Looking After Water in Your Home
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Installation and Technical Guide SEPTEMBER 2014 Worldwide Connections
THE PUSH-FIT SOLUTION FOR UNDERFLOOR HEATING Includes this NEW addition: Installation and Technical Guide SEPTEMBER 2014 Worldwide Connections The John Guest Group has a long established reputation as a world leading manufacturer of push-fit fittings, tube and other fluid control products. A reputation built on producing consistently high quality products with an ongoing commitment to value engineering and product development. Quality Manufacture A commitment to quality is at the heart of the John Guest Philosophy The strictest control is maintained by virtue of the fact that design and manufacture is carried out in modern purpose built manufacturing centres in west London and at Maidenhead in Berkshire. Maintaining control over the whole process from initial tool design and tool making through to final assembly and testing ensuring that only products of the highest quality are produced. The company believe it is this commitment to quality that has led to it receiving prestigious awards from many of the world’s leading testing and approvals organisations. John Guest is a preferred supplier to many international companies. British Gas Service BS7291 No. KM39767 Speedfit PEX Fittings and Barrier Pipe. K24076, K24077 and K24078 2 The Speedfit System orf Underfloor 50ºC then distributed via a manifold A wide range of electrical components Heating has been designed to be as to heating circuits made using Speedfit means the system can have as much quick and easy as possible to install with Barrier Pipe. The temperature and control as required. component parts manufactured under an volume of water is altered to maintain ISO9001 Quality Management System. -
Module 1 Basics of Water Supply System
Module 1 BASICS OF WATER SUPPLY SYSTEM Training Module for Local Water and Sanitation Management Maharashtra Jeevan Pradhikaran (MJP) CEPT University 2012 Basics of Water Supply System- Training Module for Local Water and Sanitation Management CONTENT Introduction 3 Module A Components of Water Supply System 4 A1 Typical village/town Water Supply System 5 A2 Sources of Water 7 A3 Water Treatment 8 A4 Water Supply Mechanism 8 A5 Storage Facilities 8 A6 Water Distribution 9 A7 Types of Water Supply 10 Worksheet Section A 11 Module B Basics on Planning and Estimating Components of Water Supply 12 B1 Basic Planning Principles of Water Supply System 13 B2 Calculate Daily Domestic Need of Water 14 B3 Assess Domestic Waste Availability 14 B4 Assess Domestic Water Gap 17 B5 Estimate Components of Water Supply System 17 B6 Basics on Calculating Roof Top Rain Water Harvesting 18 Module C Basics on Water Pumping and Distribution 19 C1 Basics on Water Pumping 20 C2 Pipeline Distribution Networks 23 C3 Type of Pipe Materials 25 C4 Type of Valves for Water Flow Control 28 C5 Type of Pipe Fittings 30 C6 Type of Pipe Cutting and Assembling Tools 32 C7 Types of Line and Levelling Instruments for Laying Pipelines 34 C8 Basics About Laying of Distribution Pipelines 35 C9 Installation of Water Meters 42 Worksheet Section C 44 Module D Basics on Material Quality Check, Work Measurement and 45 Specifications in Water Supply System D1 Checklist for Quality Check of Basic Construction Materials 46 D2 Basics on Material and Item Specification and Mode of 48 Measurements Worksheet Section D 52 Module E Water Treatment and Quality Control 53 E1 Water Quality and Testing 54 E2 Water Treatment System 57 Worksheet Section E 62 References 63 1 Basics of Water Supply System- Training Module for Local Water and Sanitation Management ABBREVIATIONS CPHEEO Central Public Health and Environmental Engineering Organisation cu. -
Pipe World 2/2019
