Math 442: Final Project Cup Products and the Cohomology Ring Due

Total Page:16

File Type:pdf, Size:1020Kb

Math 442: Final Project Cup Products and the Cohomology Ring Due Math 442: Final Project Cup Products and the Cohomology Ring Due Thursday, March 17 One reason for discussing the cohomology H∗(X; R) of a space X with co- efficients in a commutative R is that these groups assemble into a graded com- mutative ring. It is that ring structure that gives cohomology its impact. The point of this project is define and discuss this product, and to give some basic examples. The reference for this material is Chapter 3.2 of Hatcher. In follows, R is a general, but fixed, commutative ring. If X is a topological • space, C•(X) and C (X; R) will denote the singular chains and cochains on X. Thus an element in Cn(X; R) can be regarded as a function α : Sn(X) −→ R on the set Sn(X) of singular n-simplices of X. If σ : ∆n → X is a singular n-simplex, recall that we have the first p-face operator fpσ and the last q-face operator `qσ. For example, fpσ(t0, . , tp) = σ(t0, . , tp, 0,..., 0) is the induced singular p-simplex. Definition: Suppose α ∈ Cp(X; R) and β ∈ Cq(X; R). Define the cup product p+q α ` β ∈ C (X; R) by the formula (α ` β)(σ) = α(fpσ)β(`qσ). Problem 1. Show that the cup product has the following properties: 1. For all α1, α2, and β, (α1 + α2) ` β = α1 ` β + α2 ` β. 2. For all α, β, and γ, we have (α ` β) ` γ = α ` (β ` γ). 3. If f : X → Y is a continuous map and α and β are cochains on Y , then ] ] ] ] • • f (α ` β) = f α ∪ f β. Here f : C (Y ; R) → C (X; R) is the induced map on cochains. 4. If e : S0X → R is the cocycle so that e(σ) = 1 for all singular 0-simplices, then e ` α = α ` e = α Problem 2. The cup product descends to cohomology. Prove that if δ is the coboundary map on cochains, we have p δ(α ` β) = δα ` β + (−1) α ` δβ where p is the degree of α. Conclude that there is a natural associative graded ring structure on H∗(X; R). (You may have to define this notion.) Remark: On cohomology, the cup product has the following commutativity property: if x ∈ Hp(X; R) and y ∈ Hq(Y ; R), then pq x ` y = (−1) y ` x. This is certainly not true on the chain level and we won’t prove that here. See Hatcher p. 215. Problem 3. Here is a formal property of the cup product. Let X and Y be two spaces and X t Y their disjoint union. Prove that, as rings H∗(X t Y ; R) = H∗(X; R) × H∗(Y ; R). The ring structure on the right is (α1, α2) ` (β1, β2) = (α1 ` β1, α2 ` β2). Use this to calculate H∗(X ∨ Y ; R) where X ∨ Y is the one point union of two locally contractible spaces. Problem 4. Here are two specific examples. Assuming that you can use a ∆-set structure on a space and the resulting ∆-chains for computations. (You can.) 1. Let T be the torus. Find generators x, y of H1(T, Z) and z of H2(T, Z) so that x ` x = 0 = y ` y x ` y = z = −y ` x. 2. Let K be the Klein bottle. Find generators x, y of H1(T, Z/2Z) and z of H2(T, Z/2Z) so that x ` x = z = x ` y y ` y = 0. Problem 5. Show that the torus T and the space S1 ∨ S1 ∨ S2 have the same cohomology groups but different cohomology rings. Problem 6. Let Mg be the g-holed torus, g ≥ 1. Calculate the cohomology ∗ ring H (Mg, Z) and show that the cup product 1 1 2 ∼ (−) ` (−): H (Mq) × H (Mg) → H (Mg) = Z has the following perfect-pairing property: if x 6= 0, then there exists y so that x ` y is a generator. Hint: There is a map Mg → M1 ∨ ... ∨ M1, where the g copies of M1. See p. 228 of Hatcher. Problem 7. Consider a continuous map f : Mg → Mk from the g-holed torus to the k-holed torus and suppose f∗ : H2(Mg) → H2(Mk). is an isomorphism. Prove k ≤ g. Hint: This problem has two parts. If k ≤ g, you have to construct a map. If ∗ 1 1 k > g then f : H (Mk, Z) → H (Mg, Z) must have non-trivial kernel (why?) and this isn’t possible by the perfect pairing part of the previous problem. Problem 8. Show that the cup-product extends to relative cohomology in the following way: if A, B ⊆ X are subspaces, then there is a cup-product pairing p q p+q (−) ` (−): H (X, A; R) × H (X, B; R) → H (X, A ∪ B; R). Conclude that if X is the union of two contractible subspace A and B, then the cup product of two elements of positive degree in the cohomology of X must be zero. Show that a suspension of a space Y is an example of such a space..
