Algebraic Topology Iv Epiphany Term Lecture

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Topology Iv Epiphany Term Lecture ALGEBRAIC TOPOLOGY IV k EPIPHANY TERM LECTURE NOTES MARK POWELL This course is about cohomology of spaces, products on cohomology, and man- ifolds. Cohomology is useful primarily because it can be made into a ring using the cup product. We will study the cohomology ring and apply it to manifolds, especially of dimension 2, 3 and 4. For manifolds homology and cohomology can be related to each other in two different ways, using Poincar´eduality and using the universal coefficient theorem. The interplay between these two relations can be extremely powerful. Contents 1. CW complexes and manifolds 2 1.1. CW complexes 2 1.2. Manifolds 2 1.3. Smooth manifolds 3 1.4. Manifolds with boundary 4 2. Homology groups of manifolds 4 2.1. Recap of singular and cellular homology 4 2.2. Top dimensional homology of a manifold 6 2.3. Fundamental classes and degrees of maps 7 3. Cohomology 8 3.1. Hom groups 8 3.2. Algebra of cochain complexes 9 3.3. Cohomology of a topological space 11 3.4. CW cohomology 12 3.5. Understanding cohomology 13 3.6. Properties of cohomology 15 4. Relationships between homology and cohomology 17 4.1. Universal coefficient theorem 17 4.2. Poincar´eduality 18 4.3. An application of both 19 5. Universal coefficient theorem 19 5.1. Ext groups 19 5.2. Examples and properties 23 5.3. The universal coefficient theorem for cohomology 25 6. Univeral coefficients for homology and the K¨unneththeorem 27 6.1. Tensor products 27 6.2. Tor groups 28 1 ALGEBRAIC TOPOLOGY IV k EPIPHANY TERM LECTURE NOTES 2 6.3. Universal coefficient theorem for homology 28 6.4. The K¨unneththeorem for cohomology 29 7. Cup products 30 7.1. Definition of cup products 30 7.2. An example 32 7.3. The cohomology ring 34 7.4. More examples 36 8. Cap products 40 8.1. Definition of cap products 40 8.2. An example 42 8.3. Properties of cap product 43 9. Applications of cup and cup products combined with Poincar´eduality 44 9.1. Degree one maps 45 9.2. Computations of cup products 46 10. Proof of F2 coefficient Poincar´eduality 49 References 52 1. CW complexes and manifolds 1.1. CW complexes. Here is a better definition of CW complexes. It is important that the decomposition into cells is remembered as part of the data of a CW complex. Merely defining it as a space that \was built in a certain way" loses too much data that is needed when working with these spaces. Definition 1.1 (Finite dimensional CW complex). (a) A CW complex X of dimension −1 is ;. Its topological realisation jXj is also the empty set. (b) Inductively define higher CW complexes. A CW complex of dimension ≤ n, Xn, consists of (i) A CW complex Xn−1 of dimension ≤ n − 1, with topological realisation jXn−1j. n−1 n−1 (ii) A set of maps f'i : S ! jX jgi2In , the attaching maps. The topological realisation jXnj of X is G jXnj := jXn−1 t Dn= ∼ i2In n−1 n n−1 where for all i 2 In, x 2 S = @Di , we identify x ∼ 'i(x) 2 jX j. (c) A (finite dimensional) CW structure on a topological space Y is a CW complex X and a homeomorphism f : jXj ! Y . n n n−1 n 'i n (d) The map 'i : D ! jX j such that S ! D −!jX j equals 'i is called a characteristic map. 1.2. Manifolds. An n-dimensional topological manifold M is a topological space that is Hausdorff, second countable (countable basis of open sets), and locally ALGEBRAIC TOPOLOGY IV k EPIPHANY TERM LECTURE NOTES 3 n homeomorphic to R . That is, for all x 2 M, there is an open set Ux containing x n n and a homeomorphism 'x : Ux ! V ⊂ R where V is an open subset of R . Example 1.2. n n+1 (i) The sphere S = fx 2 R j kxk = 1g. (ii) Products of spheres Sn × Sm, of dimension n + m. (iii) The n-torus T n = S1 × · · · × S1, the product of n copies of the circle S1. n n+1 (iv) Real projective space RP = R rf0g= ∼, where x ∼ λx for all λ 2 Rrf0g. n n+1 (v) Similarly complex projective space CP = C rf0g= ∼, where z ∼ λz for all λ 2 Crf0g. (vi) The surface Σg of genus g is a 2-dimensional manifold. (vii) The Klein bottle