THE UPONOR INFRA CUSTOMER MAGAZINE » ISSUE 2/2019 FISHGLOBE REVOLUTIONISES THE FUTURE OF PLASTIC STRUCTURES FOR MARINE CONDITIONS Page 6 SAFEGUARDING THE DRINKING WATER IN URBAN AREAS IS CRITICAL Page 8 FLOW MEASUREMENT REVEALS LEAKS IN THE WATER SUPPLY NETWORK Page 12 Dear reader, he water supply and wastewater infrastructure in many regions across Europe is ageing. Despite the high quality of drinking water in the Nordic countries, the condition of the old pipe networks poses challenges. For example, Tin Finland most of the network was built between 1960 and 1990 and in the biggest cities parts of the network are over 100 years old. According to a recent study in Finland (ROTI 2019), 12% of the sewer network and 12% of the potable water network has deteriorated and there is an increasing need to renovate the old networks to both ensure water quality and minimise water losses. In Finland, 68 million m3 of mains water is lost every year and a substantial part of this is due to leakages (SYKE 2018). In Sweden, the total leakage of clean drinking water is about 15% on average, corresponding to 99 million m3 (Svenskt Vatten 2019). This is not only a waste of clean drinking water – resources used to collect, treat and pump the drinking water are also wasted. Losses of water, and in issue 2/2019 particular leakages, are relevant for distribution network efficiency in all European countries. New innovations are needed to help solve these challenges. On p. 12, you can read about how our new Water Monitoring Services are helping the city of Pori in Finland to monitor 4 In Brief 16 Industrial its leakages. -
Implementing Rainwater Harvesting Systems on The
IMPLEMENTING RAINWATER HARVESTING SYSTEMS ON THE TEXAS A&M CAMPUS FOR IRRIGATION PURPOSES: A FEASIBILITY STUDY A Senior Scholars Thesis by WILLIAM HALL SAOUR Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment for the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR April 2009 Major: Civil Engineering i IMPLEMENTING RAINWATER HARVESTING SYSTEMS ON THE TEXAS A&M CAMPUS FOR IRRIGATION PURPOSES: A FEASIBILITY STUDY A Senior Scholars Thesis by WILLIAM HALL SAOUR Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment of the requirements for designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by: Research Advisor: Emily Zechman Associate Dean for Undergraduate Research: Robert C. Webb April 2009 Major: Civil Engineering iii ABSTRACT Implementing Rainwater Harvesting Systems on the Texas A&M University Campus for Irrigation Purposes: A Feasibility Study. (April 2009) William Hall Saour Department of Civil Engineering Texas A&M University Research Advisor: Dr. Emily Zechman Department of Civil Engineering Increasing population and increasing urbanization threatens both the health and availability of water resources. The volume and timing of water that is readily available may not be sufficient to supply the demand for potable water in urban areas. Rainwater harvesting is a water conservation strategy that may help alleviate water scarcity and protect the environment. The benefits of collecting rainwater and utilizing it as irrigation water are both tangible and non-tangible. Through collecting and reusing rainwater, grey water may be utilized as a practical resource. Although grey water is not safe to drink, it is safe for other uses such as toilet water, cleaning water, and irrigation. -
DRINKING WATER QUALITY in the HOME Responses to Frequently Asked Questions About Lead and Copper in Water
DRINKING WATER QUALITY IN THE HOME Responses to Frequently Asked Questions About Lead and Copper in Water 1. What steps can I take to maintain drinking water quality in my home? Residents can take steps to protect water quality in their home. Actions that help to preserve water qual- ity include: • Use cold water for drinking and preparing food. • Flush your tap before using it for drinking or cooking any time the water in a faucet has gone unused for more than 6 hours. Flushing the tap means running the cold water for 30 seconds to 2 minutes until it gets noticeably colder. • Clean faucet aerators and strainers monthly. Replace aerators in poor condition. • Clean and disinfect sinks and faucets regularly. Cleaning faucet aerators monthly and running cold water to - flush a faucet that hasn’t been used for 6 or more hours help cording to the manufacturer’s recommendations. preserve drinking water quality in your home. • Replace your refrigerator and icemaker filters ac the manufacturer’s recommendations. • Corrosion may be greater if grounding wires from • Replace any other water filters used according to the electrical system are attached to your pipes. Flushing tap water is a simple and inexpensive Check with the licensed electrician or your local measure you can take to protect your family’s health. electrical code to determine if your wiring can be When water stands in lead pipes or pipes with lead grounded elsewhere. DO NOT attempt to change solder for several hours or more, the lead may dis- the wiring yourself because improper grounding water drawn from the tap in the morning, or later in thesolve afternoon into your after drinking returning water. -
