Modeling Volcano Growth on the Island of Hawaii: Deep-Water Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Modeling Volcano Growth on the Island of Hawaii: Deep-Water Perspectives Modeling volcano growth on the Island of Hawaii: Deep-water perspectives Peter W. Lipman and Andrew T. Calvert U.S. Geological Survey, Menlo Park, California 94025, USA ABSTRACT reasonably consistent with ages and volcano 1974; Robinson and Eakins, 2006), recognition spacing, but younger Loa volcanoes are off- of an early-alkalic (“preshield”) stage at Loihi Recent ocean-bottom geophysical surveys, set from the Kea trend in age-distance plots. Seamount (Moore et al., 1982; Garcia et al., dredging, and dives, which complement sur- Variable magma fl ux at the Island of Hawaii, 1995a), insights into volcano growth based on face data and scientifi c drilling at the Island and longer-term growth of the Hawaiian ages of submerged slope breaks and coral reefs of Hawaii, document that evolutionary stages chain as discrete islands rather than a con- (Moore and Campbell, 1987; Ludwig et al., during volcano growth are more diverse than tinuous ridge, may record pulsed magma 1991), and geodynamic models for growth rates previously described. Based on combining fl ow in the hotspot/plume source. and compositional evolution in response to plate available composition, isotopic age, and geo- motion over a hotspot (Moore and Clague, 1992; logically constrained volume data for each of INTRODUCTION DePaolo and Stolper, 1996; Ribe and Chris- the component volcanoes, this overview pro- tensen, 1999; DePaolo et al., 2001). vides the fi rst integrated models for overall This overview, inspired by the 100th anni- Until recently, compositions and ages bearing growth of any Hawaiian island. In contrast versary of the U.S. Geological Survey (USGS) on growth of Hawaiian volcanoes have largely to prior morphologic models for volcano Hawaii Volcano Observatory (HVO) in 2012, come from subaerial sampling of late eruptive evolution (preshield, shield, postshield), focuses on results of underwater studies of stages, and estimates of inception and early evo- growth increasingly can be tracked by age Hawaiian volcanoes that provide new perspec- lution have been heavily model dependent, using and volume (magma supply), defi ning wax- tives on the growth of intraplate volcanoes. volcano spacing and plate motion to infer propa- ing alkalic , sustained tholeiitic, and waning Recent studies have been especially productive gation rates and duration of edifi ce growth. The alkalic stages. Data and estimates for indi- for the Island of Hawaii (Fig. 1), where sonar present interpretive synthesis, by combining vidual volcanoes are used to model changing surveys, dives, and dredging by the University recent chemical and 40Ar/39Ar isotopic-age data magma supply during successive composi- of Hawaii, Monterey Bay Aquarium Research (mainly from underwater and drill-hole sam- tional stages, to place limits on volcano life Institute, National Oceanic and Atmospheric ples), revised edifi ce volumes, limitations from spans, and to interpret composite assembly Administration (NOAA), and USGS, and col- volcano structures and eruptive processes, and of the island. Volcano volumes vary by an laborations with the Japan Agency for Marine- geodynamic constraints, attempts to interpret order of magnitude; peak magma supply Earth Science and Technology (JAMSTEC) the growth histories of individual volcanoes and also varies sizably among edifi ces but is chal- have complemented on-land scientifi c drilling the composite growth of the entire island. While lenging to quantify because of uncertainty and abundant data from HVO. focused on construction of Hawaii Island, some about volcano life spans. Three alternative These results, in combination with a vast body data from older islands are referenced briefl y models are compared: (1) near-constant of older data, provide new insights about vol- where helpful to constrain volcano-growth