Singular and De Rham Cohomology for the Grassmannian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Products in Homology and Cohomology Via Acyclic Models
EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY CHRIS KOTTKE 1. The Eilenberg-Zilber Theorem 1.1. Tensor products of chain complexes. Let C∗ and D∗ be chain complexes. We define the tensor product complex by taking the chain space M M C∗ ⊗ D∗ = (C∗ ⊗ D∗)n ; (C∗ ⊗ D∗)n = Cp ⊗ Dq n2Z p+q=n with differential defined on generators by p @⊗(a ⊗ b) := @a ⊗ b + (−1) a ⊗ @b; a 2 Cp; b 2 Dq (1) and extended to all of C∗ ⊗ D∗ by bilinearity. Note that the sign convention (or 2 something similar to it) is required in order for @⊗ ≡ 0 to hold, i.e. in order for C∗ ⊗ D∗ to be a complex. Recall that if X and Y are CW-complexes, then X × Y has a natural CW- complex structure, with cells given by the products of cells on X and cells on Y: As an exercise in cellular homology computations, you may wish to verify for yourself that CW CW ∼ CW C∗ (X) ⊗ C∗ (Y ) = C∗ (X × Y ): This involves checking that the cellular boundary map satisfies an equation like (1) on products a × b of cellular chains. We would like something similar for general spaces, using singular chains. Of course, the product ∆p × ∆q of simplices is not a p + q simplex, though it can be subdivided into such simplices. There are two ways to do this: one way is direct, involving the combinatorics of so-called \shuffle maps," and is somewhat tedious. The other method goes by the name of \acyclic models" and is a very slick (though nonconstructive) way of producing chain maps between C∗(X) ⊗ C∗(Y ) 1 and C∗(X × Y ); and is the method we shall follow, following [Bre97]. -
Homology of Cellular Structures Allowing Multi-Incidence Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier
Homology of Cellular Structures Allowing Multi-incidence Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier To cite this version: Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier. Homology of Cellular Structures Allowing Multi-incidence. Discrete and Computational Geometry, Springer Verlag, 2015, 54 (1), pp.42-77. 10.1007/s00454-015-9662-5. hal-01189215 HAL Id: hal-01189215 https://hal.archives-ouvertes.fr/hal-01189215 Submitted on 15 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Homology of Cellular Structures allowing Multi-Incidence S. Alayrangues · G. Damiand · P. Lienhardt · S. Peltier Abstract This paper focuses on homology computation over "cellular" structures whose cells are not necessarily homeomorphic to balls and which allow multi- incidence between cells. We deal here with combinatorial maps, more precisely chains of maps and subclasses as generalized maps and maps. Homology computa- tion on such structures is usually achieved by computing simplicial homology on a simplicial analog. But such an approach is computationally expensive as it requires to compute this simplicial analog and to perform the homology computation on a structure containing many more cells (simplices) than the initial one. -
Classification on the Grassmannians
GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Classification on the Grassmannians: Theory and Applications Jen-Mei Chang Department of Mathematics and Statistics California State University, Long Beach [email protected] AMS Fall Western Section Meeting Special Session on Metric and Riemannian Methods in Shape Analysis October 9, 2010 at UCLA GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Outline 1 Geometric Framework Evolution of Classification Paradigms Grassmann Framework Grassmann Separability 2 Some Empirical Results Illumination Illumination + Low Resolutions 3 Compression on G(k, n) Motivations, Definitions, and Algorithms Karcher Compression for Face Recognition GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Architectures Historically Currently single-to-single subspace-to-subspace )2( )3( )1( d ( P,x ) d ( P,x ) d(P,x ) ... P G , , … , x )1( x )2( x( N) single-to-many many-to-many Image Set 1 … … G … … p * P , Grassmann Manifold Image Set 2 * X )1( X )2( … X ( N) q Project Eigenfaces GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Some Approaches • Single-to-Single 1 Euclidean distance of feature points. 2 Correlation. • Single-to-Many 1 Subspace method [Oja, 1983]. 2 Eigenfaces (a.k.a. Principal Component Analysis, KL-transform) [Sirovich & Kirby, 1987], [Turk & Pentland, 1991]. 3 Linear/Fisher Discriminate Analysis, Fisherfaces [Belhumeur et al., 1997]. 4 Kernel PCA [Yang et al., 2000]. GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Some Approaches • Many-to-Many 1 Tangent Space and Tangent Distance - Tangent Distance [Simard et al., 2001], Joint Manifold Distance [Fitzgibbon & Zisserman, 2003], Subspace Distance [Chang, 2004]. -