INSULPEX™ Pre-Insulated Pexa Piping System
Engineering progress Enhancing lives INSULPEX™ pre-insulated PEXa piping system Technical information which applies to the planning, design and installation of REHAU pre- insulated PEXa piping systems. na.rehau.com/resourcecenter TABLE OF CONTENTS 1 . Scope. .3 6 . System Design .........................14 6.1 .....Step 1: Determine Length .......................14 2 . Design Considerations ...................4 6.2 ....Step 2: Estimate Total Heat Loss . .14 6.3 ....Step 3: Estimate Flow Rate .....................15 3 . System Overview ........................5 6.4 ....Step 4: Determine Pipe Size. .15 3.1 .....System Advantages ............................5 6.5 ....Step 5: Calculate Heat Loss . .15 3.2 ....Application ...................................5 6.6 ....Step 6: Calculate Head Loss ....................16 4 . System Components .....................6 7 . System Testing .........................18 4.1 .....INSULPEX® Pipe ..............................6 4.2 ....SDR11 Compression-Sleeve Fitting ...............9 4.3 ....INSULPEX Insulation Kits .......................9 4.4 . INSULPEX Installation Accessories ..............10 4.5 ....RAUTOOL™ PEXa Pipe Installation Tools ..........10 5 . System Planning ........................11 5.1 .....Trench Installation ............................11 5.2 . Above-Ground Installation ......................12 5.3 ....Building Penetration ...........................12 5.4 . Thermal Expansion. .13 5.5 ....Transition to Building Service Piping ..............13 For updates to this publication and the most -
Timbertanks Boyle&Mahood 08.1
AUTHOR: Carol Boyle, Director, International Centre for Sustainability Engineering and Research, University of Auckland Marya Mahmood (MEngSt Student, University of Auckland) Title of Paper: Comparative Assessment of Embodied Energy and CO2 of Water Tanks Contact Dr. Carol Boyle Organisation International Centre for Sustainability Engineering and Research University of Auckland Postal Address Private Bag 92019 Auckland 1072 Telephone 649 373 7599x88210 Fax 649 373 7462 Email [email protected] 1 Abstract The main aim of this project was to compare the life cycle energy use and carbon dioxide emissions of different materials of water storage tanks for a New Zealand market. This study analysed the life cycle analysis energy requirements and carbon dioxide emissions associated with plastic, concrete, steel and wood water storage tanks. The energy inputs and emissions for each of the materials were normalised to the 20 years. Results indicate that wood was the best of the four materials, having both the lowest embodied energy and carbon dioxide emissions. Plastic had the highest embodied energy while concrete tanks had the greatest embodied CO2. Further research is required to complete a full life cycle assessment of the different materials. 2 Environmental Impacts of Different Materials for Water Tanks Introduction There are increasing concerns over provision of water to communities, with an estimated two-thirds of countries facing increasing water shortages by 2050 (GEO4, 2007). While much of New Zealand current has sufficient water, changes in rainfall patterns due to climate change, an increasing consumption of water and a reliance on water for energy provision mean that water conservation will become increasingly important. -
Wood Burning Cook Stove Energy Saving Hot Water Kit CAUTION