volcano propagation, (2) near-equal volcano cano growth on Hawaii. More prior studies than models. In part, this analysis is a sequel to the durations, (3) high peak-tholeiite magma can be acknowledged have evaluated growth of impressive synthesis by Moore and Clague supply. These models defi ne inconsisten- Hawaii in relation to longer-term evolution of the (1992), while benefi ting from compilations for cies with prior geodynamic models, indicate Hawaiian Ridge. Notable were early recognition the geologic map of Hawaii Island (Wolfe and that composite growth at Hawaii peaked ca. of the southeastward younging of volcanoes Morris, 1996a, 1996b) and the state map of 800–400 ka, and demonstrate a lower cur- and distinction of the parallel Kea and Loa vol- Hawaii (Sherrod et al., 2007). Particularly use- rent rate. Recent age determinations for canic trends (Dana, 1849; Jackson et al., 1972), ful samples, compositional data, and imaging Kilauea and Kohala defi ne a volcano propa- and of course the insights about ocean-island of deep structure have come from the Hawaii gation rate of 8.6 cm/yr that yields plausible volcanism that emerged in the 1960s from the Scientifi c Drilling Project (HSDP; Stolper et al., inception ages for other volcanoes of the Kea plate-tectonic paradigm. Among recent critical 1996, 2009) and ~100 submersible dives and trend. In contrast, a similar propagation rate observations and interpretations are: quantifying bathymetric surveys during JAMSTEC cruises for the less-constrained Loa trend would propagation rates along the Hawaiian-Emperor in 1998–2002 (Takahashi et al., 2002; Robinson require inception of Loihi Seamount in the Ridge by isotopic dating (McDougall and et al., 2003; Coombs et al., 2006a). future and ages that become implausibly Swanson, 1972; Jackson et al., 1972; Clague Reliable age determinations for old Hawaiian large for the older volcanoes. An alternative and Dalrymple, 1987), volume estimates from lavas remain sparse, but recent application of rate of 10.6 cm/yr for Loa-trend volcanoes is submarine bathymetry (Bargar and Jackson, 40Ar/39Ar methods to young basalts, especially Geosphere; October 2013; v. 9; no. 5; p. 1348–1383; doi:10.1130/GES00935.1; 15 fi gures; 11 tables. Received 2 April 2013 ♦ Revision received 6 July 2013 ♦ Accepted 29 July 2013 ♦ Published online 14 August 2013 1348 For permission to copy, contact [email protected] © 2013 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/9/5/1348/3345176/1348.pdf by guest on 30 September 2021 Volcano growth on Hawaii N 21° HA Hana Ridge K A B′ Laupahoehoe Slump M-G KP KO M-C Kiholo R Hilo Ridge MK A′ N Kona Slump B H Figure 7 HU Puna Ridge ML KL MSB N LO 19° 100100 kmkm Ka Lae R 156° 154° Figure 1. Map of the Island of Hawaii and adjacent sea fl oor, showing locations of volcanoes (Kea trend in black; Loa trend in blue): HA—Haleakala; HU—Hualalai; K—Kahoolawe; KL—Kilauea; KO—Kohala; LO—Loihi; M-G—Mahukona (summit location of Garcia et al. [1990]); M-C—Mahukona (summit location of Clague and Moore [1991]); MK—Mauna Kea; ML—Mauna Loa. Historical eruptions are in red. Dashed line is the inferred buried east rift of Kohala that continues into Hilo Ridge. H—Hilo (site of HSDP hole); KP—Kohala platform; MSB—mid-slope bench offshore of Kilauea. Modifi ed from Robinson et al. (2006). Cross sections A–A′ and B–B′ (short dotted lines) are depicted in Figure 6. Arrow at the base of Hilo Ridge is the site of dive K215 (Fig. 7). underwater and subsurface samples, has TABLE 1. RECENT 40Ar/39Ar GEOCHRONOLOGIC RESULTS, ISLAND OF HAWAII improved controls on volcano growth (Table 1). Rock type Alkalic lavas have yielded stratigraphically Volcano (number of ages) References coherent results for Mauna Kea and Kilauea Kilauea Alkalic and transitional basalt (13) Calvert and Lanphere (2006) Transitional basalt (2) Hanyu et al. (2010) (Sharp and Renne, 2005; Calvert and Lanphere, 2006), but dating of low-K tholeiites continues Mauna Loa Tholeiite (1) Sharp et