Measurement, Scaling, and Psychophysics

Total Page:16

File Type:pdf, Size:1020Kb

Measurement, Scaling, and Psychophysics Chapter 1 MEASUREMENT, SCALING, AND PSYCHOPHYSICS R. Duncan Luce, Harvard University Carol L. Krumhansl, Cornell University Introduction Aximatic Measurement Scaling Psychophysics INTRODUCTION kinetic and potential energy, acceleration, impedance, and charge. To most physical scientists, the term measure- Psychological measurement is in a compar- ment brings to mind issues of precision, reliabil- able, floundering state with informal concepts ity, bias, and technique. One takes for granted that seem to admit of degree or amount, but that the attribute in question-be it the velocity whose means of measurement remain crude, of light, the mass of an electron, or the diameter controversial, and uncertain. Subjectively, our of the sun-is measurable, that it can be quan- sensations of hunger, loudness, and sweetness tified in a consistent and meaningful way. In the are no less real than our sensations of force, physical sciences very precise systems of meas- energy, and acceleration. Moreover, for both urement have been developed that permit largely psychological and physical attributes, our observer-free descriptions of physical objects sensations suggest a measurement system that and events. But think back to the early history codes the degree or amount of the attribute or of physics, when the very nature of many meas- property in question. However, it is important to ures was a matter of doubt and debate, and most recognize an essential difference between the measurement systems in use resulted from the objectives of physical and psychological meas- needs of trade and commerce, not physical urement. Physics studies certain properties of theory. True, there were strong intuitive space, matter, and radiation, not the sensations notions of what we now call force, weight, mass, they engender, although there is no doubt that time, velocity, momentum, work, heat, and tem- in its early development physics was strongly perature, but it took a great deal of effort to guided, and sometimes misguided, by these develop methods for measuring these attributes sensations. In psychology, we are concerned of physical systems and to understand the rela- with the sensations themselves, and this dif- tions among them. In the process, it became ference poses a challenge to develop measures necessary to introduce some far less intuitive that are appropriate for our special purposes. but equally important measures, such as entropy, The system of measurement that develops in 4 MEASUREMENT, SCALING, AND PSYCHOPHYSICS psychology will undoubtedly turn out to sensations themselves are attributes of the resemble that of physics in certain fundamental organism, comparable in many ways to the ways, but new problems requiring novel solu- properties of physical objects. As such, these tions are also likely to emerge. attributes are assumed to be highly stable and Physics and its applications exhibit three dis- regular, and thus they can be subjected to care- tinct levels of theory. First, there are the pri- ful analytical study and represented numeric- mitive relations among attributes that deter- ally in a manner analogous to physical measure- mine both the measurement representations and ment. This approach is concerned not only with the interconnections among measures, as the assignment of numerical values to the reflected in the structure of physical units. psychological states, but also with the way in Second, there are the various laws of physics which the observed psychological measui-es that are expressed entirely in terms of these possess various formal properties of the number measures, such as the basic equations of electro- system into which they are being mapped. For magnetic theory (Maxwell's equations), of hydro- the purpose of this chapter, we will refer to this dynamics, of kinetics, and of statistical mechan- as the measurement approach. ics. And third, certain particular systems are If this approach is followed and succeeds, one modeled and the equations are solved for those anticipates the discovery of general laws relat- cases. An example is the force exerted on a par- ing the sensations to physical attributes. That ticular airfoil in a particular fluid flow, or the is, the measured sensations are expected to cor- movement of the needle of a voltmeter when respond systematically to the physical quan- placed across a particular circuit under par- tities that give rise to them. This is the point of ticular conditions. Keep in mind that, at each of view, more or less explicit, that has informed the the three levels, important regularities are tradition of psychophysical measurement that found, all of which are called laws; those of began with Fechner (1860) and received major measurement, those of general physical pro- impetus in this century by Thurstone (1927), cesses, and those of particular physical systems. Stevens (1951, 1975; see the latter for numerous Although they all express regularities, they are references), and many others. For example, obviously not all of the same type, since