of Biological and Medical Sciences Degree awarded by Oxford Brookes University First submitted for examination: January 2018 ACKNOWLEDGEMENTS Thank you to Oxford Brookes for providing funding for my research, and especially to Professor Nigel Groome whose research and generosity has allowed so many to complete their PhDs. I would also like to say thank you to the Cancer and Polio trust for providing some of the funding for my PhD I would like to thank my Supervisors Dave and Ryan for their support throughout my PhD and for only occasionally saddling me with unrelated projects. Without your guidance and support I would have curled up into a ball in the corner of the office and gently sobbed to myself for the last 5 years. Thanks to Priya for her tireless work ensuring the lab functions correctly and supporting all other members of the lab. I’d also like to thank past members of the lab, Laura Jacobs and Laura Mulcahy for their support throughout both my MSc and my PhD. Sunny Vijen for chatting with me whilst he smoked and making me leave lunch early, so he could have another smoke before going back to work. Thank you to Robbie Crickley for all the lunch time chats. To Lia I would like to say χασμουριέμαι! Thanks to Bianca for all her help getting to know the world of immunocytochemistry. -
And Pancreatic Cancer: from the Role of Evs to the Interference with EV-Mediated Reciprocal Communication
biomedicines Review Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication 1, 1, 1 1 1 Sokviseth Moeng y, Seung Wan Son y, Jong Sun Lee , Han Yeoung Lee , Tae Hee Kim , Soo Young Choi 1, Hyo Jeong Kuh 2 and Jong Kook Park 1,* 1 Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; [email protected] (S.M.); [email protected] (S.W.S.); [email protected] (J.S.L.); [email protected] (H.Y.L.); [email protected] (T.H.K.); [email protected] (S.Y.C.) 2 Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-33-248-2114 These authors contributed equally. y Received: 29 June 2020; Accepted: 1 August 2020; Published: 3 August 2020 Abstract: Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance. -
Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators On
antioxidants Review Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation 1, 1,2, 2, Gyeoung Jin Kang y, Eun Ji Kim y and Chang Hoon Lee * 1 Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] (G.J.K.); [email protected] (E.J.K.) 2 College of Pharmacy, Dongguk University, Seoul 04620, Korea * Correspondence: [email protected]; Tel.: +82-31-961-5213 Equally contributed. y Received: 11 November 2020; Accepted: 9 December 2020; Published: 10 December 2020 Abstract: Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation. Keywords: cardiac fibrosis; NRF2; lipoxins; resolvins; maresins; neuroprotectins 1. Introduction Cardiovascular disease is the leading cause of death worldwide [1]. Cardiac fibrosis is a major factor leading to the progression of myocardial infarction and heart failure [2]. Cardiac fibrosis is characterized by the net accumulation of extracellular matrix proteins in the cardiac stroma and ultimately impairs cardiac function [3]. Therefore, interest in substances with cardioprotective activity continues. -
Diagnosis of Metastatic Melanoma and Monitoring Indicators of Immunosuppression Through Blood Leukocyte Microarray Analysis
(19) TZZ __T (11) EP 2 579 174 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 10.04.2013 Bulletin 2013/15 G06F 19/00 (2011.01) (21) Application number: 12196231.0 (22) Date of filing: 03.11.2007 (84) Designated Contracting States: • Banchereau, Jacques F. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Montclair, NJ 07042 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • Chaussabel, Damien SI SK TR Bainbridge Island, WA 98110 (US) (30) Priority: 03.11.2006 US 856406 P (74) Representative: Sonn & Partner Patentanwälte Riemergasse 14 (62) Document number(s) of the earlier application(s) in 1010 Wien (AT) accordance with Art. 76 EPC: 07871360.9 / 2 080 140 Remarks: This application was filed on 10-12-2012 as a (71) Applicant: Baylor Research Institute divisional application to the application mentioned Dallas, TX 75204 (US) under INID code 62. (72) Inventors: • Palucka, Anna Karolina Dallas, TX 75204 (US) (54) Diagnosis of metastatic melanoma and monitoring indicators of immunosuppression through blood leukocyte microarray analysis (57) The present invention includes compositions, or more expression vectors from the expression of one systems and methods for the early detection and con- or more genes. sistent determination of metastatic melanoma and/or im- munosuppression using microarrays by calculating one EP 2 579 174 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 579 174 A1 Description TECHNICAL FIELD OF THE INVENTION 5 [0001] The presentinvention relates in generalto the field of diagnostic for monitoring indicatorsof metastatic melanoma and/or immunosuppression, and more particularly, to a system, method and apparatus for the diagnosis, prognosis and tracking of metastatic melanoma and monitoring indicators of immunosuppression associated with transplant recipients (e.g., liver). -
Graduate Program in Biochemistry
RHAMM PROMOTES NEOPLASTIC CONVERSION AND PROGRESSION THROUGH THE REGULATION OF ERK1,2 ACTIVITY AND AP-1 MEDIATED TRANSCRIPTION (Spine title: Rhamm Regulates ERK1,2 and AP-1 Mediated Transcription) (Thesis format: Integrated-Article) by Sara Rae Hamilton Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Faculty of Graduate Studies The University of Western Ontario London, Ontario, Canada September, 2007 © Sara R. Hamilton 2007 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-39274-4 Our file Notre reference ISBN: 978-0-494-39274-4 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these.