Studies on the Biology and Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Biology and Ecology STUDIES ON THE BIOLOGY AND ECOLOGY OF THE CABBAGE MOTH, MAMESTRA BRASSICAE L. (LEPIDOPTERA : NOCTUIDAE) by AQUILES MONTAGNE Ingeniero Agronomo (Venezuela) A thesis submitted for the degree of Doctor of Philosophy of the University of London and the Diploma of Imperial College Department of Zoology and Applied Entomology, Imperial College Field Station, Silwood Park, Ascot Berkshire September 1977 TABLE OF CONTENT Page ABSTRACT ' GENERAL INTRODUCTION 2 SECTION 1 THE BIOLOGY OF M. brassicae 5 1.1 Introduction 5 1.2 General Description of the Stages 6 1.3 Life History and Habits 8 1.4 Laboratory Studies on the Effect of Temperature on the Development and Survival of the Immature Stages 25 1.4.1 Materials and methods 25 1.4.2 Results and discussion 26 1.5 Laboratory Studies on Longevity and Fecundity 36 1.5.1 Materials and methods 36 1.5.2 Results and discussion 37 1.5.2.1 Longevity 37 1.5.2.2 Fecundity and Fertility 38 ' 1.6 Section General Discussion 47 SECTION 2 STUDIES ON THE EFFECTS OF LARVAL DENSITY ON M. 50 brassicae 2.1 Introduction 50 2.2 Review of Literature 50 2.3 Material and Methods 59 ii Table of Contents (Continued) Page 2.4 Results and Discussion 60 2.4.1 Colour variations in larval stage 60 2.4.1.1 Larval colour types 60 2.4.1.2 The colour of larvae reared at various densities 62 2.4.2 The pattern of larval and pupal development 66 2.4.2.1 The duration of larval development 66 2.4.2.2 The pattern of larval growth 71 2.4.2.3 The duration of prepupal and pupal periods 72 2.4.2.4 Larval and pupal mortality 75 2.4.2.5 Sex ratio 75 2.4.2.6 Diapause incidence in the pupae 75 2.4.3 The behaviour pattern of larvae 75 2.4.3.1 Introduction 75 2.4.3.2 General activity level 78 a)Materials and methods 78 b)Results and discussion 78 2.4.3.3 Response to physical disturbance 80 a)Materials and methods 80 b)Results and discussion 81 2.4.4 The resistance of the final instar larvae to stress factors 83 2.4.4.1 Introduction 83 lil Table of Contents (Continued) Page 2.4.4.2 Resistance to starvation 84 a) Materials and methods 84 b) Results and discussion 84 2.4.4.3 Resistance to desiccation 86 a) Materials and methods 86 b) Results and discussion 86 2.4.4.4 Resistance to DDT 89 a) Materials and methods 89 b) Results and discussion 89 2.4.5 The effect of density during hatching and first instar larvae 91 2.4.5.1 Introduction 91 2.4.5.2 The synchronization of larval hatching 92 a) Materials and methods 92 b) Results and discussion 92 2.4.5.3 The pattern of larval growth during the first instar 96 a) Materials and methods 96 b) Results and discussion 98 2.4.5.4 Influence of leaf toughness on the initiation of feeding by newly-hatched larvae 99 a) Materials and methods 99 b) Results and discussion 102 2.4.5.5 Larval mortality 104 2.5 Section General Discussion 111 iv Page SECTION 3 FIELD STUDIES ON THE MORTALITY OF EGG AND LARVAL STAGES AND DISPERSAL OF FULLY—GROWN LARVAE 116 3.1 Introduction 116 3.2 Studies on Egg Mortality 117 3.2.1 Materials and methods 117 3.2.2 Results and discussion 117 3.2.2.1 Characteristics of the egg mass infestations 117 3.2.2.2 Frequency of egg mass losses in relation to egg mass size 119 3.2.2.3 The effect of date of infestation on rate of loss in egg masses 120 3.2.2.4 The frequency of egg mass losses in relation to their position on the leaf 120 3.2.2.5 Egg mortality factors 121 a)Parasitism 125 b)Predation 127 c)Dislodgement 130 d)Disappearance 131 e)Other causes of mortality 132 3.3 Studies on Larval Mortality 132 3.3.1 Materials and methods 132 3.3.1.1 The plot 132 3.3.1.2 The exclusion devices 133 3.3.1.3 The setting up of the field experiments 134 3.3.1.4 Associated laboratory studies 138 a)Precipitin test 138 b)Feeding tests 138 V Page c) Rearing of field collected material 139 3.3.1.5 Details of the 1975 and 1976 field experiments 140 3.3.1.6 Meteorological data 140 3.3.2 Results and discussion 141 3.3.2.1 Survivorship curves and life tables 141 3.3.2.2 Mortality factors 157 a)Predators 157 b)Parasites 172 c)Diseases 174 d)Weather 175 3.4 Studies on the Dispersal of Fully—grown Larvae 176 3.4.1 Introduction 176 3.4.2 Materials and methods 177 3.4.2.1 Tagging release and recovery 177 3.4.2.2 Effect of tagging method on the insect 178 3.4.3 Results and discussion 179 3.4.3.1 Effect of tagging on the insect 179 3.4.3.2 Tag recovery 181 3.4.3.3 Larval dispersal and mortality 182 3.5 Section General Discussion 186 GENERAL DISCUSSION 