they sound intensity, that is, the amplitude of the differ in generality. pressure wave impinging on the eardrum, is a If three distinct levels really can be distin- well-understood physical attribute that is highly guished, at which level does the psychophysicist correlated with the sensation called loudness. It operate when studying loudness? If a scale of is, however, by no means identical to it. For one loudness is developed, is it (1) an example of thing, the relationship is not linear; twice the measurement, (2) a part of some psychophysical amplitude does not give rise to twice the per- theory, or (3) the manifestation of the operation ceived loudness. Moreover loudness is affected of a mechanism? In the first case, it must eventu- by the frequency of the sound as well as by its ally be shown to arise as the representation of a intensity. A more striking example, perhaps, is lawful qualitative structure. In the second, it is color vision. Light stimuli are described at the best thought of as a construct whose ultimate physical level by the energy at each of an infin- status is not necessarily clear; often constructs ity of wavelengths, but perceptually this infi- of theories eventually become basic measures, nite-dimensional space is mapped onto the much once the situation is better understood. And in simpler, three-dimensional structure of the the third, it may best be thought of as a random psychological color space. Thus, the relation variable, reflecting the probabilistic character between the physical stimulus and the corre- of a mechanism, but not necessarily having any- sponding psychological response may be quite thing to do with fundamental measurement. complex, although this approach assumes that We discuss the first separately and then lump the relation is lawful. the other two. For the measurement view to prevail in psychophysics or, more generally, in psychol- The Strategy of Measurement and ogy, or even more generally, in biology, it Scaling in Psychophysics appears necessary for some structure of inter- connected scales to arise, much as exists in In following this strategy we suppose that the physics. This would mean a complex pattern of INTRODUCTION 5 reductions of some psychological scales to are for the most part fallible in the sense of others, with a resulting simple pattern of units, exhibiting a certain amount of inconsistency and quite possibly some simple connection with and irregularity, into some familiar numerical the scales of physics. This appears to be the representation. For example, the question may program that Stevens was pursuing; we discuss be how best to locate points in some geometri- it below. To anticipate, Stevens attempted to cal, often metric, space so as to represent the argue that the psychological scales of intensity psychological relationships among stimuli? are all power functions of the primary physical This approach accepts the fallible nature of the scales that manipulate each attribute. Moreover data, and is, therefore, not so much concerned he attempted to show that a consistent pattern with verifying that the data satisfy specific of power functions holds among the scales of properties entailed by the chosen representa- intensity, suggesting a single underlying attri- tion as with searching for the best possible fit of bute of psychological intensity. Were that true, the data within the chosen class of representa- then psychophysical measurement would simply tions. The fit between the original data and the enlarge the system of physical measures, just as solution is evaluated in some global, statistical electromagnetic theory did in the second half of sense. the last century, and one could anticipate the In the short run, this scaling approach has development of psychological theories involv- proved to be very directly usable. In the long ing these sensory (and perhaps other) variables run, solving some of the deeper questions posed on the model established in physics. by the axiomatic approach to measurement, Within this tradition of measurement there such as defining the possibilities for measure- are a number of subschools and points of view. ment, discovering how complexes of structures Perhaps most notable is the division between interrelate (as, for example, those underlying axiomatizers and scalers. The axiomatizers the system of physical units), and determining (whose approach is exemplified in Krantz, Luce, what kinds of statements are meaningful in a Suppes & Tversky, 1971, Narens, 1985, and measurement structure, may have more pro- Roberts, 1979) tend to treat the following type of found implications for progress in psychology. problem: If a body of (potential) qualitative observations satisfies certain primitive laws- The Strategy of Mechanisms in axioms that capture properties of these observa- Psychophysics tions-then is it possible to find a numerical structure that accurately summarizes these The second major strategy for describing psycho- observations? In technical terms, the question physical attributes is to focus on sensory and is: To which numerical structures is the set of other mechanisms in the organism.
