Algebraic Topology 565 2016

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Topology 565 2016 Algebraic Topology 565 2016 February 21, 2016 The general format of the course is as in Fall quarter. We'll use Hatcher Chapters 3-4, and we'll start using selected part of Milnor's Characteristic classes. One global notation change: From now on we fix a principal ideal domain R, and let H∗X denote H∗(X; R). This change extends in the obvious way to other notations: C∗X means RS·X (singular chains with coefficients in R), tensor products and Tor are over R, cellular homology is with coefficients in R, and so on. Course outline Note: Applications and exercises are still to appear. Some parts of the outline below won't make sense yet, but still serve to give the general idea. 1. Homology of products. There are two steps to compute the homology of a product ∼ X × Y : (i) The Eilenberg-Zilber theorem that gives a chain equivalence C∗X ⊗ C∗Y = C∗(X × Y ), and (ii) the purely algebraic Kunneth theorem that expresses the homology of a tensor product of chain complexes in terms of tensor products and Tor's of the homology of the individual complexes. I plan to only state part (ii) and leave the proof to the text. On the other hand, I'll take a very different approach to (i), not found in Hatcher: the method of acyclic models. This more categorical approach is very slick and yields easy proofs of some technical theorems that are crucial for the cup product in cohomology later. There are explicit formulas for certain choices of the above chain equivalence and its inverse; in particular there is a very simple and handy formula for an inverse, known as the Alexander- Whitney map. In particular we will have an external product operation H∗X ⊗ H∗Y −!H∗(X × Y ) that is injective, is an isomorphism if one of H∗X, H∗Y is torsion-free (e.g. R is a field), and is associative and anti-commutative. If X is a topological group or even a \Hopf monoid" (a.k.a. \homotopy associative H-space"), this will yield a natural ring structure on H∗X. Moreover H∗X becomes a \Hopf algebra", a property we will only discuss briefly here (but Hopf algebras and their topological manifestations would make a great topic for a presentation). Other related topics include homology of smash products (it behaves the same way, but using reduced homology) and cellular homology of products of CW-complexes. Note: The combination of Eilenberg-Zilber + Kunneth for C∗X, C∗Y is usually referred to simply as \the Kunneth theorem". I'll often follow this practice. 2. Cohomology. Cohomology is roughly the R-dual of homology, and is exactly the R- dual when the homology is R-free. Many of its basic properties follow directly from the 1 corresponding properties of the singular chain complex and homology; the proofs of these will be left to you (e.g. homotopy invariance, excision). The big difference is simply that cohomology is contravariant. This causes trouble in certain situations. For example, taking duals doesn't commute with tensor products, which complicates the cohomology Kunneth theorem. Also, a direct system of spaces gives rise to an inverse system in cohomology, which can be problematic because in contrast to direct limits, inverse limits need not be exact. We'll deal with these issues as they arise. On the other hand, the contravariance has the huge advantage that it yields a ring structure. The ring structure discussed in (1) only applies to Hopf monoids, and as we'll see it is very rare for a space to admit the structure of Hopf monoid. Cohomology always has a ring structure, for the following simple reason: In both homology and cohomology we have an external product operation as described above. Since cohomology is contravariant, we can pull back the external product for X × X along the diagonal ∆ : X−!X × X, thereby obtaining a functorial anti-commutative ring structure on H∗X. This extra structure is very powerful; for instance, homotopy-equivalent spaces must have isomorphic cohomology rings. The cup product generalizes to a relative cup product H∗(X; A) ⊗ H∗(Y; B)−!H∗(X × Y; A × Y [ X × B): By a kind of formal adjunction we'll also get the \cap product" that makes H∗X a module over H∗X. In order to make use of this ring structure, obviously we have to compute it; this is where life begins to get difficult. There are two basic ways to at least get a foothold: (i) Poincar´eduality; and (ii) the Thom isomorphism and Gysin sequence. Then one can use the Kunneth theorem to get further computations. Our computational power will be enhanced a thousand-fold once we have spectral sequences, to be studied in Spring quarter. But to get started we'll focus on (i), which is of great importance in its own right. 