Moths of Canada: J. T. Troubridge and J. D. Lafontaine: Noctuidae Part 3.5: Hadeninae: Hadenini

Total Page:16

File Type:pdf, Size:1020Kb

Moths of Canada: J. T. Troubridge and J. D. Lafontaine: Noctuidae Part 3.5: Hadeninae: Hadenini Moths of Canada: J. T. Troubridge and J. D. Lafontaine: Noctuidae Part 3.5: Hadeninae: Hadenini Canadian Biodiversity Information Facility Hadeninae: Hadenini Admetovis oxymorus Admetovis similaris Afotella cylindrica Amolita fessa Anarta nigrolunata Cerapteryx graminis Coranarta luteola Coranarta macrostigma Dargida procinctus Discestra alta Discestra columbica Discestra crotchii Discestra farnhami Discestra hamata Discestra montanica Discestra mutata Discestra obesula Discestra oregonica Discestra trifolii Escaria homogena Faronta diffusa Faronta rubripennis Faronta terrapictalis Hada sutrina Hadena caelestis Hadena capsularis Hadena circumvadis Hadena ectrapela Hadena variolata Hadena variolata file:///D|/noctuidae/Noctuidae3eb.html (1 of 4) [3/25/2004 2:36:39 PM] Moths of Canada: J. T. Troubridge and J. D. Lafontaine: Noctuidae Part 3.5: Hadeninae: Hadenini Hadenella pergentilis Lacanobia atlantica Lacanobia nevadae Lacanobia radix Lacanobia subjuncta Lacinipolia anguina Lacinipolia comis Lacinipolia cuneata Lacinipolia davena Lacinipolia implicata Lacinipolia longiclava Lacinipolia lorea Lacinipolia lustralis Lacinipolia meditata Lacinipolia olivacea Lacinipolia patalis Lacinipolia pensilis Lacinipolia rectilinea Lacinipolia renigera Lacinipolia stenotis Lacinipolia stricta Lacinipolia strigicollis Lacinipolia vicina Lasionycta albinuda Lasionycta arietis Lasionycta conjugata Lasionycta discolor Lasionycta impingens Lasionycta infuscata Lasionycta lagganata file:///D|/noctuidae/Noctuidae3eb.html (2 of 4) [3/25/2004 2:36:39 PM] Moths of Canada: J. T. Troubridge and J. D. Lafontaine: Noctuidae Part 3.5: Hadeninae: Hadenini Lasionycta leucocycla Lasionycta luteola Lasionycta macleani Lasionycta mutilata Lasionycta perplexa Lasionycta phaea Lasionycta phoca Lasionycta poca Lasionycta quadrilunata Lasionycta secedens Lasionycta skraelingia Lasionycta staudingeri Lasionycta subdita Lasionycta subfuscula Lasionycta taigata Lasionycta uniformis Lasionycta wyatti Mamestra configurata Mamestra curialis Melanchra adjuncta Melanchra assimilis Melanchra picta Melanchra pulverulenta Papestra biren Papestra brenda Papestra cristifera Papestra invalida Papestra quadrata Polia discalis Polia imbrifera file:///D|/noctuidae/Noctuidae3eb.html (3 of 4) [3/25/2004 2:36:39 PM] Moths of Canada: J. T. Troubridge and J. D. Lafontaine: Noctuidae Part 3.5: Hadeninae: Hadenini Polia nimbosa Polia nimbosa Polia nugatis Polia piniae Polia propodea Polia purpurissata Polia richardsoni Polia rogenhoferi "Polia" delecta "Polia" detracta Scotogramma fervida Scotogramma submarina Sideridis artesta Sideridis congermana Sideridis fuscolutea Sideridis maryx Sideridis rosea Sideridis uscripta Spiramater grandis Spiramater lutra Trichocerapoda oblita Trichoclea antica Trichoclea decepta Trichoclea edwardsii Trichordestra dodii Trichordestra legitima Trichordestra lilacina Trichordestra liquida Trichordestra rugosa Trichordestra tacoma file:///D|/noctuidae/Noctuidae3eb.html (4 of 4) [3/25/2004 2:36:39 PM].