Recommended publications
  • MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21
    MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21 21. Applications of cup products in cohomology We are going to see some examples where we calculate or apply multiplicative structures on cohomology. But we start with a couple of facts we forgot to mention last time. Relative cup products Let (X;A) be a pair of spaces. The formula which specifies the cup product by its effect on a simplex (' [ )(σ) = '(σj[e0;:::;ep]) (σj[ep;:::;ep+q]) extends to relative cohomology. For, if σ : ∆p+q ! X has image in A, then so does any restriction of σ. Thus, if either ' or vanishes on chains with image in A, then so does ' [ . Hence we get relative cup product maps Hp(X; R) × Hq(X;A; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X;A; R) ! Hp+q(X;A; R): More generally, assume we have two open subsets A and B of X. Then the formula for ' [ on cochains implies that cup product yields a map Sp(X;A; R) × Sq(X;B; R) ! Sp+q(X;A + B; R) where Sn(X;A+B; R) denotes the subgroup of Sn(X; R) of cochains which vanish on sums of chains in A and chains in B. The natural inclusion Sn(X;A [ B; R) ,! Sn(X;A + B; R) induces an isomorphism in cohomology. For we have a map of long exact coho- mology sequences Hn(A [ B) / Hn(X) / Hn(X;A [ B) / Hn+1(A [ B) / Hn+1(X) Hn(A + B) / Hn(X) / Hn(X;A + B) / Hn+1(A + B) / Hn+1(X) 1 2 where we omit the coefficients.
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • D-Branes, RR-Fields and Duality on Noncommutative Manifolds
    D-BRANES, RR-FIELDS AND DUALITY ON NONCOMMUTATIVE MANIFOLDS JACEK BRODZKI, VARGHESE MATHAI, JONATHAN ROSENBERG, AND RICHARD J. SZABO Abstract. We develop some of the ingredients needed for string theory on noncommutative spacetimes, proposing an axiomatic formulation of T-duality as well as establishing a very general formula for D-brane charges. This formula is closely related to a noncommutative Grothendieck-Riemann-Roch theorem that is proved here. Our approach relies on a very general form of Poincar´eduality, which is studied here in detail. Among the technical tools employed are calculations with iterated products in bivariant K-theory and cyclic theory, which are simplified using a novel diagram calculus reminiscent of Feynman diagrams. Contents Introduction 2 Acknowledgments 3 1. D-Branes and Ramond-Ramond Charges 4 1.1. Flat D-Branes 4 1.2. Ramond-Ramond Fields 7 1.3. Noncommutative D-Branes 9 1.4. Twisted D-Branes 10 2. Poincar´eDuality 13 2.1. Exterior Products in K-Theory 13 2.2. KK-Theory 14 2.3. Strong Poincar´eDuality 16 2.4. Duality Groups 18 arXiv:hep-th/0607020v3 26 Jun 2007 2.5. Spectral Triples 19 2.6. Twisted Group Algebra Completions of Surface Groups 21 2.7. Other Notions of Poincar´eDuality 22 3. KK-Equivalence 23 3.1. Strong KK-Equivalence 24 3.2. Other Notions of KK-Equivalence 25 3.3. Universal Coefficient Theorem 26 3.4. Deformations 27 3.5. Homotopy Equivalence 27 4. Cyclic Theory 27 4.1. Formal Properties of Cyclic Homology Theories 27 4.2. Local Cyclic Theory 29 5.
    [Show full text]
  • Combinatorial Topology and Applications to Quantum Field Theory
    Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vivek Shende, Chair Professor Ian Agol Professor Constantin Teleman Professor Joel Moore Fall 2018 Abstract Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren Doctor of Philosophy in Mathematics University of California, Berkeley Professor Vivek Shende, Chair Topology has become increasingly important in the study of many-body quantum mechanics, in both high energy and condensed matter applications. While the importance of smooth topology has long been appreciated in this context, especially with the rise of index theory, torsion phenomena and dis- crete group symmetries are relatively new directions. In this thesis, I collect some mathematical results and conjectures that I have encountered in the exploration of these new topics. I also give an introduction to some quantum field theory topics I hope will be accessible to topologists. 1 To my loving parents, kind friends, and patient teachers. i Contents I Discrete Topology Toolbox1 1 Basics4 1.1 Discrete Spaces..........................4 1.1.1 Cellular Maps and Cellular Approximation.......6 1.1.2 Triangulations and Barycentric Subdivision......6 1.1.3 PL-Manifolds and Combinatorial Duality........8 1.1.4 Discrete Morse Flows...................9 1.2 Chains, Cycles, Cochains, Cocycles............... 13 1.2.1 Chains, Cycles, and Homology.............. 13 1.2.2 Pushforward of Chains.................. 15 1.2.3 Cochains, Cocycles, and Cohomology.........