al. (1996) Tholeiite (1) Sharp and Renne (2005) to be problematic because of low radiogenic- Tholeiite (14) Jicha et al. (2012) argon yields. In such tholeiites, K resides Mauna Kea Alkalic and tholeiitic basalt (9) Sharp et al. (1996) mainly in glassy selvages next to groundmass Alkalic and tholeiitic basalt (9) Sharp and Renne (2005) minerals, leaving samples vulnerable to argon Kohala Transitional-alkalic basalt (2) Lipman and Calvert (2011) loss and/or argon-recoil problems in the reactor. Mahukona Transitional and tholeiitic basalt (2) Clague and Calvert (2009) Some tholeiite samples fail to yield meaningful Transitional and tholeiitic basalt (3) Garcia et al. (2012) ages without apparent petrographic or chemi- Note: Ages and analytical data are listed in Appendix A. cal reasons. In the most detailed 40Ar/39Ar study Geosphere, October 2013 1349 Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/9/5/1348/3345176/1348.pdf by guest on 30 September 2021 Lipman and Calvert to date of Hawaiian tholeiites, on the 1.5 km 100 scarp along the submarine southwest rift zone Robinson & Eakins (2006) of Mauna Loa, only 14 of 45 analyzed samples 3 80 km yielded “successful ages” (Jicha et al., 2012). 3 This review Less precise K-Ar determinations remain the main data for subaerial lavas on Kohala and 60 Mauna Kea, and attempts to improve resolu- tion by unspiked K-Ar methods for Kilauea and Loihi basalts (Guillou et al., 1997a, 1997b) 40 yielded some results that are internally con- tradictory or inconsistent with 40Ar/39Ar dates Total volcano volume, 10 (Calvert and Lanphere, 2006). Appendix A lists 20 the published 40Ar/39Ar and some recent K-Ar age determinations used for estimating volcano growth rates for the Island of Hawaii and under- 0 Mahukona Kohala Hualalai Mauna Mauna Kilauea Loihi water slopes. Kea Loa Volumes of individual volcanoes are also diffi cult to estimate, with probable uncertain- Figure 2. Interpreted volumes of volcanoes, Island of Hawaii: pub- ties of 10%–20%, but constrained by the com- lished (Robinson and Eakins, 2006) and proposed revised values posite island construct (213,000 km3; Robinson (assumption of small Mahukona; Garcia et al., 2012).
Recommended publications
  • Insight Into Subvolcanic Magma Plumbing Systems Wendy A
    Insight into subvolcanic magma plumbing systems Wendy A. Bohrson Department of Geological Sciences, Central Washington University, 400 E. University Way, Ellensburg, Washington 98926, USA The Island of Hawaii, which is among the of CO2 inclusions (Bohrson and Clague, 1988; best-studied volcanic islands on Earth, provides Roedder, 1965). Rare gabbro from layer 3 of the lush ground for debates in volcanology that oceanic crust has also been identifi ed (Clague, focus on how magmatic systems evolve in space 1987a). Thus, a likely location for the deeper and time. Hawaiian volcanoes evolve through chamber is at the base of the oceanic crust. The four eruptive stages that are characterized by relatively low magma supply associated with distinct composition, magma supply rate, and the pre-shield and rejuvenated stages appar- Shallow magma plumbing degree of mantle melting (e.g., Clague, 1987a, ently precludes any persistent crustal magma system 1987b, and references therein). The pre-shield plumbing system; spinel lherzolite and garnet (shield stage) stage, fi rst identifi ed on Loihi Seamount (Moore pyroxenite xenoliths originate in the mantle et al., 1982), erupts mostly alkalic basalt and based on geobarometry, compositional charac- Deep basanite that refl ect a small magma supply and teristics, and other constraints (e.g., Frey and magma plumbing derive from relatively small degrees of mantle Roden, 1987; Frey, 1982). system melting. During the shield stage, tholeiitic Although rare on Hawaiian volcanoes, the (shield and post-shield stage) basalt (like that currently erupted at Kilauea more evolved compositions also provide insight and Mauna Loa) dominates, and refl ects com- into plumbing system dynamics.