Recommended publications
  • Tesis. Síndromes De Polinización En
    Dr. Luis Giménez Benavides, Profesor Contratado Doctor del Departamento de Biología y Geología, Física y Química Inorgánica de la Universidad Rey Juan Carlos, CERTIFICA Que los trabajos de investigación desarrollados en la memoria de tesis doctoral, “Síndromes de polinización en Silene. Evolución de las interacciones polinizador-depredador con Hadena” son aptos para ser presentados por el Ldo. Samuel Prieto Benítez ante el tribunal que en su día se consigne, para aspirar al Grado de Doctor en el Programa de Doctorado de Conservación de Recursos Naturales por la Universidad Rey Juan Carlos de Madrid. V°B° Director de Tesis Dr. Luis Giménez Benavides TESIS DOCTORAL Síndromes de polinización en Silene. Evolución de las interacciones polinizador- depredador con Hadena. Samuel Prieto Benítez Dirigida por: Luis Giménez Benavides Departamento de Biología y Geología, Física y Química Inorgánica Universidad Rey Juan Carlos Mayo 2015 A mi familia y a Sofía, gracias por el apoyo y el cariño que me dais. ÍNDICE RESUMEN Antecedentes 11 Objetivos 19 Metodología 20 Conclusiones 25 Referencias 27 Lista de manuscritos 33 CAPÍTULOS/CHAPTERS Capítulo 1/Chapter 1 35 Revisión y actualización del estado de conocimiento de las relaciones polinización- depredación entre Caryophyllaceae y Hadena (Noctuidae). Capítulo 2/Chapter 2 65 Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae. Capítulo 3/Chapter 3 113 Floral scent evolution in Silene: a multivariate phylogenetic analysis. Capítulo 4/Chapter 4 145 Flower circadian rhythm restricts/constraints pollination generalization and prevents the escape from a pollinator-seed predating specialist in Silene. Capítulo 5/Chapter 5 173 Spatio-temporal variation in the interaction outcome between a nursery pollinator and its host plant when other other pollinators, fruit predators and nectar robbers are present.
    [Show full text]
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Natural Enemies and Sex: How Seed Predators and Pathogens Contribute to Sex-Differential Reproductive Success in a Gynodioecious Plant
    Oecologia (2002) 131:94–102 DOI 10.1007/s00442-001-0854-8 PLANT ANIMAL INTERACTIONS C.L. Collin · P. S. Pennings · C. Rueffler · A. Widmer J.A. Shykoff Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant Received: 3 May 2001 / Accepted: 5 November 2001 / Published online: 14 December 2001 © Springer-Verlag 2001 Abstract In insect-pollinated plants flowers must bal- Introduction ance the benefits of attracting pollinators with the cost of attracting natural enemies, when these respond to floral Flowering plants have many different reproductive sys- traits. This dilemma can have important evolutionary tems, the most predominant being hermaphroditism, consequences for mating-system evolution and polymor- which is found in 72% of all species (Klinkhamer and de phisms for floral traits. We investigate the benefits and Jong 1997). However, unisexuality or dioecy has risks associated with flower size and sex morph variation evolved many times, with gynodioecy – the coexistence in Dianthus sylvestris, a gynodioecious species with pis- of female and hermaphrodite individuals within a species – tillate flowers that are much smaller than perfect flowers. seen as a possible intermediate state between hermaphro- We found that this species is mainly pollinated by noc- ditism and dioecy (Darwin 1888; Thomson and Brunet turnal pollinators, probably moths of the genus Hadena, 1990). Delannay (1978) estimates that 10% of all angio- that also oviposit in flowers and whose caterpillars feed sperm species have this reproductive system, which is on developing fruits and seeds. Hadena preferred larger widespread in the Lamiaceae, Plantaginaceae (Darwin flowers as oviposition sites, and flowers in which Hadena 1888), and Caryophyllaceae (Desfeux et al.
    [Show full text]
  • Modular Structure, Sequence Diversification and Appropriate
    www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin.
    [Show full text]
  • Review of the Enigmatic Genus Boalda with Transfer of Pulcherrima Köhler from Nephelistis and Description of Two New Species (Lepidoptera: Noctuidae)
    Zootaxa 4276 (1): 139–144 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4276.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:082E4F76-6B40-40D2-B8FB-B038E864CC51 Review of the enigmatic genus Boalda with transfer of pulcherrima Köhler from Nephelistis and description of two new species (Lepidoptera: Noctuidae) PAUL Z. GOLDSTEIN Systematic Entomology Laboratory, USDA, National Museum of Natural History, E-502, P.O. Box 37012, MRC 168, Washington, DC 20013-7012. E-mail: [email protected] Schaus (1929: 49) described Boalda gyona in a monobasic genus known only from the holotype taken in Santa Catarina, Brazil. Biezanko et al. (1957) reported the species from Uruguay. A number of specimens of Boalda similar to gyona were collected recently in Paraguay, at least two of which match the anomalous Argentinian taxon Nephelistis pulcherrima Köhler (1947: 77–78). Herein the genus Boalda is reviewed, with one new species described from the Paraguayan samples, and with N. pulcherrima transferred Boalda. A singleton specimen from Parque Nacional Cerro Corá, Dpto. Amambay, Paraguay, is figured but not described as a distinct species because of a lack of additional specimens. Genitalic dissections were stained with chlorazol black or Eosin-Y and mounted in euparaol, with methods and terminology after Lafontaine (1998, 2004) and Clarke (1941). Digital images were generated using Microptics and Visionary Digital imaging systems, and subsequently edited in Adobe Photoshop. Measurements were made with the aid of an ocular micrometer.