Recommended publications
  • Education Quarterly Reviews
    Education Quarterly Reviews Allanson, Patricia E., and Notar, Charles E. (2020), Statistics as Measurement: 4 Scales/Levels of Measurement. In: Education Quarterly Reviews, Vol.3, No.3, 375-385. ISSN 2621-5799 DOI: 10.31014/aior.1993.03.03.146 The online version of this article can be found at: https://www.asianinstituteofresearch.org/ Published by: The Asian Institute of Research The Education Quarterly Reviews is an Open Access publication. It May be read, copied, and distributed free of charge according to the conditions of the Creative ComMons Attribution 4.0 International license. The Asian Institute of Research Education Quarterly Reviews is a peer-reviewed International Journal. The journal covers scholarly articles in the fields of education, linguistics, literature, educational theory, research, and methodologies, curriculum, elementary and secondary education, higher education, foreign language education, teaching and learning, teacher education, education of special groups, and other fields of study related to education. As the journal is Open Access, it ensures high visibility and the increase of citations for all research articles published. The Education Quarterly Reviews aiMs to facilitate scholarly work on recent theoretical and practical aspects of education. The Asian Institute of Research Education Quarterly Reviews Vol.3, No.3, 2020: 375-385 ISSN 2621-5799 Copyright © The Author(s). All Rights Reserved DOI: 10.31014/aior.1993.03.03.146 Statistics as Measurement: 4 Scales/Levels of Measurement 1 2 Patricia E. Allanson , Charles E. Notar 1 Liberty University 2 Jacksonville State University. EMail: [email protected] (EMeritus) Abstract This article discusses the basics of the “4 scales of MeasureMent” and how they are applicable to research or everyday tools of life.
    [Show full text]
  • Improving Your Exploratory Factor Analysis for Ordinal Data: a Demonstration Using FACTOR
    Practical Assessment, Research, and Evaluation Volume 19 Volume 19, 2014 Article 5 2014 Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR James Baglin Follow this and additional works at: https://scholarworks.umass.edu/pare Recommended Citation Baglin, James (2014) "Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR," Practical Assessment, Research, and Evaluation: Vol. 19 , Article 5. DOI: https://doi.org/10.7275/dsep-4220 Available at: https://scholarworks.umass.edu/pare/vol19/iss1/5 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Baglin: Improving Your Exploratory Factor Analysis for Ordinal Data: A De A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms. Volume 19, Number 5, June 2014 ISSN 1531-7714 Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR James Baglin, RMIT University, Melbourne, Australia Exploratory factor analysis (EFA) methods are used extensively in the field of assessment and evaluation. Due to EFA’s widespread use, common methods and practices have come under close scrutiny.
    [Show full text]
  • A Practical Guide to Instrument Development and Score Validation in the Social Sciences: the MEASURE Approach
    Practical Assessment, Research, and Evaluation Volume 26 Article 1 2021 A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach Michael T. Kalkbrenner New Mexico State University - Main Campus Follow this and additional works at: https://scholarworks.umass.edu/pare Recommended Citation Kalkbrenner, Michael T. (2021) "A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach," Practical Assessment, Research, and Evaluation: Vol. 26 , Article 1. DOI: https://doi.org/10.7275/svg4-e671 Available at: https://scholarworks.umass.edu/pare/vol26/iss1/1 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach Cover Page Footnote Special thank you to my colleague and friend, Ryan Flinn, for his consultation and assistance with copyediting. This article is available in Practical Assessment, Research, and Evaluation: https://scholarworks.umass.edu/pare/ vol26/iss1/1 Kalkbrenner: The MEASURE Approach A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms.
    [Show full text]
  • Measuring Learners' Attitudes Toward Team Projects: Scale Development
    American Journal of Engineering Education – December 2017 Volume 8, Number 2 Measuring Learners’ Attitudes Toward Team Projects: Scale Development Through Exploratory And Confirmatory Factor Analyses Seung Youn (Yonnie) Chyung, Boise State University, USA Donald J. Winiecki, Boise State University, USA Gary Hunt, Boise State University, USA Carol M. Sevier, Boise State University, USA ABSTRACT Team projects are increasingly used in engineering courses. Students may develop attitudes toward team projects from prior experience, and their attitudinal responses could influence their performance during team project-based learning in the future. Thus, instructors need to measure students’ attitudes toward team projects during their learner analysis to better understand students’ characteristics and be proactive in providing effective strategies to help students succeed in a team project environment. The purpose of our study was to develop a survey instrument that measures students’ attitudes toward team projects to be used as a learner analysis tool, derived from our local practical needs and due to the lack of appropriate existing instruments. The study was conducted at a mid-sized university in the northwestern United States during 2015-2016. After we generated an initial pool of 50 items, we administered the survey to 225 undergraduate engineering students, performed exploratory factor analysis on the data, and arrived at a four-factor solution of 20 items and a three-factor solution of 14 items. We tested the two competing solutions with another set of 330 undergraduate engineering students. Based on our confirmatory factor analysis results, we arrived at a three-factor model of 12 items as the finalized scale, which measures: (a) professional capacity building, (b) learning and problem-solving skills development, and (c) workload challenges.