3. Poincar´eduality. This comes in several increasingly general flavors. We'll focus on the basic case first, namely the homology and cohomology of compact, boundaryless manifolds M. If dim M = n, the duality says that subject to a certain orientability condition, there k ∼ are isomorphisms H M = Hn−kM. This already puts restrictions on the homology of M, but the specific way in which the isomorphism comes about yields much more information: There is a \fundamental class" [M] 2 HnM, and the isomorphism is given by cap product λ 7! λ \ M. Since the cap product is defined in terms of the cup product, this will allow us to compute the ring structure in cohomology for real and complex projective spaces. Even if we are only interested in the compact case, we will be forced to consider non- compact manifolds as well. The point is that for our compact M we'd like to prove Poincar´e duality by some kind of induction over a covering by charts, perhaps using the Mayer-Vietoris sequence, but the charts aren't compact. The solution is to prove a more general theorem for non-compact manifolds, in which cohomology has to be replaced by cohomology with compact supports. Although efficient, the above approach to Poincar´eduality is dry and uninspiring. Rest assured that we'll bring it all back to the beautiful world of smooth manifolds and geom- etry, in particular showing how the duality is reflected in intersection theory (transversal 2 intersections of smooth embedded submanifolds). But for some of this we'll need the next topic: 4. The Thom isomorphism, the Euler class and the Gysin sequence. The reference for this part is Milnor's text. Let X be a compact Hausdorff space and let E be an n- dimensional vector bundle over X. We assume that either E is oriented or the coefficient ring R = F2. The Thom space T h(E) of E is just the one-point compactification of E. There k is a canonical Thom class uE 2 H T h(E) such that (relative) cup product with uE gives an isomorphism H∗X−!H~ ∗+nT h(E). One should think of this as a generalization of the suspension isomorphism, which corresponds to the case of a trivial bundle. The zero-section defines an inclusion i : X−!T h(E), and the Euler class is defined by ∗ e(E) = i uE. If the bundle is trivial then e(E) = 0, so this will give us (finally!) a sys- tematic way to show that certain bundles are non-trivial. In fact if the bundle even has a non-vanishing section then e(E) = 0. The Euler class is the first example of a char- acteristic class for vector bundles (to be studied in generality in spring). Euler's name is attached to it because when X is a smooth compact manifold and τM is the tangent bundle, ∗ ∗ e(τM ) = χ(M)[M] , where χ is the Euler characteristic and [M] is the fundamental class in cohomology. Using cup product with the Euler class, we'll get a certain long exact sequence called the Gysin sequence that will help us compute a few more cohomology rings. 5. Homotopy theory. 1. Based versus unbased homotopy classes, action of the funda- mental groupoid on homotopy classes of maps (including homotopy groups). This material is scattered through Ch. 4 of Hatcher. It will be nice to have it settled at the beginning. 2. Compression lemma, weak equivalences, Whitehead's theorem, cellular approximation. At this point we can easily construct K(G; 1)-spaces (i.e. spaces with fundamental group G and all higher homotopy groups trivial). 3. Then there is the fantastically useful homology version of Whitehead's theorem. This says that if the CW-complexes involved are simply-connected (a hypothesis that can be weakened but not eliminated), then a map inducing an isomorphism on homology also in- duces an isomorphism on homotopy groups and hence is a homotopy equivalence by the basic Whitehead theorem. One approach to this, found in Hatcher, involves relative homotopy groups and the relative Hurewicz theorem. The downside of relative homotopy groups is that they are a bit messy; for example they are only groups for n ≥ 2 and only abelian for n ≥ 3. Another approach involves fibrations and the Serre spectral sequence. I prefer the latter approach because the payoff for time invested is a thousand times higher than what you get from relative homotopy groups. The downside is that we will have to postpone the proof (of homology Whitehead) until spring. 4. CW-approximation (this says that every space is weakly equivalent to a CW-complex).