    [Show full text]
  • Ignimbrites to Batholiths Ignimbrites to Batholiths: Integrating Perspectives from Geological, Geophysical, and Geochronological Data
    Ignimbrites to batholiths Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data Peter W. Lipman1,* and Olivier Bachmann2 1U.S. Geological Survey, Mail Stop 910, Menlo Park, California 94028, USA 2Institute of Geochemistry and Petrology, ETH Zurich, CH-8092 Zürich, Switzerland ABSTRACT related intrusions cooled and solidified soon shorter. Magma-supply estimates (from ages after zircon crystallization, as magma sup- and volcano-plutonic volumes) yield focused Multistage histories of incremental accu- ply waned. Some researchers interpret these intrusion-assembly rates sufficient to gener- mulation, fractionation, and solidification results as recording pluton assembly in small ate ignimbrite-scale volumes of eruptible during construction of large subvolcanic increments that crystallized rapidly, leading magma, based on published thermal models. magma bodies that remained sufficiently to temporal disconnects between ignimbrite Mid-Tertiary processes of batholith assembly liquid to erupt are recorded by Tertiary eruption and intrusion growth. Alternatively, associated with the SRMVF caused drastic ignimbrites, source calderas, and granitoid crystallization ages of the granitic rocks chemical and physical reconstruction of the intrusions associated with large gravity lows are here inferred to record late solidifica- entire lithosphere, probably accompanied by at the Southern Rocky Mountain volcanic tion, after protracted open-system evolution asthenospheric input. field (SRMVF). Geophysical
    [Show full text]
  • National Weather Service High Wind Warning
    National Weather Service Text Product Display https://forecast.weather.gov/product.php?site=HFO&issuedby=HFO&pr... National Weather Service Weather Forecast Office Honolulu, HI Non-Precipitation Warnings / Watches / Advisories Issued by NWS Honolulu, HI Home | Current Version | Previous Version | Text Only | Print | Product List | Glossary On Versions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 000 WWHW70 PHFO 071330 NPWHFO URGENT - WEATHER MESSAGE National Weather Service Honolulu HI 330 AM HST Sat Mar 7 2020 ...HIGH WIND WARNING FOR LEEWARD WEST MAUI LANAI KAHOOLAWE AND THE LEEWARD KOHALA DISTRICT UNTIL 6 PM HST THIS EVENING... ...WIND ADVISORY FOR ALL HAWAIIAN ISLANDS UNTIL 6 PM HST THIS EVENING... .High pressure far north of the islands will support strong to locally damaging trade winds today, with winds gradually weakening tonight and Sunday. HIZ014>016-018-026-080400- /O.CON.PHFO.HW.W.0003.000000T0000Z-200308T0400Z/ Lanai Makai-Lanai Mauka-Kahoolawe-Maui Leeward West-Kohala- Including the cities of Manele, Lanai City, Lahaina, Kaanapali, and Waikoloa 330 AM HST Sat Mar 7 2020 ...HIGH WIND WARNING REMAINS IN EFFECT UNTIL 6 PM HST THIS EVENING... * WHAT...Northeast winds 30 to 40 mph with localized gusts over 60 mph. * WHERE...Leeward West Maui, Lanai, Kahoolawe and the Leeward Kohala District on the Big Island. * WHEN...Until 6 PM HST this evening. * IMPACTS...Damaging winds will blow down trees and power lines. Sporadic power outages can be expected. Travel will be difficult, especially for high profile vehicles. PRECAUTIONARY/PREPAREDNESS ACTIONS... Motorists, especially those in high profile vehicles, are urged to drive with extreme caution.
