Regulation of Translation and the Unfolded Protein Response in Pituitary Gonadotropes

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Translation and the Unfolded Protein Response in Pituitary Gonadotropes UC San Diego UC San Diego Electronic Theses and Dissertations Title Stress, mixed messages, and hormone signaling : regulation of translation and the unfolded protein response in pituitary gonadotropes Permalink https://escholarship.org/uc/item/00q985gk Author Do, Minh-Ha T. Publication Date 2008 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Stress, Mixed Messages, and Hormone Signaling: Regulation of Translation and the Unfolded Protein Response in Pituitary Gonadotropes A dissertation submitted in partial satisfaction of the Requirements for the degree Doctor of Philosophy in Biomedical Sciences by Minh-Ha T. Do Committee in charge: Professor Mark Lawson, Chair Professor Don Cleveland Professor Pamela Mellon Professor Daniel O’Connor Professor Nick Webster 2008 Copyright Minh-Ha T. Do, 2008 All rights reserved. The Dissertation of Minh-Ha T. Do is approved, and it is acceptable in quality and form for publication on microfilm: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2008 iii TABLE OF CONTENTS Signature Page …………………………………………………………………………...................... iii Table of Contents …………………………………………………………………………………........ iv List of Figures …………….……………………………………………………………....................... v List of Tables ................……………………………………………………………………………...... vii Acknowledgements …………….................................................................................................. viii Vita ……...................................................................................................................................... ix Abstract …................................................................................................................................... xi Chapter 1 Introduction …...…………………………………………………………………..…. 1 Chapter 2 Activation of the unfolded protein response by GnRH …………………………. 8 Chapter 3 Specificity of the regulation of translation by GnRH ......................................... 41 Chapter 4 Conclusions .................................…………………….………………………..…. 82 Chapter 5 Appendix …………………………………………………………………………….. 95 References ……………………………………………………………………………………………... 166 iv LIST OF FIGURES Figure 2-1. Expression of ER stress sensors and activation of PERK by GnRH in LβT2 gonadotropes …………………………..…………………………….……………… 29 Figure 2-2. GnRH causes splicing of the UPR transcription factor Xbp1 mRNA in LβT2 and mouse primary gonadotropes …………………………….………………….. 30 Figure 2-3. GnRH exposure causes an accumulation of RNP complexes in LβT2 cells … 31 Figure 2-4. Accumulation of RNP complexes is mimicked by disruption of intracellular calcium ……………………………………………………………………………….. 32 Figure 2-5. Lhb, Cga and Gapdh mRNAs redistribute to RNP complexes in response to GnRH …………………………………………………………………………………. 33 Figure 2-6. Accumulation of RNP complexes by GnRH does not involve transcriptional events ………………………………………………………………………………… 34 Figure 2-7. GnRH attenuates translation by redistributing ribosomes to RNP complexes .. 35 Figure 2-8. Translation of Lhb, Cga and Gapdh mRNAs is attenuated …………………….. 36 Figure 2-9. Attenuation of Lhb, Cga and Gapdh translation by GnRH is transient ………… 37 Figure 2-10. A 10-minute pulse of GnRH is sufficient to cause accumulation of RNP complexes and phosphorylation of eIF2α ………………………………………… 38 Figure 2-11. A 10-minute pulse of GnRH is sufficient to cause and sustain phosphorylation of PERK ...……………………………………………………………………………. 39 Figure 2-12. Proposed model for transient attenuation of translation induced by GnRH ….. 