Arxiv:1711.05949V2 [Math.RT] 27 May 2018 Mials, One Obtains a Sum Whose Summands Are Rational Functions in Ti
RESIDUES FORMULAS FOR THE PUSH-FORWARD IN K-THEORY, THE CASE OF G2=P . ANDRZEJ WEBER AND MAGDALENA ZIELENKIEWICZ Abstract. We study residue formulas for push-forward in the equivariant K-theory of homogeneous spaces. For the classical Grassmannian the residue formula can be obtained from the cohomological formula by a substitution. We also give another proof using sym- plectic reduction and the method involving the localization theorem of Jeffrey–Kirwan. We review formulas for other classical groups, and we derive them from the formulas for the classical Grassmannian. Next we consider the homogeneous spaces for the exceptional group G2. One of them, G2=P2 corresponding to the shorter root, embeds in the Grass- mannian Gr(2; 7). We find its fundamental class in the equivariant K-theory KT(Gr(2; 7)). This allows to derive a residue formula for the push-forward. It has significantly different character comparing to the classical groups case. The factor involving the fundamen- tal class of G2=P2 depends on the equivariant variables. To perform computations more efficiently we apply the basis of K-theory consisting of Grothendieck polynomials. The residue formula for push-forward remains valid for the homogeneous space G2=B as well. 1. Introduction ∗ r Suppose an algebraic torus T = (C ) acts on a complex variety X which is smooth and complete. Let E be an equivariant complex vector bundle over X. Then E defines an element of the equivariant K-theory of X. In our setting there is no difference whether one considers the algebraic K-theory or the topological one. -
0.1 Euler Characteristic
0.1 Euler Characteristic Definition 0.1.1. Let X be a finite CW complex of dimension n and denote by ci the number of i-cells of X. The Euler characteristic of X is defined as: n X i χ(X) = (−1) · ci: (0.1.1) i=0 It is natural to question whether or not the Euler characteristic depends on the cell structure chosen for the space X. As we will see below, this is not the case. For this, it suffices to show that the Euler characteristic depends only on the cellular homology of the space X. Indeed, cellular homology is isomorphic to singular homology, and the latter is independent of the cell structure on X. Recall that if G is a finitely generated abelian group, then G decomposes into a free part and a torsion part, i.e., r G ' Z × Zn1 × · · · Znk : The integer r := rk(G) is the rank of G. The rank is additive in short exact sequences of finitely generated abelian groups. Theorem 0.1.2. The Euler characteristic can be computed as: n X i χ(X) = (−1) · bi(X) (0.1.2) i=0 with bi(X) := rk Hi(X) the i-th Betti number of X. In particular, χ(X) is independent of the chosen cell structure on X. Proof. We use the following notation: Bi = Image(di+1), Zi = ker(di), and Hi = Zi=Bi. Consider a (finite) chain complex of finitely generated abelian groups and the short exact sequences defining homology: dn+1 dn d2 d1 d0 0 / Cn / ::: / C1 / C0 / 0 ι di 0 / Zi / Ci / / Bi−1 / 0 di+1 q 0 / Bi / Zi / Hi / 0 The additivity of rank yields that ci := rk(Ci) = rk(Zi) + rk(Bi−1) and rk(Zi) = rk(Bi) + rk(Hi): Substitute the second equality into the first, multiply the resulting equality by (−1)i, and Pn i sum over i to get that χ(X) = i=0(−1) · rk(Hi). -
Filtering Grassmannian Cohomology Via K-Schur Functions
FILTERING GRASSMANNIAN COHOMOLOGY VIA K-SCHUR FUNCTIONS THE 2020 POLYMATH JR. \Q-B-AND-G" GROUPy Abstract. This paper is concerned with studying the Hilbert Series of the subalgebras of the cohomology rings of the complex Grassmannians and La- grangian Grassmannians. We build upon a previous conjecture by Reiner and Tudose for the complex Grassmannian and present an analogous conjecture for the Lagrangian Grassmannian. Additionally, we summarize several poten- tial approaches involving Gr¨obnerbases, homological algebra, and algebraic topology. Then we give a new interpretation to the conjectural expression for the complex Grassmannian by utilizing k-conjugation. This leads to two conjectural bases that would imply the original conjecture for the Grassman- nian. Finally, we comment on how this new approach foreshadows the possible existence of analogous k-Schur functions in other Lie types. Contents 1. Introduction2 2. Conjectures3 2.1. The Grassmannian3 2.2. The Lagrangian Grassmannian4 3. A Gr¨obnerBasis Approach 12 3.1. Patterns, Patterns and more Patterns 12 3.2. A Lex-greedy Approach 20 4. An Approach Using Natural Maps Between Rings 23 4.1. Maps Between Grassmannians 23 4.2. Maps Between Lagrangian Grassmannians 24 4.3. Diagrammatic Reformulation for the Two Main Conjectures 24 4.4. Approach via Coefficient-Wise Inequalities 27 4.5. Recursive Formula for Rk;` 27 4.6. A \q-Pascal Short Exact Sequence" 28 n;m 4.7. Recursive Formula for RLG 30 4.8. Doubly Filtered Basis 31 5. Schur and k-Schur Functions 35 5.1. Schur and Pieri for the Grassmannian 36 5.2. Schur and Pieri for the Lagrangian Grassmannian 37 Date: August 2020. -