    [Show full text]
  • Hawaiian Volcanoes: from Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012
    AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012 Conveners Michael Poland, USGS – Hawaiian Volcano Observatory, USA Paul Okubo, USGS – Hawaiian Volcano Observatory, USA Ken Hon, University of Hawai'i at Hilo, USA Program Committee Rebecca Carey, University of California, Berkeley, USA Simon Carn, Michigan Technological University, USA Valerie Cayol, Obs. de Physique du Globe de Clermont-Ferrand Helge Gonnermann, Rice University, USA Scott Rowland, SOEST, University of Hawai'i at M noa, USA Financial Support 2 AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Meeting At A Glance Sunday, 19 August 2012 1600h – 1700h Welcome Reception 1700h – 1800h Introduction and Highlights of Kilauea’s Recent Eruption Activity Monday, 20 August 2012 0830h – 0900h Welcome and Logistics 0900h – 0945h Introduction – Hawaiian Volcano Observatory: Its First 100 Years of Advancing Volcanism 0945h – 1215h Magma Origin and Ascent I 1030h – 1045h Coffee Break 1215h – 1330h Lunch on Your Own 1330h – 1430h Magma Origin and Ascent II 1430h – 1445h Coffee Break 1445h – 1600h Magma Origin and Ascent Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Origin and Ascent III 1645h – 1900h Poster Session Tuesday, 21 August 2012 0900h – 1215h Magma Storage and Island Evolution I 1215h – 1330h Lunch on Your Own 1330h – 1445h Magma Storage and Island Evolution II 1445h – 1600h Magma Storage and Island Evolution Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Storage
    [Show full text]
  • Precontact Vegetation and Soil Nutrient Status in the Shadow of Kohala Volcano, Hawaii ⁎ Oliver A
    Geomorphology 89 (2007) 70–83 www.elsevier.com/locate/geomorph Precontact vegetation and soil nutrient status in the shadow of Kohala Volcano, Hawaii ⁎ Oliver A. Chadwick a, , Eugene F. Kelly b, Sara C. Hotchkiss c, Peter M. Vitousek d a Department of Geography, University of California, Santa Barbara, CA 93106, USA b Department of Crop and Soil Science, Colorado State University, Fort Collins, CO 80523, USA c Department of Botany, University of Wisconsin, Madison, WI 53706, USA d Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA Received 13 January 2005; received in revised form 25 July 2006; accepted 25 July 2006 Available online 2 October 2006 Abstract Humans colonized Hawaii about 1200 years ago and have progressively modified vegetation, particularly in mesic to dry 13 tropical forests. We use δ C to evaluate the contribution of C3 and C4 plants to deep soil organic matter to reconstruct pre-human contact vegetation patterns along a wet to dry climate transect on Kohala Mountain, Hawaii Island. Precontact vegetation assemblages fall into three distinct zones: a wet C3 dominated closed canopy forest where annual rainfall is N2000 mm, a dry C4 dominated grassland with annual rainfall b500 mm, and a broad transition zone between these communities characterized by either C3 trees with higher water-use efficiency than the rainforest trees or C3 trees with a small amount of C4 grasses intermixed. The likelihood of C4 grass understory decreases with increasing rainfall. We show that the total concentration of rock-derived nutrients in the b2-mm soil fraction differs in each of these vegetation zones.
    [Show full text]
  • Geology, Geochemistry and Earthquake History of Lō`Ihi Seamount, Hawai`I
    INVITED REVIEW Geology, Geochemistry and Earthquake History of Lō`ihi Seamount, Hawai`i Michael O. Garcia1*, Jackie Caplan-Auerbach2, Eric H. De Carlo3, M.D. Kurz4 and N. Becker1 1Department of Geology and Geophysics, University of Hawai`i, Honolulu, HI, USA 2U.S.G.S., Alaska Volcano Observatory, Anchorage, AK, USA 3Department of Oceanography, University of Hawai`i, Honolulu, HI, USA 4Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA *Corresponding author: Tel.: 001-808-956-6641, FAX: 001-808-956-5521; email: [email protected] Key words: Loihi, seamount, Hawaii, petrology, geochemistry, earthquakes Abstract A half century of investigations are summarized here on the youngest Hawaiian volcano, Lō`ihi Seamount. It was discovered in 1952 following an earthquake swarm. Surveying in 1954 determined it has an elongate shape, which is the meaning of its Hawaiian name. Lō`ihi was mostly forgotten until two earthquake swarms in the 1970’s led to a dredging expedition in 1978, which recovered young lavas. This led to numerous expeditions to investigate the geology, geophysics, and geochemistry of this active volcano. Geophysical monitoring, including a real- time submarine observatory that continuously monitored Lō`ihi’s seismic activity for three months, captured some of the volcano’s earthquake swarms. The 1996 swarm, the largest recorded in Hawai`i, was preceded by at least one eruption and accompanied by the formation of a ~300-m deep pit crater, renewing interest in this submarine volcano. Seismic and petrologic data indicate that magma was stored in a ~8-9 km deep reservoir prior to the 1996 eruption.