40 Figure 3-1. Gnrhr, Egr1 and Cmyc mRNAs differentially redistribute in ribosome complexes in response to GnRH ……………………………………………………………….. 65 Figure 3-2. Gnrhr, Egr1 and Cmyc are differentially sensitive to translational and transcriptional regulation by GnRH ……………………………………………….. 66 Figure 3-3. mRNA redistribution in ribosomal complexes is reproducible and not global … 67 Figure 3-4. GnRH causes bidirectional redistribution of a specific subset of mRNAs …….. 68 Figure 3-5. The top regulated genes show distinct patterns of mRNA redistribution ……… 69 Figure 3-6. Summary of KEGG pathways identified by the top 5% of bioweight genes ….. 70 Figure 3-7. Inhibition of ERK activation by GnRH exacerbates RNP accumulation ………. 71 Figure 3-8. ERK activation by GnRH contributes to association of Dusp1 with polysomes …………………………………………………………………………………………. 72 v Figure 3-9. Role of ERK activation on Cmyc and Egr1 recruitment to polysomes is not clear …………………………………………………………………………………... 73 Figure 3-10. PKC activation promotes polysomal recruitment but not RNP accumulation of an mRNA ………………………………………………………………………….. 74 Figure 3-11. Activation of the UPR does not induce polysomal recruitment of Dusp1 mRNA by GnRH …………………………………………………………………….. 75 Figure 3-12. The 5’UTR of mouse Lhb is not sufficient to confer sensitivity to translational regulation by GnRH ………………………………………………………………… 76 Figure 3-13. The signal peptide of LHβ is not sufficient to confer sensitivity of Lhb mRNA to translational regulation by GnRH ………………………………………………. 77 Figure 3-14. GnRH does not stimulate Lhb mRNA recruitment to polysomes ……………… 78 Figure 3-15. Contribution of Lhb and Cga mRNA transcription on intracellular LH protein levels …………………………………………………………………………………. 79 Figure 4-1. Summary of specificity of acute translational regulation by GnRH ………….... 94 Figure 5-1. ATF6 Western blotting attempts ………………………………………………….. 96 Figure 5-2. Gnrhr and Gapdh mRNA levels do not change in response to GnRH treatment …………………………………………………………………………….. 97 Figure 5-3. Effect of various starvation conditions on ribosomal remodeling ……………… 98 Figure 5-4. Effect of various starvation conditions on GnRH-induced ribosomal redistribution of specific mRNAs ………………………………………………….. 99 Figure 5-5. An acute increase in protein synthesis is not responsible for activation of ER stress by GnRH …………………………………………………………………….. 100 Figure 5-6. One hour of tonic 10 nM GnRH treatment does not cause apoptosis-induced DNA fragmentation ………………………………………………………………… 101 vi LIST OF TABLES Table 3-1. Top 100 bioweight (BW) genes ………………………………………………….. 80 Table 5-1. Top 800 bioweight (BW) genes ………………………………………………….. 102 Table 5-2. Genes identified by SAM …………………………………………………………. 123 Table 5-3. Genes in common between bioweight (BW) and SAM ……………………….. 144 Table 5-4. KEGG pathways identified by bioweight ………………………………………... 156 vii ACKNOWLEDGEMENTS I would like to thank: My advisor, Professor Mark A. Lawson, for his never-ending encouragement, for ensuring I had and took opportunities to advance my training, and for providing a lab environment that was easy to come in to everyday for the past 5 years. Professor Pamela Mellon, for providing a fresh mind in critiquing my work and keeping on top of my progress. I would also like to thank the members of the Mellon lab for bearing with me during lab meetings and always being available for advice. Thank you in particular to Dr. Djurdjica Coss, for answering all my questions, large and small. The rest of the members of my dissertation committee, Professor Nick Webster, Professor Don Cleveland, and Professor Daniel O’Connor, for asking me the difficult questions and thus providing me with the ideas and guidance I needed to complete this body of work. Dr. Cleveland, thank you for trying to ensure that I was