192 SUMMARY 194 ACKNOWLEDGEMENTS 198 REFERENCES 200 APPENDICES 228 ABSTRACT Mdmestra brassicae L. (Lepidoptera: Noctuidae) is mainly a pest of brassicas. Experiments with this species were conducted both in constant temperature rooms and in the field. In the laboratory, the effects of different constant temperatures on the rate of development and mortalities of eggs, larvae and pupae were investigated;, at 20°C, fecundity, fertility and longevity of adults were also measured. The effects of larval rearing density on the behaviour of larvae and morphological and morphometrics characteristics of larvae and pupae were examined. A comparison was made of the abilities of individually-reared larvae and larvae reared in groups to survive starvation and dessication, and treatment with the insecticide DDT. Both the synchrony of eggs within an egg mass and the effects of grouping during the first instar larvae were studied. Using artificial infestations, the mortality factors acting on the egg and larval stages were studied in the field. The study of larval mortality factors was aided by caging to exclude ground predator, parasite, birds and rainfall; additional observations were made using the natural uncaged population. Observations were made on the distribution of egg masses and different larval instars on the host plant, and the egg masses distribution over the leaf surface. The dispersal and mortality of the sixth instar larvae and their pupation sites were studied using radioactive tags (1r192). 2. GENERAL INTRODUCTION The cabbage moth, Mamestra brassicae L. is mainly a pest on cabbages and although it has been recorded from a number of different plant species belonging to several families, it prefers cabbage and it is consistently reported as a serious pest on it more than on any other. M. brassicae is distributed almost completely throughout the Paleartic Region, except in the far north, from Western Europe to the coasts of the Pacific ocean reaching Japan. In the south it reaches the coasts and islands of the Mediterranean sea, the subtropical zone of Asia Minor, and the mountain districts of north-western India and southern China. The adaptability of M. brassicae to different climatic conditions and its recognised status as a major pest in many temperate and subtropical regions makes the study of M. brassicae important from the economic as well as from the biological point of view. Therefore, it is not surprising to find that in a survey of the literature many papers deal with this insect. However, most of them are concerned with brief accounts of obser- vations on the bionomics including biology, life history, seasonal variation, geographical distribution, host-plants or just its occurrence. A few deal with some aspects of its ecology and population dynamics, and in this respect Japanese workers have contributed the most. Many of the published papers on Mamestra are total or partially devouted to its control, either chemical or by other means e.g., parasite, disease, cultural measures. This seems to be justified because of the relatively high value of the crops which it attacks. 3. Along with a number of other species, the larvae of M. brassicae progressively change colour from pale to dark with increasing population density, and at the same time, other changes occur in its behaviour and physiology. This type of continuous polymorphism has been called "Phase variation" because it is very similar in many respects to that in locusts (Iwao, 1968). This and the frequent reports of mass outbreaks cited in the literature make "Phase variation" an important aspect in the study of the biology of this insect. Although M. brassicae is considered a major pest in eastern Europe, U.S.S.R., Japan and other places, in England it is a minor pest. Attacks are most common in gardens and allotments occurring occasionally on field scale; which perhaps accounts for the relatively little attention given to it by British entomologists. In this respect, it is then, inter- esting to obtain information on the mortality factors that operate under field conditions in this country as the findings may be relevant to other situations. The aims of the present study were to investigate some aspects of the biology and ecology of the cabbage moth and can be summarised as follows: a) To give a general description of the life history and habits of M. brassicae; to study in some detail the effect of tem- perature on the pre-imaginal stages; and the fecundity and longevity of the adults.