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Moths of the Malheur National Wildlife Refuge
    MOTHS OF UMATILLA NATIONAL WILDLIFE REFUGE: Results from 10 sites Sampled May 22-23, 2017 Dana Ross 1005 NW 30th Street Corvallis, OR 97330 (541) 758-3006 [email protected] SUMMARY Macro-moths were sampled from the Umatilla National Wildlife Refuge for a third time 22-23 May, 2017 as part of an ongoing pollinator inventory. Blacklight traps were deployed for a single night at ten sites representative of major plant communities in the McCormack and Paterson Units. A grand total of 331 specimens and 36 moth species were sampled. Of those, 17 species (47%) were documented from the refuge for the first time. In a somewhat larger geographical context, 21 species were recorded for the first (8), second (7) or third (6) time from Morrow County, Oregon while 4 species were documented for the first (1) or second (3) time from Benton County, Washington. INTRODUCTION National Wildlife Refuges protect important habitats for many plant and animal species. Refuge inventories have frequently included plants, birds and mammals, but insects - arguably the most abundant and species-rich group in any terrestrial habitat - have largely been ignored. Small size, high species richness and a lack of identification resources have all likely contributed to their being overlooked. Certain groups such as moths, however, can be easily and inexpensively sampled using light traps and can be identified by regional moth taxonomists. Once identified, many moth species can be tied to known larval hostplant species at a given site, placing both insect and plant within a larger ecological context. Moths along with butterflies belong to the insect Order Lepidoptera.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • Lepidoptera: Noctuidae) in Washington and Oregon Apple Orchards
    HORTICULTURAL ENTOMOLOGY Phenology of Lacanobia subjuncta (Lepidoptera: Noctuidae) in Washington and Oregon Apple Orchards MICHAEL D. DOERR, JAY F. BRUNNER, AND VINCENT P. JONES Washington State University Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801 J. Econ. Entomol. 98(6): 2100Ð2106 (2005) ABSTRACT The phenology of Lacanobia subjuncta (Grote & Robinson) (Lepidoptera: Noctuidae) was investigated in 30 apple orchards in central Washington state and northeastern Oregon from 1998 to 2001 (57 total orchard-yr). Adult captures in pheromone-baited traps were Þt to a Weibull distribution to model emergence of the Þrst and second generations. Initial capture of Þrst generation adults was observed at 216.2 Ϯ 2.6 degree-days (DD) (mean Ϯ SEM) from 1 March by using a base temperature of 6.7ЊC. The model predicted that ßight was 5 and 95% complete by 240 and 700 degree-days (DD), respectively. Monitoring of oviposition and hatch was used to establish a protandry plus preoviposition degree-day requirement of 160.0 Ϯ 7.7 DD, as well as to provide data to describe the entire hatch period. Egg hatch was 5 and 95% complete by 395 and 630 DD, respectively. The start of the second ßight was observed at 1217.1 Ϯ 8.3 DD by using an upper threshold for development of 32ЊC and a horizontal cutoff. The model indicated that the second ßight was 5 and 95% complete by 1220 and 1690 DD, respectively. Second generation hatch was 5 and 95% complete by 1440 and 1740 DD, respectively. A discussion of the potential uses of these detailed phenology data in optimizing management strategies is presented.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Errata and First Update to the 2010 Checklist of the Lepidoptera Of
    Errata and first uppppdate to the 2010 checklist of the Lepidoptera of Alberta Gregory R. Pohl, Jason J Dombroskie, Jean‐François Landry, Charles D Bird, and Vazrick Nazari lead author contact: [email protected] Introduction: Since the Annotated list of the Lepidoptera of Alberta was published in March 2010 (Pohl et al. 2010), a few typographical and nomenclatural errors have come to the authors' attention, as well as three erroneous AB records that were inadvertently omitted from that publication. Additionally, a considerable number of new AB species records have been brought to our attention since that checklist went to press. As expected, most are microlepidoptera. We detail all these items below, in what we hope will be a regular series of addenda to the AB list. If you are aware of further errors or additions to the AB Lepidoptera list, please contact the authors. Wit hin the NidNoctuoidea, there are a few minor iiiinconsistencies in the order of species wihiithin genera, and in the order of genera within tribes or subtribes, as compared to the sequence published by Lafontaine & Schmidt (2010). As well, the sequence of tribes in the AB list does not exactly match that of Lafontaine & Schmidt (2010), particularly in the Erebinae. We are not detailing those minor differences here unless they involve a move to a new genus or new higher taxonomic category. Errata: Abstract, p. 2, line 10, should read "1530... annotations are given" 41 Nemapogon granella (p. 55). Add Kearfott (1905) to the AB literature records. 78 Caloptilia syringella (p. 60). This species should be placed in the genus Gracillaria as per De Prins & De Prins (2005).
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]