sufficiently toughened up. The Biomedical Sciences program has provided an invaluable opportunity to learn and train through the expertise of the faculty, support of the staff, and a body of classmates and friends who have supported me in so many ways. I would especially like to thank Theresa Operaña for being so generous with her time, support, thoughts and care. My colleagues, Sharon Santos, Dr. Amy Navratil, Dr. Kathryn Nguyen, and Janine Low. I am so grateful to have been able to pick their minds, laugh with them, and have their voices of reason to hear. My friends back home, I cannot express enough how all the potlucks, adventures, and emails have supported me. The drive to LA is worth it every time. And finally: Thank you to Jonathan Tang, who patiently waited for me all these years, drove down to San Diego all this time, gave up so many weekends, and who listened, understood, and supported me in every way he could and knew how. At last! To my sisters, who have turned into women I am so proud of and have motivated me by setting such a high standard of achievement. And last, but furthest from least, thank you to my parents. Only recently have I begun to truly realize and appreciate what all their hard work and sacrifice has provided me and our family. I hope each day fulfills another part of the dream they had in mind and heart when choosing to come to this country. Chapter 2, in part, has been submitted for publication of the material as it may appear in Molecular Endocrinology, 2008, Minh-Ha T. Do, Sharon J. Santos and Mark A. Lawson. The dissertation author was the primary investigator and author of this paper. Chapter 4, in part, has been submitted for publication of the material as it may appear in Molecular Endocrinology, 2008, Minh-Ha T. Do, Sharon J. Santos and Mark A. Lawson. The dissertation
Recommended publications
  • Molecular Genetic Analysis of Two Loci (Ity2 and Ity3) Involved in The
    Copyright Ó 2007 by the Genetics Society of America DOI: 10.1534/genetics.107.075523 Molecular Genetic Analysis of Two Loci (Ity2 and Ity3) Involved in the Host Response to Infection With Salmonella Typhimurium Using Congenic Mice and Expression Profiling Vanessa Sancho-Shimizu,*,† Rabia Khan,*,† Serge Mostowy,† Line Larivie`re,† Rosalie Wilkinson,† Noe´mie Riendeau,† Marcel Behr† and Danielle Malo*,†,‡,1 *Department of Human Genetics, McGill University, Montreal, Quebec H3G 1A4, Canada and †Center for the Study of Host Resistance, McGill University Health Center, Montreal, Quebec H3G 1A4, Canada and ‡Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada Manuscript received May 4, 2007 Accepted for publication July 27, 2007 ABSTRACT Numerous genes have been identified to date that contribute to the host response to systemic Sal- monella Typhimurium infection in mice. We have previously identified two loci, Ity2 and Ity3, that control survival to Salmonella infection in the wild-derived inbred MOLF/Ei mouse using a (C57BL/6J 3 MOLF/ Ei)F2cross. We validated the existence of these two loci by creating congenic mice carrying each quan- titative trait locus (QTL) in isolation. Subcongenic mice generated for each locus allowed us to define the critical intervals underlying Ity2 and Ity3. Furthermore, expression profiling was carried out with the aim of identifying differentially expressed genes within the critical intervals as potential candidate genes. Genomewide expression arrays were used to interrogate expression differences in the Ity2 congenics, leading to the identification of a new candidate gene (Havcr2, hepatitis A virus cellular receptor 2). Interval-specific oligonucleotide arrays were created for Ity3, identifying one potential candidate gene (Chi3l1, chitinase 3-like 1) to be pursued further.