Recommended publications
  • Modular Structure, Sequence Diversification and Appropriate
    www.nature.com/scientificreports OPEN Modular structure, sequence diversifcation and appropriate nomenclature of seroins produced Received: 17 July 2018 Accepted: 14 February 2019 in the silk glands of Lepidoptera Published: xx xx xxxx Lucie Kucerova1, Michal Zurovec 1,2, Barbara Kludkiewicz1, Miluse Hradilova3, Hynek Strnad3 & Frantisek Sehnal1,2 Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identifed in studied lepidopteran species and their classifcation required detailed phylogenetic analysis based on complete and verifed cDNA sequences. We sequenced silk gland-specifc cDNA libraries from ten species and identifed 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is refected in proposed nomenclature. Te silk spun by caterpillars is a composite material based on two protein agglomerates that have been known for centuries as fbroin and sericin.
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Title Production Study of the Population of the Pine Caterpillar
    Production Study of the Population of the Pine Caterpillar Title (Dendrolimus spectabilis Butler) Author(s) Kikuzawa, Kihachiro; Furuno, Tooshu Citation 京都大学農学部演習林報告 (1971), 42: 16-26 Issue Date 1971-03-25 URL http://hdl.handle.net/2433/191500 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 16 Production Study of the Population of the Pine Caterpillar (Dendrolimus spectabilis Butler) Kihachiro KIKUZAWA* and Tooshu FURUNO** マツカ レハ幼虫個体群の生物生産の研究 菊 沢 喜 八 郎*・ 古 野 東 洲** CONTENTS Résumé 16 I . Metabolism of Individual Larva V Pi 17 II. Estimation of population Density Introduction 17 III. production of population Material And Method 18 Discussion 24 Results 19 Literature 26 RESUME Productivity of a pine caterpillar population was investigated in the present study. The changes in larval density of the pine caterpillar population were estimated by the fecal-pellets counting method and by the direct counting method at a pine stand in a nursery. The food consumption, assimilation, respiration and growth were also mea- sured in the laboratory. The total food consumption, assimilation, respiration and growth of the population were calculated utilizing the individual values and population density. An individual larva consumed about 14.0g of pine needles over one growing season. From which 11.2g was defecated as feces, and the rest 2.8g was assimilated. 2.3g, or eighty per cent of the assimilated matter was used for respiration and 0.5g was used for growth of larval body weight. Larval density was estimated at about 63 individuals per square meter in September 1967, which decreased to about 6 individuals per square meter in July 1968 (at the time of pupation).
    [Show full text]
  • Relative Attraction of the Cabbage Looper Moth (Trichoplusia Ni (Hübner)) to Wild-Type and Transgenic Tomato (Solanum Lycopersicum L.)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 11-10-2017 9:00 AM Relative Attraction of the Cabbage Looper Moth (Trichoplusia ni (Hübner)) to Wild-type and Transgenic Tomato (Solanum lycopersicum L.) William J. Laur The University of Western Ontario Supervisor Dr. Ian Scott The University of Western Ontario Co-Supervisor Dr. Jeremy McNeil The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © William J. Laur 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Entomology Commons Recommended Citation Laur, William J., "Relative Attraction of the Cabbage Looper Moth (Trichoplusia ni (Hübner)) to Wild-type and Transgenic Tomato (Solanum lycopersicum L.)" (2017). Electronic Thesis and Dissertation Repository. 5078. https://ir.lib.uwo.ca/etd/5078 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The cabbage looper moth (CLM), Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) is an agricultural pest that has developed resistance to many frequently used insecticides, so alternative methods are required to reduce greenhouse CLM populations. Host plant volatile organic chemicals (VOCs) are used by female CLMs as cues for host location and oviposition. I hypothesized that changes in host plant VOC production, through genetic modification, could alter host location behaviour by CLMs. These changes in VOCs have potential to give rise to highly attractive transgenic trap crops.