Recommended publications
  • Equivariant Geometric K-Homology with Coefficients
    Equivariant geometric K-homology with coefficients Michael Walter Equivariant geometric K-homology with coefficients Diplomarbeit vorgelegt von Michael Walter geboren in Lahr angefertigt am Mathematischen Institut der Georg-August-Universität zu Göttingen 2010 v Equivariant geometric K-homology with coefficients Michael Walter Abstract K-homology is the dual of K-theory. Kasparov’s analytic version, where cycles are given by (ab- stract) elliptic operators over (not necessarily commutative) spaces, has proved to be an extremely powerful tool which, together with its bivariant generalization KK-theory, lies at the heart of many important results at the intersection of algebraic topology, functional analysis and geome- try. Independently, Baum and Douglas have proposed a geometric version of K-homology inspired by singular bordism. Cycles for this theory are given by vector bundles over compact Spinc- manifolds with boundary which map to the target, i.e. E f (M, BM) / (X, Y). There is a natural transformation to analytic K-homology defined by sending such a cycle to the pushforward of the class determined by the twisted Dirac operator. It is well-known to be an isomorphism, although a rigorous proof has appeared only recently. While both theories have obvious generalizations to the equivariant case and coefficients, the question whether these remain isomorphic is far from trivial (and has negative answer in the general case). In their work on equivariant correspondences Emerson and Meyer have isolated a useful sufficient condition for their theory which, while vastly more general, only deals with the absolute case. Our focus is not so much to construct a geometric theory in the most general situation, but to show that in the presence of a group action and coefficients the above picture still gives a generalized homology theory in a very geometrical way, isomorphic to Kasparov’s theory.
    [Show full text]
  • Products in Homology and Cohomology Via Acyclic Models
    EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY CHRIS KOTTKE 1. The Eilenberg-Zilber Theorem 1.1. Tensor products of chain complexes. Let C∗ and D∗ be chain complexes. We define the tensor product complex by taking the chain space M M C∗ ⊗ D∗ = (C∗ ⊗ D∗)n ; (C∗ ⊗ D∗)n = Cp ⊗ Dq n2Z p+q=n with differential defined on generators by p @⊗(a ⊗ b) := @a ⊗ b + (−1) a ⊗ @b; a 2 Cp; b 2 Dq (1) and extended to all of C∗ ⊗ D∗ by bilinearity. Note that the sign convention (or 2 something similar to it) is required in order for @⊗ ≡ 0 to hold, i.e. in order for C∗ ⊗ D∗ to be a complex. Recall that if X and Y are CW-complexes, then X × Y has a natural CW- complex structure, with cells given by the products of cells on X and cells on Y: As an exercise in cellular homology computations, you may wish to verify for yourself that CW CW ∼ CW C∗ (X) ⊗ C∗ (Y ) = C∗ (X × Y ): This involves checking that the cellular boundary map satisfies an equation like (1) on products a × b of cellular chains. We would like something similar for general spaces, using singular chains. Of course, the product ∆p × ∆q of simplices is not a p + q simplex, though it can be subdivided into such simplices. There are two ways to do this: one way is direct, involving the combinatorics of so-called \shuffle maps," and is somewhat tedious. The other method goes by the name of \acyclic models" and is a very slick (though nonconstructive) way of producing chain maps between C∗(X) ⊗ C∗(Y ) 1 and C∗(X × Y ); and is the method we shall follow, following [Bre97].