    [Show full text]
  • Genetic Screens in Isogenic Mammalian Cell Lines Without Single Cell Cloning
    ARTICLE https://doi.org/10.1038/s41467-020-14620-6 OPEN Genetic screens in isogenic mammalian cell lines without single cell cloning Peter C. DeWeirdt1,2, Annabel K. Sangree1,2, Ruth E. Hanna1,2, Kendall R. Sanson1,2, Mudra Hegde 1, Christine Strand 1, Nicole S. Persky1 & John G. Doench 1* Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs of mammalian cells, however, is labor- 1234567890():,; intensive, time-consuming, and, in some cell types, essentially impossible. Here, we present an approach to create isogenic pairs of cells that avoids single cell cloning, and screen these pairs with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We query the anti-apoptotic genes BCL2L1 and MCL1, and the DNA damage repair gene PARP1, identifying both expected and uncharacterized buffering and synthetic lethal interactions. Additionally, we compare acute CRISPR-based knockout, single cell clones, and small- molecule inhibition. We observe that, while the approaches provide largely overlapping information, differences emerge, highlighting an important consideration when employing genetic screens to identify and characterize potential drug targets. We anticipate that this methodology will be broadly useful to comprehensively study gene function across many contexts. 1 Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA. 2These authors contributed equally: Peter C. DeWeirdt,
    [Show full text]
  • Recent Advances of M6a Methylation Modification in Esophageal Squamous Cell Carcinoma
    Zhang et al. Cancer Cell Int (2021) 21:421 https://doi.org/10.1186/s12935-021-02132-2 Cancer Cell International REVIEW Open Access Recent advances of m6A methylation modifcation in esophageal squamous cell carcinoma Xiaoqing Zhang1†, Ning Lu1†, Li Wang2†, Yixuan Wang1, Minna Li1, Ying Zhou3, Manli Cui1*, Mingxin Zhang1,3* and Lingmin Zhang4* Abstract In recent years, with the development of RNA sequencing technology and bioinformatics methods, the epigenetic modifcation of RNA based on N6-methyladenosine (m6A) has gradually become a research hotspot in the feld of bioscience. m6A is the most abundant internal modifcation in eukaryotic messenger RNAs (mRNAs). m6A methylation modifcation can dynamically and reversibly regulate RNA transport, localization, translation and degradation through the interaction of methyltransferase, demethylase and reading protein. m6A methylation can regulate the expression of proto-oncogenes and tumor suppressor genes at the epigenetic modifcation level to afect tumor occurrence and metastasis. The morbidity and mortality of esophageal cancer (EC) are still high worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common tissue subtype of EC. This article reviews the related concepts, biological functions and recent advances of m6A methylation in ESCC, and looks forward to the prospect of m6A methylation as a new diagnostic biomarker and potential therapeutic target for ESCC. Keywords: N6-methyladenosine, Methylation, Esophageal squamous cell carcinoma Introduction surgical resection, combined radiotherapy and chemo- Esophageal cancer (EC) is one of the most invasive malig- therapy have improved the prognosis of patients with nant tumors of digestive tract in the world, and its mor- ESCC, the 5-year overall survival rate is still very low [5], bidity and mortality are still high in China [1].
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Report FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development Matthew L. O’Sullivan,1,5 Joris de Wit,1,5 Jeffrey N. Savas,2 Davide Comoletti,3 Stefanie Otto-Hitt,1,6 John R. Yates III,2 and Anirvan Ghosh1,4,* 1Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA 2Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA 3Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA 4CNS Discovery, F. Hoffmann-La Roche, 4070 Basel, Switzerland 5These authors contributed equally to this work 6Present address: Department of Natural Sciences, Carroll College, Helena, MT 59625, USA *Correspondence: [email protected] DOI 10.1016/j.neuron.2012.01.018 SUMMARY much effort has been expended investigating the mechanisms of a-latrotoxin action (Su¨ dhof, 2001), nothing is known about Latrophilins (LPHNs) are a small family of G protein- the endogenous function of latrophilins in vertebrates. Further coupled receptors known to mediate the massive evidence for the importance of latrophilins in the proper synaptic exocytosis caused by the black widow functioning of neural circuits comes from recent human spider venom a-latrotoxin, but their endogenous genetics studies that have linked LPHN3 mutations to attention ligands and function remain unclear. Mutations in deficit hyperactivity disorder (ADHD), a common and highly LPHN3 are strongly associated with attention deficit heritable developmental psychiatric disorder (Arcos-Burgos et al., 2010; Domene´ et al., 2011; Jain et al., 2011; Ribase´ s hyperactivity disorder, suggesting a role for latrophi- et al., 2011).