    [Show full text]
  • The Decomposition Theorem, Perverse Sheaves and the Topology Of
    The decomposition theorem, perverse sheaves and the topology of algebraic maps Mark Andrea A. de Cataldo and Luca Migliorini∗ Abstract We give a motivated introduction to the theory of perverse sheaves, culminating in the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber. A goal of this survey is to show how the theory develops naturally from classical constructions used in the study of topological properties of algebraic varieties. While most proofs are omitted, we discuss several approaches to the decomposition theorem, indicate some important applications and examples. Contents 1 Overview 3 1.1 The topology of complex projective manifolds: Lefschetz and Hodge theorems 4 1.2 Families of smooth projective varieties . ........ 5 1.3 Singular algebraic varieties . ..... 7 1.4 Decomposition and hard Lefschetz in intersection cohomology . 8 1.5 Crash course on sheaves and derived categories . ........ 9 1.6 Decomposition, semisimplicity and relative hard Lefschetz theorems . 13 1.7 InvariantCycletheorems . 15 1.8 Afewexamples.................................. 16 1.9 The decomposition theorem and mixed Hodge structures . ......... 17 1.10 Historicalandotherremarks . 18 arXiv:0712.0349v2 [math.AG] 16 Apr 2009 2 Perverse sheaves 20 2.1 Intersection cohomology . 21 2.2 Examples of intersection cohomology . ...... 22 2.3 Definition and first properties of perverse sheaves . .......... 24 2.4 Theperversefiltration . .. .. .. .. .. .. .. 28 2.5 Perversecohomology .............................. 28 2.6 t-exactness and the Lefschetz hyperplane theorem . ...... 30 2.7 Intermediateextensions . 31 ∗Partially supported by GNSAGA and PRIN 2007 project “Spazi di moduli e teoria di Lie” 1 3 Three approaches to the decomposition theorem 33 3.1 The proof of Beilinson, Bernstein, Deligne and Gabber .
    [Show full text]
  • On the De Rham Cohomology of Algebraic Varieties
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. ROBIN HARTSHORNE On the de Rham cohomology of algebraic varieties Publications mathématiques de l’I.H.É.S., tome 45 (1975), p. 5-99 <http://www.numdam.org/item?id=PMIHES_1975__45__5_0> © Publications mathématiques de l’I.H.É.S., 1975, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES by ROBIN HARTSHORNE CONTENTS INTRODUCTION .............................................................................. 6 CHAPTER I. — Preliminaries .............................................................. n § i. Cohomology theories ............................................................... 9 § 2. Direct and inverse images .......................................................... 10 § 3. Hypercohomology ................................................................. 11 § 4. Inverse limits...................................................................... 12 § 5. Completions ...................................................................... 18 §
    [Show full text]
  • On the Spectrum of the Equivariant Cohomology Ring
    Canadian Journal of Mathematics doi:10.4153/CJM-2010-016-4 °c Canadian Mathematical Society 2009 On the Spectrum of the Equivariant Cohomology Ring Mark Goresky and Robert MacPherson Abstract. If an algebraic torus T acts on a complex projective algebraic variety X, then the affine ∗ C scheme Spec HT (X; ) associated with the equivariant cohomology is often an arrangement of lin- T C ear subspaces of the vector space H2 (X; ). In many situations the ordinary cohomology ring of X can be described in terms of this arrangement. 1 Introduction 1.1 Torus Actions and Equivariant Cohomology Suppose an algebraic torus T acts on a complex projective algebraic variety X. If the cohomology H∗(X; C) is equivariantly formal (see 2), then knowledge of the equiv- ∗ §∗ ariant cohomology HT (X; C) (as a module over HT (pt)) is equivalent to knowledge of the ordinary cohomology groups, viz. ∗ ∗ ∗ (1.1) H (X) = H (X) C H (pt), T ∼ ⊗ T ∗ ∗ (1.2) H (X) = H (X) H∗(pt) C. ∼ T ⊗ T However the equivariant cohomology is often easier to understand as a consequence of the localization theorem [3]. For example, in [16] the equivariant cohomology ∗ ring HT (X; C) of an equivariantly formal space X was described in terms of the fixed points and the one-dimensional orbits, provided there are finitely many of each. In this paper we pursue the link between the equivariant cohomology and the orbit ∗ structure of T by studying the affine scheme Spec HT (X) that is (abstractly) associ- ated with the equivariant cohomology ring. Under suitable hypotheses, it turns out (Theorem 3.1) that the associated reduced algebraic variety V is an “arrangement” of T linear subspaces of the vector space H2 (X).