INSTALLATION INSTRUCTIONS For The "North" Wood Burning Cook Stove energy saving Hot Water Kit CAUTION: These installation instructions are meant to be used as a guide for woodstove owner and plumber to follow. Failure to follow these instructions properly may result in a faulty installation. which could result in damage to system and/or self. Study the instructions thoroughly before beginning any work. WARRNING: Water Coil should be installed over horizontal firebricks and under cooktop (horizontally as shown on photo 1 and 2 on pg.6) NOT inside the firebox. USE PROFESSIONAL-LICENSE PLUMBER. If your unit has water coil installed by manufacturer, skip 1-7 and choose method I, II or III, one that will best suit your particular needs. 1. Wash the heat exchanger coil out with hot soapy water and rinse. This will insure that no residues will be left inside the coil from the manufacturing process. 2. Measure the distance from center to center of the holes on the ends of the heat exchanger coil. This measurement may be 6", 8", or 9“, depending on your coil kit model no. 3. Locate a space within the stove where the coil will not interfere with any of the internal parts. With a centerpunch and hammer, mark two points (measurement in step one) on the outside of the stove that will correspond with the free space inside. If your stove is cast iron, DO NOT attempt to centerpunch it, as it will crack. Mark the stove with a felt tipped pen if it is cast iron. 4. With the drill provided in the holesaw, dril a 1/4" hole at each of the marks. -
Garden Schematic
THE CITY OF SURPRISE CONSERVATION GARDENS SITE WILL HARVEST STORM WATER COLLECTION STORM WATER TO SUPPLEMENT THE PROJECT SITE IRRIGATION - 10,000 GALLON FIBERGLASS STORM WATER STORAGE TANK REQUIREMENTS. THE STORM WATER TANK IS ONE (1) 10,000 GALLON - 8' DIAMETER X 31' LONG UNDERGROUND FIBERGLASS TANKS THAT WILL ACT AS A SURGE TANK DURING RAIN EVENTS. THE STORM WATER TANK SHALL BE EQUIPPED 1 2 3 4 WITH A 200 GPM PUMP TO TRANSFER WATER TO THE PRIMARY IRRIGATION 5 6 7 STORM WATER TRANSFER PUMP 8 STORAGE TANKS DURING A STORM AND AFTERWARDS AS PRIMARY 9 10 11 - 200 GPM AT 50 FT-HEAD SUBMERSIBLE PUMP 12 13 STORAGE VOLUME ID DEPLETED. ADDITIONALLY, A SINGLE 10,000 14 15 - POWER: 120-240V/1PHASE/60Hz 16 GALLON CORRUGATED STEEL TANK WILL COLLECT RAIN WATER DIRECTLY P - EQUIPPED WITH FLOW METER FROM THE EXISTING BUILDING EAST OF THE GARDEN SITE. THE EXISTING M - PUMP WILL TRANSFER STORM WATER DURING STORM EVENTS RAIN SCUPPER WILL BE EXTENDED TO FILL THE TANK FROM THE TOP. A IRRIGATION MAINLINE TO FILL PRIMARY IRRIGATION WATER STORAGE TANKS AND WILL REFILL PRIMARY TANKS AS THEY BECOME SMALL 10 GPM PUMP WILL TRANSFER WATER FROM THE RAIN WATER EMPTY STORAGE TANK TO THE PRIMARY STORAGE TANKS, OR THE PUMP MAY BE USED TO IRRIGATE A SMALL EXAMPLE COMMERCIAL GARDEN ON THE RESIDENTIAL RAIN WATER COLLECTION SITE. - TWO (2) 400 GALLON POLYETHYLENE STORAGE TANKS - SIZE: 3' DIAMETER X 8' HIGH THE PRIMARY IRRIGATION STORAGE TANKS SHALL CONSIST OF TWO (2) - TO COLLECT RAIN FROM RESIDENTIAL ROOF AND GRAVITY FEED 18,000 GALLON ABOVE GRADE CORGAL CORRUGATED STEEL TANKS TO PLANTS AROUND HOUSE VIA GRAVITY SYSTEM SITUATED AT THE SOUTH END OF THE SITE. -
John Guest Installation Guide
Underfloor heating made simple Underfloor heating made simple About us 01 Why John Guest? 03 What makes JG Speedfit Underfloor different? 05 Working together with... 07 Underfloor heating explained 15 Reasons to install Speedfit Underfloor Heating 17 Understanding the system 19 Our underfloor heating collection 21 Project fundamentals 23 Choosing the right solution 24 Speedfit solutions at a glance 25 Screed floor solutions 29 Timber floor solutions 35 Existing floor solutions 39 Room Pack solutions 43 The smart way to control heat 45 Say hello to greater control 48 More choice. More style 49 Smart control on the move 51 Taking JG Aura to the next level 53 With you every step of the way 55 Underfloor heating made simple 57 Designing and pricing the perfect system 58 Get Inspired 59 About us Why John Guest? What makes JG Speedfit Underfloor different? Working together with... Why John Guest? When Mr John Guest opened his factory doors over half a century ago, his vision was to create a company offering great quality products and excellent customer service. Today, this ethos still rings true. John Guest’s reputation