K. n n (viii) Quotients of S or R by a free, proper, continuous action of a group are manifolds. (ix) Products of manifolds are manifolds. For this last item, we will provide several examples of manifolds obtained as orbits spaces of free actions. First, the definitions of these adjectives associated with group actions. (a) An action of a group G on a manifold X is free if g·x = x implies that g = e 2 G for every x 2 X. (b) An action of a group G on a manifold X is proper if for all x; y 2 X, there exist open sets U 3 x and V 3 y such that fg 2 G j gU \ V 6= ;g is finite. (c) A group action is continuous if the map x 7! g · x is a continuous map X ! X for all g 2 G. Now the promised examples of manifolds defined by quotients by group actions. Example 1.3. ∼ 1 (1) The group Z acts on R by n · x := x + n. The quotient is R=Z = S . 2 2 (2) The group Z acts on R by (n; m) · (x; y) = (x + n; y + m). The quotient 2 2 ∼ 2 R =Z = T . n n ∼ n (3) The group Z=2 acts on S by 1 · x = −x. The quotient S =(Z=2) = RP . 1 2n+1 2n+1 n+1 (4) The group S acts on S as follows. Consider S ⊂ C as the 2 2 2πiθ 2πiθ set of points with jz0j + · · · jznj = 1. Then e · (z0; : : : ; zn) := (e · 2πiθ 2n+1 1 ∼ n z0; : : : ; e · zn). The quotient is S =S = CP . 3 (5) The group Z=p acts on S as follows. Let p and q be coprime positive 3 2 2 2 ∼ integers. Consider S ⊂ C with jzj + jwj = 1. Write Z=p = Cp where Cp is the cyclic group generated by ξ = e2πi=p 2 S1. Then ξj · (z; w) := (ξ · z; ξq · w): 3 The quotient is S =Cp = L(p; q), the lens space. ALGEBRAIC TOPOLOGY IV k EPIPHANY TERM LECTURE NOTES 4 1.3. Smooth manifolds. All the manifolds we talk about will be smooth. n Definition 1.4. Let U ⊆ R be open. A function m f = (f1; : : : ; fn): U ! R is smooth is all partial derivatives of fi exist for all i. Definition 1.5. (i) An n-dimensional chart for a manifold M at x 2 M is a homeomorphism n Φ: U ! V where U 3 x is an open neighbourhood of x, and V ⊂ R is open. (ii) An n-dimensional atlas for M is a collection of n-dimensional charts fΦi : Ui ! S Vigi2I with i Ui = M, where I is some indexing set. (iii) An atlas fΦi : Ui ! Vigi2I is smooth if the transition map −1 Φj ◦ Φi :Φi(Ui \ Uj) ! Φj(Ui \ Uj) n is smooth as a map between open subsets of R . Definition 1.6. A smooth manifold is a topological manifold M with a choice of smooth atlas. When we say \manifold" we will usually implicitly mean smooth manifold. 1.4. Manifolds with boundary. An n-dimensional topological manifold with boundary M is a topological space that is Hausdorff, second countable, and locally n homeomorphic to either R or to the half space n n H := fx 2 R j x1 ≥ 0g: We write n @M := fx 2 M with Ux = H g: n For example, D , or a surface Σg;1. We will mostly consider closed manifolds. By definition a closed manifold is a compact manifold with empty boundary @M = ;. 2. Homology groups of manifolds We start with a recollection of homology groups, then we discuss homology of manifolds. 2.1. Recap of singular and cellular homology. Homology theories are covari- ant functors Hi : fTop spacesg ! fAbelian groupsg for each i, satisfying some axioms: homotopy invariance, long exact sequence of a pair, excision, and taking a fixed value on a point: H0(pt) = Z. ALGEBRAIC TOPOLOGY IV k EPIPHANY TERM LECTURE NOTES 5 2.1.1. Singular homology. Singular homology sends X 7! Hi(X; Z) or Hi(X) for short, defined as follows. The singular chain complex n i o Ci(X) := Z singular simplices ∆ ! X is the free abelian group generated by the singular simplices. Recall that ∆i is the i-simplex i i+1 X f(t0; : : : ; ti) 2 R j 0 ≤ ti ≤ 1; ti = 1g: i=0 The vertices tj = 1 are naturally ordered by We denote the jth face inclusion i−1 i respecting the ordering of vertices by ιj : ∆ ! ∆ . Then the boundary map @i : Ci(X) ! Ci−1(X) is defined by i i X j+1 i−1 @i(σ : ∆ ! X) = (−1) (σ ◦ ιj : ∆ ! X): j=0 The cycles are Zi(X) := ker(@i : Ci(X) ! Ci−1(X)) and the boundaries are Bi(X) := im(@i+1 : Ci+1(X) ! Ci(X)): The ith singular homology of X is Zi(X) Hi(X) := : Bi(X) 2.1.2. Cellular homology.