    [Show full text]
  • Homology of Cellular Structures Allowing Multi-Incidence Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier
    Homology of Cellular Structures Allowing Multi-incidence Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier To cite this version: Sylvie Alayrangues, Guillaume Damiand, Pascal Lienhardt, Samuel Peltier. Homology of Cellular Structures Allowing Multi-incidence. Discrete and Computational Geometry, Springer Verlag, 2015, 54 (1), pp.42-77. 10.1007/s00454-015-9662-5. hal-01189215 HAL Id: hal-01189215 https://hal.archives-ouvertes.fr/hal-01189215 Submitted on 15 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Homology of Cellular Structures allowing Multi-Incidence S. Alayrangues · G. Damiand · P. Lienhardt · S. Peltier Abstract This paper focuses on homology computation over "cellular" structures whose cells are not necessarily homeomorphic to balls and which allow multi- incidence between cells. We deal here with combinatorial maps, more precisely chains of maps and subclasses as generalized maps and maps. Homology computa- tion on such structures is usually achieved by computing simplicial homology on a simplicial analog. But such an approach is computationally expensive as it requires to compute this simplicial analog and to perform the homology computation on a structure containing many more cells (simplices) than the initial one.
    [Show full text]
  • 0.1 Euler Characteristic
    0.1 Euler Characteristic Definition 0.1.1. Let X be a finite CW complex of dimension n and denote by ci the number of i-cells of X. The Euler characteristic of X is defined as: n X i χ(X) = (−1) · ci: (0.1.1) i=0 It is natural to question whether or not the Euler characteristic depends on the cell structure chosen for the space X. As we will see below, this is not the case. For this, it suffices to show that the Euler characteristic depends only on the cellular homology of the space X. Indeed, cellular homology is isomorphic to singular homology, and the latter is independent of the cell structure on X. Recall that if G is a finitely generated abelian group, then G decomposes into a free part and a torsion part, i.e., r G ' Z × Zn1 × · · · Znk : The integer r := rk(G) is the rank of G. The rank is additive in short exact sequences of finitely generated abelian groups. Theorem 0.1.2. The Euler characteristic can be computed as: n X i χ(X) = (−1) · bi(X) (0.1.2) i=0 with bi(X) := rk Hi(X) the i-th Betti number of X. In particular, χ(X) is independent of the chosen cell structure on X. Proof. We use the following notation: Bi = Image(di+1), Zi = ker(di), and Hi = Zi=Bi. Consider a (finite) chain complex of finitely generated abelian groups and the short exact sequences defining homology: dn+1 dn d2 d1 d0 0 / Cn / ::: / C1 / C0 / 0 ι di 0 / Zi / Ci / / Bi−1 / 0 di+1 q 0 / Bi / Zi / Hi / 0 The additivity of rank yields that ci := rk(Ci) = rk(Zi) + rk(Bi−1) and rk(Zi) = rk(Bi) + rk(Hi): Substitute the second equality into the first, multiply the resulting equality by (−1)i, and Pn i sum over i to get that χ(X) = i=0(−1) · rk(Hi).
    [Show full text]
  • Algebraic Topology
    ALGEBRAIC TOPOLOGY C.R. F. MAUNDER ALGEBRAIC TOPOLOGY C. R. F. MAUNDER Fellow of Christ's College and University Lecturer in Pure Mathematics, Cambridge CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge C82inP 32East 57th Street, New York, NYzoozz,USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia CC. R. F. Miunder '970 CCambridge University Press 1980 First published by VanNostrandReinhold (UK) Ltd First published by the Cambridge University Press 1980 Firstprinted in Great Britain by Lewis Reprints Ltd, London and Tonbridge Reprinted in Great Britain at the University Press, Cambridge British Library cataloguing in publication data Maunder, Charles Richard Francis Algebraic topology. r.Algebraic topology I. Title 514'.2QA6!2 79—41610 ISBN 0521 231612 hard covers ISBN 0 521298407paperback INTRODUCTION Most of this book is based on lectures to third-year undergraduate and postgraduate students. It aims to provide a thorough grounding in the more elementary parts of algebraic topology, although these are treated wherever possible in an up-to-date way. The reader interested in pursuing the subject further will find ions for further reading in the notes at the end of each chapter. Chapter 1 is a survey of results in algebra and analytic topology that will be assumed known in the rest of the book. The knowledgeable reader is advised to read it, however, since in it a good deal of standard notation is set up. Chapter 2 deals with the topology of simplicial complexes, and Chapter 3 with the fundamental group.