as a world-leading manufacturer of high quality, innovative, plastic push-fit connectors and pipe is still going strong. Five decades of engineering expertise John Guest was the first manufacturer of the push-fit fitting. With significant engineering expertise behind our push-fit concept, the uniqueness of our product lies within its high reliability of performance, longevity of service and ease of use. Maintaining control over the whole production process from product and tool design through to final assembly ensures our fittings, UFH products and pipe are of the highest standard, which has earned us global recognition as the industry benchmark. -
Fiberglass Storage Tanks for Water Applications
Fiberglass Storage Tanks for Water Applications www.xerxes.com www.zcl.com Fiberglass Water and Wastewater Tanks One Company. Two Trusted Brands Xerxes® and ZCL® are widely recognized and well-respected brands that are part of the ZCL Composites Inc. group of companies. For more than three decades, ZCL, a publicly traded company, has manufactured underground and aboveground storage tanks for a wide range of liquid storage applications. Our growth has climbed steadily as fiberglass has increasingly become the preferred material of tank construction. We fabricate products from manufacturing facilities strategically located throughout North America. Xerxes, with its distinct red product color, is our U.S. brand, while ZCL with a well-established green product, is our Canadian brand. With both brands, customers can be confident that they selected the highest-quality storage tank available that is designed and manufactured by a team of experienced professionals dedicated to providing products that “make a lasting difference.” Experience Matters Like most market leaders, our decades-deep track record of innovation and product performance separates us from competitors. With more than 200,000 storage tanks installed in North America, we have a significant base of satisfied customers who continue to specify the Xerxes and ZCL brands. Today, we are North America’s largest manufacturer of underground storage tanks, and we provide products for many of the world’s largest corporations as well as individual property owners needing bulk liquid storage. The Xerxes and ZCL brands are most widely known for safely storing motor fuels and other petroleum products at thousands of retail, government and commercial fueling facilities throughout North America and the world. -
Water Cistern Construction for SMALL HOUSES
WATER CISTERN ALASKA CONSTRUCTION BUILDING RESEARCH for SMALL SERIES NBI: A515.161 HOUSES HCM-01557 Introduction This publication is one of nine that has been translated from Norwegian. They are taken from a series of publica- tions produced by the Norwegian Building Research Institute (NBI) series, “Byggdetaljer,” which literally translated means “building details.” It is hoped that Alaskan builders will be able to glean useful ideas from these publications. The translations were done by Dr. Nils Johanson and Richard D. Seifert of the University of Alaska Fairbanks with the cooperation and permission of NBI, Oslo, Norway. The financial support for the translations and printing came through the Alaska Department of Community and Regional Affairs, from USDOE Grant DE-FG06-80CS6908. The publications use the original index code of the Norwegian “Byggdetaljer” series so that specific translations can be directly cited. All questions on these translations should be directed to Richard D. Seifert, Cooperative Extension Service, P.O. Box 756180, University of Alaska Fairbanks, Fairbanks, Alaska 99775-6180. Phone: 907-474-7201 0 GENERAL all the water that will flow through it. If the filter is placed on the outlet side of the cistern, only the 01 This bulletin describes construction of a cistern water that is used will be filtered. A filter will last for collecting and storing rainwater for household longer if water for washing, irrigation, and so on use. The design for a collection system and the is diverted and bypasses the filter. The simplest construction and maintenance of such a cistern are design is to place a filter in front of the drinking described.