Recommended publications
  • Equivariant Geometric K-Homology with Coefficients
    Equivariant geometric K-homology with coefficients Michael Walter Equivariant geometric K-homology with coefficients Diplomarbeit vorgelegt von Michael Walter geboren in Lahr angefertigt am Mathematischen Institut der Georg-August-Universität zu Göttingen 2010 v Equivariant geometric K-homology with coefficients Michael Walter Abstract K-homology is the dual of K-theory. Kasparov’s analytic version, where cycles are given by (ab- stract) elliptic operators over (not necessarily commutative) spaces, has proved to be an extremely powerful tool which, together with its bivariant generalization KK-theory, lies at the heart of many important results at the intersection of algebraic topology, functional analysis and geome- try. Independently, Baum and Douglas have proposed a geometric version of K-homology inspired by singular bordism. Cycles for this theory are given by vector bundles over compact Spinc- manifolds with boundary which map to the target, i.e. E f (M, BM) / (X, Y). There is a natural transformation to analytic K-homology defined by sending such a cycle to the pushforward of the class determined by the twisted Dirac operator. It is well-known to be an isomorphism, although a rigorous proof has appeared only recently. While both theories have obvious generalizations to the equivariant case and coefficients, the question whether these remain isomorphic is far from trivial (and has negative answer in the general case). In their work on equivariant correspondences Emerson and Meyer have isolated a useful sufficient condition for their theory which, while vastly more general, only deals with the absolute case. Our focus is not so much to construct a geometric theory in the most general situation, but to show that in the presence of a group action and coefficients the above picture still gives a generalized homology theory in a very geometrical way, isomorphic to Kasparov’s theory.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21
    MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21 21. Applications of cup products in cohomology We are going to see some examples where we calculate or apply multiplicative structures on cohomology. But we start with a couple of facts we forgot to mention last time. Relative cup products Let (X;A) be a pair of spaces. The formula which specifies the cup product by its effect on a simplex (' [ )(σ) = '(σj[e0;:::;ep]) (σj[ep;:::;ep+q]) extends to relative cohomology. For, if σ : ∆p+q ! X has image in A, then so does any restriction of σ. Thus, if either ' or vanishes on chains with image in A, then so does ' [ . Hence we get relative cup product maps Hp(X; R) × Hq(X;A; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X;A; R) ! Hp+q(X;A; R): More generally, assume we have two open subsets A and B of X. Then the formula for ' [ on cochains implies that cup product yields a map Sp(X;A; R) × Sq(X;B; R) ! Sp+q(X;A + B; R) where Sn(X;A+B; R) denotes the subgroup of Sn(X; R) of cochains which vanish on sums of chains in A and chains in B. The natural inclusion Sn(X;A [ B; R) ,! Sn(X;A + B; R) induces an isomorphism in cohomology. For we have a map of long exact coho- mology sequences Hn(A [ B) / Hn(X) / Hn(X;A [ B) / Hn+1(A [ B) / Hn+1(X) Hn(A + B) / Hn(X) / Hn(X;A + B) / Hn+1(A + B) / Hn+1(X) 1 2 where we omit the coefficients.
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • Algebraic Topology
    ALGEBRAIC TOPOLOGY C.R. F. MAUNDER ALGEBRAIC TOPOLOGY C. R. F. MAUNDER Fellow of Christ's College and University Lecturer in Pure Mathematics, Cambridge CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge C82inP 32East 57th Street, New York, NYzoozz,USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia CC. R. F. Miunder '970 CCambridge University Press 1980 First published by VanNostrandReinhold (UK) Ltd First published by the Cambridge University Press 1980 Firstprinted in Great Britain by Lewis Reprints Ltd, London and Tonbridge Reprinted in Great Britain at the University Press, Cambridge British Library cataloguing in publication data Maunder, Charles Richard Francis Algebraic topology. r.Algebraic topology I. Title 514'.2QA6!2 79—41610 ISBN 0521 231612 hard covers ISBN 0 521298407paperback INTRODUCTION Most of this book is based on lectures to third-year undergraduate and postgraduate students. It aims to provide a thorough grounding in the more elementary parts of algebraic topology, although these are treated wherever possible in an up-to-date way. The reader interested in pursuing the subject further will find ions for further reading in the notes at the end of each chapter. Chapter 1 is a survey of results in algebra and analytic topology that will be assumed known in the rest of the book. The knowledgeable reader is advised to read it, however, since in it a good deal of standard notation is set up. Chapter 2 deals with the topology of simplicial complexes, and Chapter 3 with the fundamental group.
    [Show full text]
  • New Ideas in Algebraic Topology (K-Theory and Its Applications)
    NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems.