    [Show full text]
  • 1 CW Complex, Cellular Homology/Cohomology
    Our goal is to develop a method to compute cohomology algebra and rational homotopy group of fiber bundles. 1 CW complex, cellular homology/cohomology Definition 1. (Attaching space with maps) Given topological spaces X; Y , closed subset A ⊂ X, and continuous map f : A ! y. We define X [f Y , X t Y / ∼ n n n−1 n where x ∼ y if x 2 A and f(x) = y. In the case X = D , A = @D = S , D [f X is said to be obtained by attaching to X the cell (Dn; f). n−1 n n Proposition 1. If f; g : S ! X are homotopic, then D [f X and D [g X are homotopic. Proof. Let F : Sn−1 × I ! X be the homotopy between f; g. Then in fact n n n D [f X ∼ (D × I) [F X ∼ D [g X Definition 2. (Cell space, cell complex, cellular map) 1. A cell space is a topological space obtained from a finite set of points by iterating the procedure of attaching cells of arbitrary dimension, with the condition that only finitely many cells of each dimension are attached. 2. If each cell is attached to cells of lower dimension, then the cell space X is called a cell complex. Define the n−skeleton of X to be the subcomplex consisting of cells of dimension less than n, denoted by Xn. 3. A continuous map f between cell complexes X; Y is called cellular if it sends Xk to Yk for all k. Proposition 2. 1. Every cell space is homotopic to a cell complex.
    [Show full text]
  • Combinatorial Topology and Applications to Quantum Field Theory
    Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vivek Shende, Chair Professor Ian Agol Professor Constantin Teleman Professor Joel Moore Fall 2018 Abstract Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren Doctor of Philosophy in Mathematics University of California, Berkeley Professor Vivek Shende, Chair Topology has become increasingly important in the study of many-body quantum mechanics, in both high energy and condensed matter applications. While the importance of smooth topology has long been appreciated in this context, especially with the rise of index theory, torsion phenomena and dis- crete group symmetries are relatively new directions. In this thesis, I collect some mathematical results and conjectures that I have encountered in the exploration of these new topics. I also give an introduction to some quantum field theory topics I hope will be accessible to topologists. 1 To my loving parents, kind friends, and patient teachers. i Contents I Discrete Topology Toolbox1 1 Basics4 1.1 Discrete Spaces..........................4 1.1.1 Cellular Maps and Cellular Approximation.......6 1.1.2 Triangulations and Barycentric Subdivision......6 1.1.3 PL-Manifolds and Combinatorial Duality........8 1.1.4 Discrete Morse Flows...................9 1.2 Chains, Cycles, Cochains, Cocycles............... 13 1.2.1 Chains, Cycles, and Homology.............. 13 1.2.2 Pushforward of Chains.................. 15 1.2.3 Cochains, Cocycles, and Cohomology.........
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .
    [Show full text]
  • Ambidexterity in K(N)-Local Stable Homotopy Theory
    Ambidexterity in K(n)-Local Stable Homotopy Theory Michael Hopkins and Jacob Lurie December 19, 2013 Contents 1 Multiplicative Aspects of Dieudonne Theory 4 1.1 Tensor Products of Hopf Algebras . 6 1.2 Witt Vectors . 12 1.3 Dieudonne Modules . 19 1.4 Disconnected Formal Groups . 28 2 The Morava K-Theory of Eilenberg-MacLane Spaces 34 2.1 Lubin-Tate Spectra . 35 2.2 Cohomology of p-Divisible Groups . 41 2.3 The Spectral Sequence of a Filtered Spectrum . 47 2.4 The Main Calculation . 50 3 Alternating Powers of p-Divisible Groups 63 3.1 Review of p-Divisible Groups . 64 3.2 Group Schemes of Alternating Maps . 68 3.3 The Case of a Field . 74 3.4 Lubin-Tate Cohomology of Eilenberg-MacLane Spaces . 82 3.5 Alternating Powers in General . 86 4 Ambidexterity 89 4.1 Beck-Chevalley Fibrations and Norm Maps . 91 4.2 Properties of the Norm . 96 4.3 Local Systems . 103 4.4 Examples . 107 5 Ambidexterity of K(n)-Local Stable Homotopy Theory 112 5.1 Ambidexterity and Duality . 113 5.2 The Main Theorem . 121 5.3 Cartier Duality . 126 5.4 The Global Sections Functor . 135 1 Introduction Let G be a finite group, and let M be a spectrum equipped with an action of G. We let M hG denote the homotopy fixed point spectrum for the action of G on M, and MhG the homotopy orbit spectrum for the hG action of G on X. These spectra are related by a canonical norm map Nm : MhG ! M .