    [Show full text]
  • In Partnership with CATERPILLAR PESTS OF
    In partnership with CATERPILLAR PESTS OF BRASSICA CROPS – 21st May 2019 Summaries of sightings of diamond-back moth and silver Y moth in several northern European countries in 2019 can be found here: https://warwick.ac.uk/fac/sci/lifesci/wcc/research/pests/plutella/sightings2019/. These are moths captured or seen and reported on 'biodiversity monitoring' websites. The summaries of ‘citizen science’ moth sightings in the UK and on the continent will be supplemented by on- farm monitoring of diamond-back moth by several members of the Brassica Growers Association. Large numbers of diamond-back moths arrived in the UK on Friday 17th May https://warwick.ac.uk/fac/sci/lifesci/wcc/research/pests/plutella/sightings2019/. The moths were first seen along the east coast of England but may have moved since then. This seems to have been the only ‘pulse’ of moths so far as lower numbers have been seen since then. If they arrive in brassicas then it is likely that the female diamond-back moths will lay eggs quite rapidly. You can get some idea of how long the eggs might take to hatch from the table on this web page https://warwick.ac.uk/fac/sci/lifesci/wcc/research/pests/plutella/. On-farm monitoring of diamond-back moth by members of the Brassica Growers Association and others Date Location Number of moths Number of traps 30 April Lancashire 1 2 7 May Lancashire 15 6 14 May Cornwall 1 2 14 May Lancashire 7 6 17 May Wellesbourne 1 2 20 May Scotland Moths seen in crops - 21 May Lancashire 11 6 In partnership with Citizen Science – sightings of diamond-back moth and silver Y moth Sightings of diamond-back moth and silver Y moth reported on websites since mid-April 2019 are summarised below.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Identification of Insects, Spiders and Mites in Vegetable Crops: Workshop Manual Loopers Chrysodeixis Spp
    Important pests in vegetable crops This section gives descriptions of common pests found in Australian vegetable crops. They are listed according to the insect order they belong to. Moths and butterflies (Lepidoptera) Heliothis (corn earworm, tomato budworm, native budworm) Helicoverpa spp. Heliothis larvae feed as leaf eaters and bud and fruit borers on a wide range of plants, including many weeds. Adults lay round, domed, ribbed eggs that are cream when newly laid, turning brownish (‘brown ring’ stage) as they mature. Larvae grow up to 40 mm long and vary in colour from green through yellow and brown to almost black, with a pale stripe down each side. The moths have a wing span of 35–45 mm. Heliothis moth at rest These are some examples of heliothis damage to vegetable crops: • On lettuce and brassicas, larvae feed on the outer leaves or tunnel into the heart of the plant. • In tomato crops, eggs are laid on the leaves, flowers and fruit. Young larvae burrow into flowers causing them to fall and they cause pinhole damage to very young tomato fruit. Older larvae burrow into the fruit, creating holes and encouraging rots to develop. • In capsicum, larvae feed on the fruit and the seed inside the fruit. Eggs are laid mainly on leaves, but also on flowers and buds. Heliothis eggs on tomato shoot • In sweet corn, eggs are laid on the silks and leaves. Larvae feed on the developing grains on the cob, sometimes on the leaves and often inside the tip of the corn cob. • In green beans and peas, the larvae feed on the flowers, pods and developing seed inside the pods.
