→Cn−1(X,A; G) Becomes the Map ∂ ⊗ 11 : Cn(X, A)⊗G→Cn−1(X, A)⊗G Where ∂ : Cn(X, A)→Cn−1(X, A) Is the Usual Boundary Map for Z Coefficients
Universal Coefficients for Homology Section 3.A 261 The main goal in this section is an algebraic formula for computing homology with arbitrary coefficients in terms of homology with Z coefficients. The theory parallels rather closely the universal coefficient theorem for cohomology in §3.1. The first step is to formulate the definition of homology with coefficients in terms of tensor products. The chain group Cn(X; G) as defined in §2.2 consists of the finite n formal sums i giσi with gi ∈ G and σi : →X . This means that Cn(X; G) is a P direct sum of copies of G, with one copy for∆ each singular n simplex in X . More gen- erally, the relative chain group Cn(X,A; G) = Cn(X; G)/Cn(A; G) is also a direct sum of copies of G, one for each singular n simplex in X not contained in A. From the basic properties of tensor products listed in the discussion of the Kunneth¨ formula in §3.2 it follows that Cn(X,A; G) is naturally isomorphic to Cn(X, A)⊗G, via the correspondence i giσi ֏ i σi ⊗ gi . Under this isomorphism the boundary map P P Cn(X,A; G)→Cn−1(X,A; G) becomes the map ∂ ⊗ 11 : Cn(X, A)⊗G→Cn−1(X, A)⊗G where ∂ : Cn(X, A)→Cn−1(X, A) is the usual boundary map for Z coefficients. Thus we have the following algebraic problem: ∂n Given a chain complex ··· →- Cn -----→Cn−1 →- ··· of free abelian groups Cn , is it possible to compute the homology groups Hn(C; G) of the associated ∂n ⊗11 chain complex ··· -----→Cn ⊗G ----------------------------→ Cn−1 ⊗G -----→··· just in terms of G and the homology groups Hn(C) of the original complex? To approach this problem, the idea will be to compare the chain complex C with two simpler subcomplexes, the subcomplexes consisting of the cycles and the boundaries in C , and see what happens upon tensoring all three complexes with G.
[Show full text]