    [Show full text]
  • D-Branes, RR-Fields and Duality on Noncommutative Manifolds
    D-BRANES, RR-FIELDS AND DUALITY ON NONCOMMUTATIVE MANIFOLDS JACEK BRODZKI, VARGHESE MATHAI, JONATHAN ROSENBERG, AND RICHARD J. SZABO Abstract. We develop some of the ingredients needed for string theory on noncommutative spacetimes, proposing an axiomatic formulation of T-duality as well as establishing a very general formula for D-brane charges. This formula is closely related to a noncommutative Grothendieck-Riemann-Roch theorem that is proved here. Our approach relies on a very general form of Poincar´eduality, which is studied here in detail. Among the technical tools employed are calculations with iterated products in bivariant K-theory and cyclic theory, which are simplified using a novel diagram calculus reminiscent of Feynman diagrams. Contents Introduction 2 Acknowledgments 3 1. D-Branes and Ramond-Ramond Charges 4 1.1. Flat D-Branes 4 1.2. Ramond-Ramond Fields 7 1.3. Noncommutative D-Branes 9 1.4. Twisted D-Branes 10 2. Poincar´eDuality 13 2.1. Exterior Products in K-Theory 13 2.2. KK-Theory 14 2.3. Strong Poincar´eDuality 16 2.4. Duality Groups 18 arXiv:hep-th/0607020v3 26 Jun 2007 2.5. Spectral Triples 19 2.6. Twisted Group Algebra Completions of Surface Groups 21 2.7. Other Notions of Poincar´eDuality 22 3. KK-Equivalence 23 3.1. Strong KK-Equivalence 24 3.2. Other Notions of KK-Equivalence 25 3.3. Universal Coefficient Theorem 26 3.4. Deformations 27 3.5. Homotopy Equivalence 27 4. Cyclic Theory 27 4.1. Formal Properties of Cyclic Homology Theories 27 4.2. Local Cyclic Theory 29 5.
    [Show full text]
  • The Seifert-Van Kampen Theorem Via Covering Spaces
    Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona The Seifert-Van Kampen theorem via covering spaces Autor: Roberto Lara Martín Director: Dr. Javier José Gutiérrez Marín Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, 29 de juny de 2017 Contents Introduction ii 1 Category theory 1 1.1 Basic terminology . .1 1.2 Coproducts . .6 1.3 Pushouts . .7 1.4 Pullbacks . .9 1.5 Strict comma category . 10 1.6 Initial objects . 12 2 Groups actions 13 2.1 Groups acting on sets . 13 2.2 The category of G-sets . 13 3 Homotopy theory 15 3.1 Homotopy of spaces . 15 3.2 The fundamental group . 15 4 Covering spaces 17 4.1 Definition and basic properties . 17 4.2 The category of covering spaces . 20 4.3 Universal covering spaces . 20 4.4 Galois covering spaces . 25 4.5 A relation between covering spaces and the fundamental group . 26 5 The Seifert–van Kampen theorem 29 Bibliography 33 i Introduction The Seifert-Van Kampen theorem describes a way of computing the fundamen- tal group of a space X from the fundamental groups of two open subspaces that cover X, and the fundamental group of their intersection. The classical proof of this result is done by analyzing the loops in the space X and deforming them into loops in the subspaces. For all the details of such proof see [1, Chapter I]. The aim of this work is to provide an alternative proof of this theorem using covering spaces, sets with actions of groups and category theory.
    [Show full text]
  • Combinatorial Topology and Applications to Quantum Field Theory
    Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vivek Shende, Chair Professor Ian Agol Professor Constantin Teleman Professor Joel Moore Fall 2018 Abstract Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren Doctor of Philosophy in Mathematics University of California, Berkeley Professor Vivek Shende, Chair Topology has become increasingly important in the study of many-body quantum mechanics, in both high energy and condensed matter applications. While the importance of smooth topology has long been appreciated in this context, especially with the rise of index theory, torsion phenomena and dis- crete group symmetries are relatively new directions. In this thesis, I collect some mathematical results and conjectures that I have encountered in the exploration of these new topics. I also give an introduction to some quantum field theory topics I hope will be accessible to topologists. 1 To my loving parents, kind friends, and patient teachers. i Contents I Discrete Topology Toolbox1 1 Basics4 1.1 Discrete Spaces..........................4 1.1.1 Cellular Maps and Cellular Approximation.......6 1.1.2 Triangulations and Barycentric Subdivision......6 1.1.3 PL-Manifolds and Combinatorial Duality........8 1.1.4 Discrete Morse Flows...................9 1.2 Chains, Cycles, Cochains, Cocycles............... 13 1.2.1 Chains, Cycles, and Homology.............. 13 1.2.2 Pushforward of Chains.................. 15 1.2.3 Cochains, Cocycles, and Cohomology.........
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]