    [Show full text]
  • Positivity in Algebraic Geometry I
    Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 48 Positivity in Algebraic Geometry I Classical Setting: Line Bundles and Linear Series Bearbeitet von R.K. Lazarsfeld 1. Auflage 2004. Buch. xviii, 387 S. Hardcover ISBN 978 3 540 22533 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1650 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Introduction to Part One Linear series have long stood at the center of algebraic geometry. Systems of divisors were employed classically to study and define invariants of pro- jective varieties, and it was recognized that varieties share many properties with their hyperplane sections. The classical picture was greatly clarified by the revolutionary new ideas that entered the field starting in the 1950s. To begin with, Serre’s great paper [530], along with the work of Kodaira (e.g. [353]), brought into focus the importance of amplitude for line bundles. By the mid 1960s a very beautiful theory was in place, showing that one could recognize positivity geometrically, cohomologically, or numerically. During the same years, Zariski and others began to investigate the more complicated be- havior of linear series defined by line bundles that may not be ample.
    [Show full text]
  • Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Index More Information
    Cambridge University Press 978-1-107-15074-4 — Singular Intersection Homology Greg Friedman Index More Information Index KEY: Numbers in bold indicate where terms are defined ∂-pseudomanifold, see pseudomanifold, effects of simplicial subdivision on, 96–98 ∂-pseudomanifold in small degrees, 130 ∂-stratified pseudomanifold, see stratified on regular strata, 96, 130 pseudomanifold, ∂-stratified pseudomanifold PL chain, 121 abstract simplicial complex, see simplicial complex, simplex, 92 abstract singular chain, 129 acknowledgments, xiv singular simplex, 129 acyclic model, 199 strata vs. skeleta, 105–107 Acyclic Model Theorem, 368 Aluffi, Paolo, 707 admissible triangulation, see triangulation, admissible assembly map, 697, 702 agreeable triple of perversities, 372, 376 AT map, 751 ( , ) AT space, 744, 751 Qp¯ ,t¯Y Qt¯X ,q¯ ; Q , 434 (0¯, t¯; 0¯), 373 augmentation cocycle (1), xxi (n¯, n¯; 0¯), 374 augmentation map (a), xx see (p¯, Dp¯; 0¯), 373 augmented intersection chain complex, (p¯, t¯;¯p), 374 intersection chain complex, augmented (t¯, 0;¯ 0¯), 373 balls, 189 and diagonal maps, 372 Banagl, Markus, xiv, 695, 697, 699, 701, 704, 707, 708 and projection maps, 398 basic sets, 607 in terms of dual perversities, 373 Bernstein, Joseph, 710 Akin, Ethan, 692, 706 Beshears, Aaron, 59 Albin, Pierre, 706, 707, 709 Be˘ılinson, Alexander, 710 Alexander–Whitney map, 199, 365–367 bilinear pairing, see pairing intersection version, see intersection Bockstein map, 233 Alexander–Whitney map (IAW) bordism, 689–702 algebra background, 713–738 bordism group, 690
    [Show full text]