    [Show full text]
  • Insights Into the Recurrent Energetic Eruptions That Drive Awu Among the Deadliest Volcanoes on Earth
    Insights into the recurrent energetic eruptions that drive Awu among the deadliest volcanoes on earth Philipson Bani1, Kristianto2, Syegi Kunrat2, Devy Kamil Syahbana2 5 1- Laboratoire Magmas et Volcans, Université Blaise Pascal - CNRS -IRD, OPGC, Aubière, France. 2- Center for Volcanology and Geological Hazard Mitigation (CVGHM), Jl. Diponegoro No. 57, Bandung, Indonesia Correspondence to: Philipson Bani ([email protected]) 10 Abstract The little known Awu volcano (Sangihe island, Indonesia) is among the deadliest with a cumulative death toll of 11048. In less than 4 centuries, 18 eruptions were recorded, including two VEI-4 and three VEI-3 eruptions with worldwide impacts. The regional geodynamic setting is controlled by a divergent-double-subduction and an arc-arc collision. In that context, the slab stalls in the mantle, undergoes an increase of temperature and becomes prone to 15 melting, a process that sustained the magmatic supply. Awu also has the particularity to host alternatively and simultaneously a lava dome and a crater lake throughout its activity. The lava dome passively erupted through the crater lake and induced strong water evaporation from the crater. A conduit plug associated with this dome emplacement subsequently channeled the gas emission to the crater wall. However, with the lava dome cooling, the high annual rainfall eventually reconstituted the crater lake and created a hazardous situation on Awu. Indeed with a new magma 20 injection, rapid pressure buildup may pulverize the conduit plug and the lava dome, allowing lake water injection and subsequent explosive water-magma interaction. The past vigorous eruptions are likely induced by these phenomena, a possible scenario for the future events.
    [Show full text]
  • Large-Scale Inflation of Tungurahua Volcano (Ecuador) Revealed by Persistent Scatterers SAR Interferometry J
    Large-scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry J. Champenois, V. Pinel, S. Baize, L. Audin, H. Jomard, A. Hooper, A. Alvarado, H. Yepes To cite this version: J. Champenois, V. Pinel, S. Baize, L. Audin, H. Jomard, et al.. Large-scale inflation of Tungurahua vol- cano (Ecuador) revealed by Persistent Scatterers SAR interferometry. Geophysical Research Letters, American Geophysical Union, 2014, 41 (16), pp.5821-5828. 10.1002/2014GL060956. hal-02614039 HAL Id: hal-02614039 https://hal.archives-ouvertes.fr/hal-02614039 Submitted on 20 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GeophysicalResearchLetters RESEARCH LETTER Large-scale inflation of Tungurahua volcano (Ecuador) 10.1002/2014GL060956 revealed by Persistent Scatterers SAR interferometry Key Points: J. Champenois1,2, V. Pinel2, S. Baize1, L. Audin2, H. Jomard1, A. Hooper3, A. Alvarado4, and H. Yepes2,4 • We use PS-InSAR method to detect volcanic deformation at 1Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses,
    [Show full text]
  • Volcan Peteroa