§4 Grassmannians 73
§4 Grassmannians 4.1 Plücker quadric and Gr(2,4). Let 푉 be 4-dimensional vector space. e set of all 2-di- mensional vector subspaces 푈 ⊂ 푉 is called the grassmannian Gr(2, 4) = Gr(2, 푉). More geomet- rically, the grassmannian Gr(2, 푉) is the set of all lines ℓ ⊂ ℙ = ℙ(푉). Sending 2-dimensional vector subspace 푈 ⊂ 푉 to 1-dimensional subspace 훬푈 ⊂ 훬푉 or, equivalently, sending a line (푎푏) ⊂ ℙ(푉) to 한 ⋅ 푎 ∧ 푏 ⊂ 훬푉 , we get the Plücker embedding 픲 ∶ Gr(2, 4) ↪ ℙ = ℙ(훬 푉). (4-1) Its image consists of all decomposable¹ grassmannian quadratic forms 휔 = 푎∧푏 , 푎, 푏 ∈ 푉. Clearly, any such a form has zero square: 휔 ∧ 휔 = 푎 ∧ 푏 ∧ 푎 ∧ 푏 = 0. Since an arbitrary form 휉 ∈ 훬푉 can be wrien¹ in appropriate basis of 푉 either as 푒 ∧ 푒 or as 푒 ∧ 푒 + 푒 ∧ 푒 and in the laer case 휉 is not decomposable, because of 휉 ∧ 휉 = 2 푒 ∧ 푒 ∧ 푒 ∧ 푒 ≠ 0, we conclude that 휔 ∈ 훬 푉 is decomposable if an only if 휔 ∧ 휔 = 0. us, the image of (4-1) is the Plücker quadric 푃 ≝ { 휔 ∈ 훬푉 | 휔 ∧ 휔 = 0 } (4-2) If we choose a basis 푒, 푒, 푒, 푒 ∈ 푉, the monomial basis 푒 = 푒 ∧ 푒 in 훬 푉, and write 푥 for the homogeneous coordinates along 푒, then straightforward computation 푥 ⋅ 푒 ∧ 푒 ∧ 푥 ⋅ 푒 ∧ 푒 = 2 푥 푥 − 푥 푥 + 푥 푥 ⋅ 푒 ∧ 푒 ∧ 푒 ∧ 푒 < < implies that 푃 is given by the non-degenerated quadratic equation 푥푥 = 푥푥 + 푥푥 . -
1 CW Complex, Cellular Homology/Cohomology
Our goal is to develop a method to compute cohomology algebra and rational homotopy group of fiber bundles. 1 CW complex, cellular homology/cohomology Definition 1. (Attaching space with maps) Given topological spaces X; Y , closed subset A ⊂ X, and continuous map f : A ! y. We define X [f Y , X t Y / ∼ n n n−1 n where x ∼ y if x 2 A and f(x) = y. In the case X = D , A = @D = S , D [f X is said to be obtained by attaching to X the cell (Dn; f). n−1 n n Proposition 1. If f; g : S ! X are homotopic, then D [f X and D [g X are homotopic. Proof. Let F : Sn−1 × I ! X be the homotopy between f; g. Then in fact n n n D [f X ∼ (D × I) [F X ∼ D [g X Definition 2. (Cell space, cell complex, cellular map) 1. A cell space is a topological space obtained from a finite set of points by iterating the procedure of attaching cells of arbitrary dimension, with the condition that only finitely many cells of each dimension are attached. 2. If each cell is attached to cells of lower dimension, then the cell space X is called a cell complex. Define the n−skeleton of X to be the subcomplex consisting of cells of dimension less than n, denoted by Xn. 3. A continuous map f between cell complexes X; Y is called cellular if it sends Xk to Yk for all k. Proposition 2. 1. Every cell space is homotopic to a cell complex. -
8. Grassmannians
66 Andreas Gathmann 8. Grassmannians After having introduced (projective) varieties — the main objects of study in algebraic geometry — let us now take a break in our discussion of the general theory to construct an interesting and useful class of examples of projective varieties. The idea behind this construction is simple: since the definition of projective spaces as the sets of 1-dimensional linear subspaces of Kn turned out to be a very useful concept, let us now generalize this and consider instead the sets of k-dimensional linear subspaces of Kn for an arbitrary k = 0;:::;n. Definition 8.1 (Grassmannians). Let n 2 N>0, and let k 2 N with 0 ≤ k ≤ n. We denote by G(k;n) the set of all k-dimensional linear subspaces of Kn. It is called the Grassmannian of k-planes in Kn. Remark 8.2. By Example 6.12 (b) and Exercise 6.32 (a), the correspondence of Remark 6.17 shows that k-dimensional linear subspaces of Kn are in natural one-to-one correspondence with (k − 1)- n− dimensional linear subspaces of P 1. We can therefore consider G(k;n) alternatively as the set of such projective linear subspaces. As the dimensions k and n are reduced by 1 in this way, our Grassmannian G(k;n) of Definition 8.1 is sometimes written in the literature as G(k − 1;n − 1) instead. Of course, as in the case of projective spaces our goal must again be to make the Grassmannian G(k;n) into a variety — in fact, we will see that it is even a projective variety in a natural way. -