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Helicase-Independent Activity of Eif4a in Promoting Mrna Recruitment to the Human Ribosome
    A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome Masaaki Sokabea and Christopher S. Frasera,1 aDepartment of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616 Edited by Alan G. Hinnebusch, National Institutes of Health, Bethesda, MD, and approved May 5, 2017 (received for review December 12, 2016) In the scanning model of translation initiation, the decoding site and at the solvent side of the mRNA entry channel (14). Importantly, latch of the 40S subunit must open to allow the recruitment and that study showed that a short mRNA that does not extend into the migration of messenger RNA (mRNA); however, the precise molec- entry channel fails to displace eIF3j. A similar observation was also ular details for how initiation factors regulate mRNA accommodation found for initiation mediated by the hepatitis C virus internal ribo- into the decoding site have not yet been elucidated. Eukaryotic some entry site, where an mRNA truncated after the initiation co- initiation factor (eIF) 3j is a subunit of eIF3 that binds to the mRNA don failed to displace eIF3j (11). Taken together, these studies entry channel and A-site of the 40S subunit. Previous studies have suggest a model in which a full accommodation of mRNA in the shown that a reduced affinity of eIF3j for the 43S preinitiation mRNA entry channel of the 40S subunit corresponds to a reduced complex (PIC) occurs on eIF4F-dependent mRNA recruitment. Because affinity of eIF3j for the 40S subunit. This model has allowed us to eIF3j and mRNA bind anticooperatively to the 43S PIC, reduced eIF3j exploit the change in eIF3j affinity for the 43S PIC to quantitatively affinity likely reflects a state of full accommodation of mRNA into the monitor the process of mRNA recruitment.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Initiation Factor Eif5b Catalyzes Second GTP-Dependent Step in Eukaryotic Translation Initiation
    Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation Joon H. Lee*†, Tatyana V. Pestova†‡§, Byung-Sik Shin*, Chune Cao*, Sang K. Choi*, and Thomas E. Dever*¶ *Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; ‡Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, NY 11203; and §A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Edited by Harry F. Noller, University of California, Santa Cruz, CA, and approved October 31, 2002 (received for review September 19, 2002) Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases In addition, when nonhydrolyzable GDPNP was substituted Met that bind Met-tRNAi to the small ribosomal subunit. eIF5B, the for GTP, eIF5B catalyzed subunit joining; however, the factor eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal was unable to dissociate from the 80S ribosome after subunit subunit joining. Here we show that eIF5B GTPase activity is re- joining (7). quired for protein synthesis. Mutation of the conserved Asp-759 in To dissect the function of the eIF5B G domain and test the human eIF5B GTP-binding domain to Asn converts eIF5B to an model that two GTP molecules are required in translation XTPase and introduces an XTP requirement for subunit joining and initiation, we mutated conserved residues in the eIF5B G translation initiation. Thus, in contrast to bacteria where the single domain and tested the function of the mutant proteins in GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic translation initiation.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Ss-TEA: Entropy Based Identification of Receptor Specific Ligand Binding
    Sanders et al. BMC Bioinformatics 2011, 12:332 http://www.biomedcentral.com/1471-2105/12/332 RESEARCHARTICLE Open Access ss-TEA: Entropy based identification of receptor specific ligand binding residues from a multiple sequence alignment of class A GPCRs Marijn PA Sanders1, Wilco WM Fleuren1, Stefan Verhoeven2, Sven van den Beld1, Wynand Alkema2, Jacob de Vlieg1,2 and Jan PG Klomp2* Abstract Background: G-protein coupled receptors (GPCRs) are involved in many different physiological processes and their function can be modulated by small molecules which bind in the transmembrane (TM) domain. Because of their structural and sequence conservation, the TM domains are often used in bioinformatics approaches to first create a multiple sequence alignment (MSA) and subsequently identify ligand binding positions. So far methods have been developed to predict the common ligand binding residue positions for class A GPCRs. Results: Here we present 1) ss-TEA, a method to identify specific ligand binding residue positions for any receptor, predicated on high quality sequence information. 2) The largest MSA of class A non olfactory GPCRs in the public domain consisting of 13324 sequences covering most of the species homologues of the human set of GPCRs. A set of ligand binding residue positions extracted from literature of 10 different receptors shows that our method has the best ligand binding residue prediction for 9 of these 10 receptors compared to another state-of-the-art method. Conclusions: The combination of the large multi species alignment and the newly introduced residue selection method ss-TEA can be used to rapidly identify subfamily specific ligand binding residues.
    [Show full text]