    GEOLOGY AND GEOCHEMISTRY OF THE ACTIVE AZUFRE-PLANCHON-PETEROA VOLCANIC CENTER (35015 ' S, SOUTHERN ANDES): IMPLICATIONS FOR CORDILLERAN ARC MAGMATISM by Daniel Richard Tormey B.S. Civil Engineering and Geology, Stanford University (1983) Submitted to the Department of Earth, Atmospheric, and Planetary Sciences In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology February, 1989 ©Daniel Richard Tormey, 1989. All rights reserved The author hereby grants to M.I.T. permission to reproduce and distribute copies of this thesis document in whole or in part. Signature of Author: Department of Earth, Atmospheric, & Plane6fry Sciences, MIT 6 January 1989 Certified by: I . rederick A.Frey Thesis Supervisor Accepted by: S,, Dr. Thomas H. Jordan Chairman, Departmental Committee on Graduate Students ARCH?," AP 111989 Geology and Geochemistry of the Active Azufre-Planchon-Peteroa Volcanic Center (35015'S, Southern Andes): Implications for Cordilleran Arc Magmatism by Daniel Richard Tormey Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on 6 January 1989 in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT Magmatism in convergent margin settings is the dominant mechanism of mass transfer from the mantle to the crust and of crustal growth during the Phanerozoic. The results of a detailed study of the Azufre-Planchon-Peteroa Volcanic Center and of regional comparison of volcanoes in the Southern Volcanic Zone of the Andes between 330S and 420S constrain the sources, processes, and rates operative during magmatism of the southern Andean volcanic front. The Azufre-Planchon-Peteroa Volcanic Center is located at 350 15'S, in a transition zone of crustal thickness.
    [Show full text]
  • Dome Growth, Collapse, and Valley Fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from Satellite Radar
    Research Paper GEOSPHERE Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar GEOSPHERE; v. 12, no. 4 measurements of topographic change doi:10.1130/GES01291.1 D.W.D. Arnold1, J. Biggs1, G. Wadge2, S.K. Ebmeier1, H.M. Odbert3,*, and M.P. Poland4 1COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4 figures; 5 tables; 1 supplemental file 2COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK 3School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4U.S. Geological Survey, Cascade Volcano Observatory, 1300 S.E. Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683-9589, USA CORRESPONDENCE: david .arnold@ bristol .ac.uk CITATION: Arnold, D.W.D., Biggs, J., Wadge, G., ABSTRACT Fink, 1996; Fink and Griffiths, 1998; Watts et al., 2002; Hutchison et al., 2013). In Ebmeier, S.K., Odbert, H.M., and Poland, M.P., 2016, Dome growth, collapse, and valley fill at Soufrière steady state, lava effusion rate can constrain the volume and pressure change Hills Volcano, Montserrat, from 1995 to 2013: Contri- Frequent high-resolution measurements of topography at active vol- of shallow magma reservoirs (e.g., Dvorak and Dzurisin, 1993; Harris et al., butions from satellite radar measurements of topo- canoes can provide important information for assessing the distribution and 2003, 2007; Anderson and Segall, 2011), while long-lived volcanic eruptions graphic change: Geosphere, v.