    [Show full text]
  • Commodity Risk Assessment of Black Pine (Pinus Thunbergii Parl.) Bonsai from Japan
    SCIENTIFIC OPINION ADOPTED: 28 March 2019 doi: 10.2903/j.efsa.2019.5667 Commodity risk assessment of black pine (Pinus thunbergii Parl.) bonsai from Japan EFSA Panel on Plant Health (EFSA PLH Panel), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Andrea Battisti, Anna Maria Vettraino, Renata Leuschner, Olaf Mosbach-Schulz, Maria Chiara Rosace and Roel Potting Abstract The EFSA Panel on Plant health was requested to deliver a scientific opinion on how far the existing requirements for the bonsai pine species subject to derogation in Commission Decision 2002/887/EC would cover all plant health risks from black pine (Pinus thunbergii Parl.) bonsai (the commodity defined in the EU legislation as naturally or artificially dwarfed plants) imported from Japan, taking into account the available scientific information, including the technical information provided by Japan. The relevance of an EU-regulated pest for this opinion was based on: (a) evidence of the presence of the pest in Japan; (b) evidence that P. thunbergii is a host of the pest and (c) evidence that the pest can be associated with the commodity. Sixteen pests that fulfilled all three criteria were selected for further evaluation. The relevance of other pests present in Japan (not regulated in the EU) for this opinion was based on (i) evidence of the absence of the pest in the EU; (ii) evidence that P.
    [Show full text]
  • BERTHA ARMYWORM Lepidoptera: Noctuidae Mamestra Configurata ______DESCRIPTION
    Modified from Ralph E. Berry. 1998©. Insects and Mites of Economic Importance in the Northwest. 2nd Ed. 221 p. BERTHA ARMYWORM Lepidoptera: Noctuidae Mamestra configurata _____________________________________________________________________________________________ DESCRIPTION The adult is a greenish-gray or gray moth with two spots on the front wings, a small round spot with a large "kidney-shaped" white or gray spot on the middle of the wing, and a whitish band near the fringe of the wing. Larvae are about 40 mm long when mature. The head is pale brown with or without dark arcs and Bertha armyworm larva reticulations, and without an inverted white "Y". The color of the larva varies from green to gray, brown, or black. The mid-dorsal and top-lateral lines are white, broken and inconspicuous. The area above the spiracles is marked with brownish or orange at the dorsal margin and usually with small black spots around the spiracles. Spiracles are white with black rims. The stripe below the spiracles is yellow or orange, and the bottom area is mottled gray or greenish. ECONOMIC IMPORTANCE Larval damage is most evident in summer and fall, especially on fruit trees, sugarbeets, hops, mint, and potatoes. On seed alfalfa, larvae are most serious in Bertha armyworm adult mid-summer. Larvae feed on the foliage and fruit or host plants causing stunting and reducing quality and yield. Average defoliation of potato in British BERTHA ARMYWORM Columbia has been over 10%, and larval damage to tree fruit has reached 10% in some areas of the northwest. PUPAE ADULTS DISTRIBUTION AND LIFE HISTORY EGGS LARVAE This pest is distributed throughout the northwest, PUPAE southern British Columbia, Alberta, Saskatchewan, and J F M A M J J A S O N D Manitoba.
    [Show full text]
  • Testing a Popular Indicator Taxon at Local Scales
    Biological Conservation 103 (2002) 361–370 www.elsevier.com/locate/biocon Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales Taylor H. Ricketts*, Gretchen C. Daily, Paul R. Ehrlich Department of Biological Sciences, Gilbert Hall, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA Received 23 July 2000; received in revised form 2 May 2001; accepted 10 June 2001 Abstract Indicator taxa are often proposed as efficient ways of identifying conservation priorities, but the correlation between putative indicators and other taxa has not been adequately tested. We examined whether a popular indicator taxon, the butterflies, could provide a useful surrogate measure of diversity in a closely related but relatively poorly known group, the moths, at a local scale relevant to many conservation decisions (100–101 km2). We sampled butterflies and moths at 19 sites representing the three major terrestrial habitats in sub-alpine Colorado: meadows, aspen forests, and conifer forests. We found no correlation between moth and butterfly diversity across the 19 sites, using any of five different diversity measures. Correlations across only meadow sites (to test for correlation within a single, species-rich habitat) were also not significant. Butterflies were restricted largely to meadows, where their host plants occur and thermal environment is favorable. In contrast, all three habitats contained substantial moth diversity, and several moth species were restricted to each habitat. These findings suggest that (1) butterflies are unlikely to be useful indica- tors of moth diversity at a local scale; (2) phylogenetic relatedness is not a reliable criterion for selecting appropriate indicator taxa; and (3) a habitat-based approach would more effectively conserve moth diversity in this landscape and may be preferable in many situations where indicator taxa relationships are untested.