    [Show full text]
  • GROUP and GALOIS COHOMOLOGY Romyar Sharifi
    GROUP AND GALOIS COHOMOLOGY Romyar Sharifi Contents Chapter 1. Group cohomology5 1.1. Group rings5 1.2. Group cohomology via cochains6 1.3. Group cohomology via projective resolutions 11 1.4. Homology of groups 14 1.5. Induced modules 16 1.6. Tate cohomology 18 1.7. Dimension shifting 23 1.8. Comparing cohomology groups 24 1.9. Cup products 34 1.10. Tate cohomology of cyclic groups 41 1.11. Cohomological triviality 44 1.12. Tate’s theorem 48 Chapter 2. Galois cohomology 53 2.1. Profinite groups 53 2.2. Cohomology of profinite groups 60 2.3. Galois theory of infinite extensions 64 2.4. Galois cohomology 67 2.5. Kummer theory 69 3 CHAPTER 1 Group cohomology 1.1. Group rings Let G be a group. DEFINITION 1.1.1. The group ring (or, more specifically, Z-group ring) Z[G] of a group G con- sists of the set of finite formal sums of group elements with coefficients in Z ( ) ∑ agg j ag 2 Z for all g 2 G; almost all ag = 0 : g2G with addition given by addition of coefficients and multiplication induced by the group law on G and Z-linearity. (Here, “almost all” means all but finitely many.) In other words, the operations are ∑ agg + ∑ bgg = ∑ (ag + bg)g g2G g2G g2G and ! ! ∑ agg ∑ bgg = ∑ ( ∑ akbk−1g)g: g2G g2G g2G k2G REMARK 1.1.2. In the above, we may replace Z by any ring R, resulting in the R-group ring R[G] of G. However, we shall need here only the case that R = Z.
    [Show full text]
  • Hodge Theory of Classifying Stacks
    Hodge theory of classifying stacks Burt Totaro This paper creates a correspondence between the representation theory of alge- braic groups and the topology of Lie groups. In more detail, we compute the Hodge and de Rham cohomology of the classifying space BG (defined as etale cohomology on the algebraic stack BG) for reductive groups G over many fields, including fields of small characteristic. These calculations have a direct relation with representation theory, yielding new results there. Eventually, p-adic Hodge theory should provide a more subtle relation between these calculations in positive characteristic and torsion in the cohomology of the classifying space BGC. For the representation theorist, this paper’s interpretation of certain Ext groups (notably for reductive groups in positive characteristic) as Hodge cohomology groups suggests spectral sequences that were not obvious in terms of Ext groups (Proposi- tion 10.3). We apply these spectral sequences to compute Ext groups in new cases. The spectral sequences form a machine that can lead to further calculations. One main result is an isomorphism between the Hodge cohomology of the clas- sifying stack BG and the cohomology of G as an algebraic group with coefficients in the ring O(g)= S(g∗) of polynomial functions on the Lie algebra g (Theorem 3.1): Hi(BG, Ωj) =∼ Hi−j(G, Sj (g∗)). This was shown by Bott over a field of characteristic 0 [5], but in fact the isomor- phism holds integrally. More generally, we give an analogous description of the equivariant Hodge cohomology of an affine scheme (Theorem 2.1). This was shown by Simpson and Teleman in characteristic 0 [23, Example 6.8(c)].
    [Show full text]
  • K-Theory for Group C -Algebras
    K-theory for group C∗-algebras Paul F. Baum1 and Rub´enJ. S´anchez-Garc´ıa2 1 Mathematics Department 206 McAllister Building The Pennsylvania State University University Park, PA 16802 USA [email protected] 2 Mathematisches Institut Heinrich-Heine-Universit¨atD¨usseldorf Universit¨atsstr. 1 40225 D¨usseldorf Germany [email protected] Final draft (Last compiled on July 30, 2009) Introduction These notes are based on a lecture course given by the first author in the Sedano Winter School on K-theory held in Sedano, Spain, on January 22- 27th of 2007. They aim at introducing K-theory of C∗-algebras, equivariant K-homology and KK-theory in the context of the Baum-Connes conjecture. We start by giving the main definitions, examples and properties of C∗- algebras in Section 1. A central construction is the reduced C∗-algebra of a locally compact, Hausdorff, second countable group G. In Section 2 we define K-theory for C∗-algebras, state the Bott periodicity theorem and establish the connection with Atiyah-Hirzebruch topological K-theory. Our main motivation will be to study the K-theory of the reduced C∗- algebra of a group G as above. The Baum-Connes conjecture asserts that these K-theory groups are isomorphic to the equivariant K-homology groups of a certain G-space, by means of the index map. The G-space is the universal example for proper actions of G, written EG. Hence we procceed by discussing proper actions in Section 3 and the universal space EG in Section 4. Equivariant K-homology is explained in Section 5.