Grassmannians Via Projection Operators and Some of Their Special Submanifolds ∗
GRASSMANNIANS VIA PROJECTION OPERATORS AND SOME OF THEIR SPECIAL SUBMANIFOLDS ∗ IVKO DIMITRIC´ Department of Mathematics, Penn State University Fayette, Uniontown, PA 15401-0519, USA E-mail: [email protected] We study submanifolds of a general Grassmann manifold which are of 1-type in a suitably defined Euclidean space of F−Hermitian matrices (such a submanifold is minimal in some hypersphere of that space and, apart from a translation, the im- mersion is built using eigenfunctions from a single eigenspace of the Laplacian). We show that a minimal 1-type hypersurface of a Grassmannian is mass-symmetric and has the type-eigenvalue which is a specific number in each dimension. We derive some conditions on the mean curvature of a 1-type hypersurface of a Grassmannian and show that such a hypersurface with a nonzero constant mean curvature has at most three constant principal curvatures. At the end, we give some estimates of the first nonzero eigenvalue of the Laplacian on a compact submanifold of a Grassmannian. 1. Introduction The Grassmann manifold of k dimensional subspaces of the vector space − Fm over a field F R, C, H can be conveniently defined as the base man- ∈{ } ifold of the principal fibre bundle of the corresponding Stiefel manifold of F unitary frames, where a frame is projected onto the F plane spanned − − by it. As observed already in 1927 by Cartan, all Grassmannians are sym- metric spaces and they have been studied in such context ever since, using the root systems and the Lie algebra techniques. However, the submani- fold geometry in Grassmannians of higher rank is much less developed than the corresponding geometry in rank-1 symmetric spaces, the notable excep- tions being the classification of the maximal totally geodesic submanifolds (the well known results of J.A. -
Algebraic Topology 565 2016
Algebraic Topology 565 2016 February 21, 2016 The general format of the course is as in Fall quarter. We'll use Hatcher Chapters 3-4, and we'll start using selected part of Milnor's Characteristic classes. One global notation change: From now on we fix a principal ideal domain R, and let H∗X denote H∗(X; R). This change extends in the obvious way to other notations: C∗X means RS·X (singular chains with coefficients in R), tensor products and Tor are over R, cellular homology is with coefficients in R, and so on. Course outline Note: Applications and exercises are still to appear. Some parts of the outline below won't make sense yet, but still serve to give the general idea. 1. Homology of products. There are two steps to compute the homology of a product ∼ X × Y : (i) The Eilenberg-Zilber theorem that gives a chain equivalence C∗X ⊗ C∗Y = C∗(X × Y ), and (ii) the purely algebraic Kunneth theorem that expresses the homology of a tensor product of chain complexes in terms of tensor products and Tor's of the homology of the individual complexes. I plan to only state part (ii) and leave the proof to the text. On the other hand, I'll take a very different approach to (i), not found in Hatcher: the method of acyclic models. This more categorical approach is very slick and yields easy proofs of some technical theorems that are crucial for the cup product in cohomology later. There are explicit formulas for certain choices of the above chain equivalence and its inverse; in particular there is a very simple and handy formula for an inverse, known as the Alexander- Whitney map. -
On the De Rham Cohomology of Algebraic Varieties
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. ROBIN HARTSHORNE On the de Rham cohomology of algebraic varieties Publications mathématiques de l’I.H.É.S., tome 45 (1975), p. 5-99 <http://www.numdam.org/item?id=PMIHES_1975__45__5_0> © Publications mathématiques de l’I.H.É.S., 1975, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES by ROBIN HARTSHORNE CONTENTS INTRODUCTION .............................................................................. 6 CHAPTER I. — Preliminaries .............................................................. n § i. Cohomology theories ............................................................... 9 § 2. Direct and inverse images .......................................................... 10 § 3. Hypercohomology ................................................................. 11 § 4. Inverse limits...................................................................... 12 § 5. Completions ...................................................................... 18 §