    [Show full text]
  • Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) Against Mamestra Brassicae L
    agriculture Article Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) against Mamestra brassicae L. (Lepidoptera: Noctuidae) Anna Mazurkiewicz 1, Dorota Tumialis 1,* and Magdalena Jakubowska 2 1 Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; [email protected] 2 Departament of Monitoring and Signalling of Agrophages, Institute of Plant Protection—Nationale Research Institute, Władysława W˛egorka20 Street, 60-318 Poznan, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-225-936-630 Received: 4 August 2020; Accepted: 31 August 2020; Published: 3 September 2020 Abstract: The largest group of cabbage plant pests are the species in the owlet moth family (Lepidoptera: Noctuidae), the most dangerous species of which is the cabbage moth (Mamestra brassicae L.). In cases of heavy infestation by this insect, the surface of plants may be reduced to 30%, with a main yield loss of 10–15%. The aim of the present study was to assess the susceptibility of M. brassicae larvae to nine native nematode isolates of the species Steinernema feltiae (Filipjev) and Heterorhabditis megidis Poinar, Jackson and Klein under laboratory conditions. The most pathogenic strains were S. feltiae K11, S. feltiae K13, S. feltiae ZAG11, and S. feltiae ZWO21, which resulted in 100% mortality at a temperature of 22 ◦C and a dosage of 100 infective juveniles (IJs)/larva. The least effective was H. megidis Wispowo, which did not exceed 35% mortality under any experimental condition. For most strains, there were significant differences (p 0.05) in the mortality for dosages ≤ between 25 IJs and 50 IJs, and between 25 IJs and 100 IJs, at a temperature of 22 ◦C.
    [Show full text]
  • Cabbage Moth Mamestra Brassicae
    Michigan State University’s invasive species factsheets Cabbage moth Mamestra brassicae The cabbage moth is a highly polyphagous defoliator, but particularly damaging to cabbage in Europe and Asia. Larval feeding and frass accumulation can lower the commercial value of infested crops. Its introduction to Michigan may pose a concern in particular to vegetable industries, but its infestation may extend to fruit, floriculture, ornamental and other crops. Michigan risk maps for exotic plant pests. Systematic position Insecta > Lepidoptera > Noctuidae > Mamestra brassicae (Linnaeus) Global distribution The insect’s range extends throughout the Palearctic region (Europe, Asia north of the Himalayas and Africa north of the Sahara). Quarantine status This insect is not known to be introduced into North Adult. (Photo: S. van der Molen) America. Plant hosts The cabbage moth is highly polyphagous, known to feed on more than 70 plant species from 22 families. Caterpillars prefer to feed on cruciferous plants, especially cabbage and related Brassica spp. (Brussels sprout, cauliflower, turnip). Other hosts include apple, beetroot, onion, potato, rhubarb and tomato. In Britain, they are an occasional pest of carnations and chrysanthemums grown in greenhouses (Carter 1984). Biology Female moths lay clusters of 20 to 100 eggs on the underside of host plant leaves. Larvae feed on leaves at night and hide at the plant’s base during daytime. Mature larvae burrow into the ground 5-10 cm deep and pupate in a fragile cocoon. They overwinter as pupae. Adults can be Larvae on cauliflower (Photo: BASF) seen from May to October. The moths fly at night and are attracted to light and nectar-rich flowers.
    [Show full text]