    [Show full text]
  • Singular and De Rham Cohomology for the Grassmannian
    MASTER’S THESIS Singular and de Rham cohomology for the Grassmannian OSCAR ANGHAMMAR Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG Gothenburg, Sweden 2015 Thesis for the Degree of Master of Science Singular and de Rham cohomology for the Grassmannian Oscar Anghammar Department of Mathematical Sciences Division of Mathematics Chalmers University of Technology and University of Gothenburg SE – 412 96 Gothenburg, Sweden Gothenburg, June 2015 Abstract We compute the Poincar´epolynomial for the complex Grassmannian using de Rham cohomology. We also construct a CW complex on the Grassmannian using Schubert cells, and then we use these cells to construct a basis for the singular cohomology. We give an algorithm for calculating the number of cells, and use this to compare the basis in singular cohomology with the Poincar´epolynomial from de Rham cohomology. We also explore Schubert calculus and the connection between singular cohomology on the complex Grassmannian and the possible triples of eigenvalues to Hermitian ma- trices A + B = C, and give a brief discussion on if and how cohomologies can be used in the case of real skew-symmetric matrices. Acknowledgements I would like to thank my supervisor, Genkai Zhang. Contents 1 Introduction1 1.1 Outline of thesis................................2 2 de Rham Cohomology3 2.1 Differential forms................................3 2.2 Real projective spaces.............................6 2.3 Fiber bundles..................................8 2.4 Cech-deˇ Rham complexes...........................8 2.5 Complex projective spaces........................... 12 2.6 Ring structures................................. 14 2.7 Projectivization of complex vector spaces.................. 15 2.8 Projectivization of complex vector bundles.................
    [Show full text]
  • The Baum-Connes Conjecture: an Extended Survey
    The Baum-Connes conjecture: an extended survey Maria Paula GOMEZ APARICIO, Pierre JULG, and Alain VALETTE May 27, 2019 To Alain Connes, for providing lifelong inspiration Contents 1 Introduction 3 1.1 Building bridges . 3 1.2 In a nutshell - without coefficients... 4 1.3 ... and with coefficients . 5 1.4 Structureofthesenotes ......................... 5 1.5 Whatdoweknowin2019? ....................... 6 1.6 Agreatconjecture?............................ 7 1.7 Whichmathematicsareneeded? . 7 2 Birth of a conjecture 8 2.1 Elliptic (pseudo-) differential operators . 8 2.2 Square-integrablerepresentations . 9 2.3 Enters K-theory for group C∗-algebras................. 11 2.4 TheConnes-Kasparovconjecture . 12 2.5 TheNovikovconjecture .. .. .. .. .. .. .. .. .. .. .. 15 3 Index maps in K-theory: the contribution of Kasparov 17 3.1 Kasparovbifunctor............................ 17 3.2 DiracinductioninKK-theory . 19 arXiv:1905.10081v1 [math.OA] 24 May 2019 3.3 The dual Dirac method and the γ-element............... 19 3.4 FromK-theorytoK-homology . 21 3.5 Generalisation to the p-adiccase .................... 23 4 Towards the official version of the conjecture 25 4.1 Time-dependentleft-handside . 25 4.2 The classifying space for proper actions, and its K-homology . 27 4.3 The Baum-Connes-Higson formulation of the conjecture . .. 27 4.4 Generalizing the γ-elementmethod. .. .. .. .. .. .. .. .. 29 4.4.1 Thecaseofgroupsactingonbolicspaces . 29 1 4.4.2 Tu’sabstractgammaelement . 30 4.4.3 Nishikawa’s new approach . 32 4.5 Consequences of the Baum-Connes conjecture . .. 33 4.5.1 Injectivity: theNovikovconjecture . 33 4.5.2 Injectivity: the Gromov-Lawson-Rosenberg conjecture . .. 35 4.5.3 Surjectivity: the Kadison-Kaplansky conjecture . 35 4.5.4 Surjectivity: vanishing of a topological Whitehead group .
    [Show full text]