    [Show full text]
  • Maunaloa/Current/Longterm.Html K!Lauea – the Most Active Volcano on Earth K!Lauea Structure
    !"#$%&'()'*$+$,-, !"#$%"& '()*%"+, -*./&0%1(2343(5"6"+7+ 8#9*)"/& :/*;0,& .(/$#$ 0$1%$'.2$ 4'5(6'78' "29$6$:2' ;(#<$%(2" *1$#!#$, ."#$12$ 0$1%$'3($ 3#-,/, =(#<$%,<'>:$?2" 0$1%$'3($'$%&'."#$12$@''''' A "/,2#&'#$;$"'(%#B *1$#!#$,@'''''''''''''''''''''''''''''' A 9(":"/,2#& (%#B .(/$#$ $%&'0$1%$'.2$@'''' A "/,2#&'C'9(":"/,2#& DEEFEEE'G HEEFEEE' B6"'$?(F'$##'4' ;(#<$%(2"'+262' $<:,;2'5%(+'I'$62J' (%#B'D',"'2K:,%<:8 LDMEFEEE'B6"'$?(' ."#$12$F'0N'3($F'0N' .2$'O'*1$#!#$, +262'$<:,;2'"/,2#&' ;(#<$%(2"F'+/,#2' .(/$#$ +$"',%':/2' 9(":A"/,2#&'":$?2 P!/$#$ Q"/ < 1*./(=**> ?@+,>#0%%(+#()0&0/% A",$*#"B$(0&("BCD(EFGH P!/$#$ Q"/'62&2),%2& I3B)*%&(,0/&"+#B1()*/0(&@"#(*#0( %*./,0(9*/(&@0("%@(=0$%(*#(&@0(J+K( 8%B"#$ I ?@*%0(+#(&@0(#*/&@("/0(LEMMDMMM(1/%( *B$("#$(N/*="=B1($0/+O0$(9/*)(A".#"( P0"(Q#*(B*#K0/(,"BB0$(:!@"B" 3%@R I ?@*%0(*#(A".#"(!*"("#$(P"B".0" "/0().,@(1*.#K0/(QSEMIEH(>"R("#$( N/*="=1 $0/+O0$(9/*)(0TNB*%+O0( 0/.N&+*#%(*#(A".#"(!*"("#$(P"B".0"C(( Q"/':/,<R%2""',%'S2:26" T,?'!"#$%&'U;(#1:,(% V/2':+('(#&2":'T,?'!"#$%&' ;(#<$%(2"'$62'.(/$#$ 5.(8'$%&' $'"1WS$6,%2';(#<$%('<$##2&' 0!/1R(%$ 508 T(:/'+262'96(W$W#B'962"2%:' 4EEFEEE'B6"'$?( 0!/1R(%$ G :/2'S,"",%?'*$+$,,$%';(#<$%( U"/,+"(0&("BCD(EFFM -B"K.0 "#$(A**/0D(EFFE IM4'G 4EE'R$':/(#2,,:,< $%&'$#R$#,< W$"$#:" QW(6:2&'X962A"/,2#&Y'(6'W16,2&':6$%",:,(%$#'9(":"/,2#&Z T,?'!"#$%&'U;(#1:,(% TB'MEEFEEE'B2$6"'$?( A!@.>*#" 6"%(0T&+#,&(QVR( P*@"B"D(A".#"(P0"D("#$(5."B!B"+ 60/0(",&+O0(%@+0B$% P*@"B" @"$(.#$0/K*#0("()";*/(B"#$%B+$0 :/*="=B1(A".#"(!*"(6"%("B%*(",&+O0("&(&@+%(&+)0 T,?'!"#$%&'U;(#1:,(% TB'DEEFEEE'B2$6"'$?(
    [Show full text]
  • Petrology, Mineralogy, and Geochemistry of the East Molokai Volcanic Series, Hawaii
    Petrology, Mineralogy, and Geochemistry of the East Molokai Volcanic Series, Hawaii GEOLOGICAL SURVEY PROFESSIONAL PAPER 961 Petrology, Mineralogy, and Geochemistry of the East Molokai Volcanic Series, Hawaii By MELVIN H. BEESON GEOLOGICAL SURVEY PROFESSIONAL PAPER 961 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 76-12795 For ~ale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02810-7 CONTENTS Page Page 1\bstract__________________________________________________ 1 Phenocryst-free compositions ------------------------------ 14 Introduction ---------------------------------------------- 1 Mineralogy ____ __ __ __ __ ______ __ ________ __ __________ ______ 21 Previous investigations------------------------------------ 3 Compositional variation of olivine______________________ 21 Purpose and scope ---------------------------------------- 4 Compositional variation of clinopyroxene ______________ 25 1\nalytical procedures ------------------------------------ 4 Compositional variation of plagioclase__________________ 27 Stratigraphy and petrology-------------------------------- 6 Compositional variation of opaque minerals ____________ 28 Whole-rock compositions ---------------------------------- 11 Summary ------------------------------------------------ 30 References________________________________________________ 33
    [Show full text]