    [Show full text]
  • Career Values Scale Manual and User's Guide Includes Bibliographic References
    MANUAL & USER’S GUIDE DONALD MACNAB SHAWN BAKKER GEORGE FITZSIMMONS CVS-M Career Values Scale Manual and User's Guide Includes bibliographic references. © 2005 Psychometrics Publishing. All rights reserved. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher. Published and distributed by Psychometrics Canada Ltd. 7125-77 Avenue, Edmonton AB T6B 0B5 CANADA www.psychometrics.com ISBN 0-929022-42-4 Printed in Canada Myers-Briggs Type Indicator and MBTI are registered trademarks of the Myers-Briggs Type Indicator Trust in the United States and other countries. CONTENTS Chapter 1 • Introduction Conceptualization of career values in the Career Values scale . 1 Overview of the Career Values Scale . 3 Chapter 2 • Administration Procedures . 6 Appropriate Populations for Administration . 7 Chapter 3 • Using the Career Values Scale Scoring and Reporting . 8 Illustrative Examples . 9 Exercises using the Career Values Scale . 12 Chapter 4 • Development & Norming of the Career Values Scale Development Process . 18 Scale development and item writing . 18 Norming of the CVS . 19 Sten Scores . 21 Means and Standard Deviations . 22 Chapter 5 • Reliability and Validity Reliability . 23 Validity . 25 Concurrent Validity . .25 Construct Validity Evidence . 29 Values and Occupational Interests . 28 Values and Personality . 28 Inter-correlation between WPI Scale . 30 Factor Analysis . 31 Feedback Study . 32 Bibliography • Research on Values . .33 Appendix A • Sample Report . .35 TABLES & FIGURES Chapter 1 Figure 1.1 Career Values Scale Factors and Scale . 3 Chapter 4 Table 4.1 Ethnic Origin of Norming Sample .
    [Show full text]
  • Management Measurement Scale As a Reference to Determine Interval in a Variable
    ATM, Vol 2, No. 1, January 2018 e-ISSN: 2622-6804 p-ISSN: 2622-6812 ■45 Management Measurement Scale As A Reference To Determine Interval In A Variable 1​ 2​ 3 Qurotul Aini​ , Siti Ria Zuliana​ , Nuke Puji Lestari Santoso​ 1-3STMIK​ Raharja, Jl. Jendral Sudirman No.40 Modernland, Cikokol, Tangerang e-mail: ​[email protected]​, ​[email protected]​, ​[email protected] Abstract The scale is usually used to check and determine the value of a qualitative factor in quantitative measures. The measurement scale is a management in agreement that is used as a reference to determine the short length of the interval that is in the measuring instrument, so that the measuring instrument when used in measurements will produce quantitative data. The results of the scale management calculation must be interpreted carefully because in addition to producing a rough picture, the respondent's answers are not just straightforward to be trusted. Types of measurement scales: Likert scale, Guttman scale, semantic differential scale, rating scale, Thurstone scale, Borgadus scale, and various other measurement management scales. One of the most difficult jobs for information technology researchers faced with the necessity of measuring variables is: finding directions in the midst of many existing sizes. If there is a good size for a particular variable, it seems that there are not many reasons to compile a new size yourself. Keywords​: Scale, Measurement, Variables. 1. Introduction The scale is usually used to check and determine the value of a qualitative factor in quantitative measures. Scale is a tool that is compiled and used by researchers to change the response about a qualitative variable to quantitative data (Mahmud, 2011: 181) [1].
    [Show full text]
  • Summated Rating Scale Construction : an Introduction Sage University Papers Series
    title : Summated Rating Scale Construction : An Introduction Sage University Papers Series. Quantitative Applications in the Social Sciences ; No. 07-082 author : Spector, Paul E. publisher : Sage Publications, Inc. isbn10 | asin : 0803943415 print isbn13 : 9780803943414 ebook isbn13 : 9780585217154 language : English subject Scaling (Social sciences) publication date : 1992 lcc : H61.27.S66 1992eb ddc : 300/.72 subject : Scaling (Social sciences) Summated Rating Scale Construction An Introduction SAGE UNIVERSITY PAPERS Series: Quantitative Applications in the Social Sciences Series Editor: Michael S. Lewis-Beck, University of Iowa Editorial Consultants Richard A. Berk, Sociology, University of California, Los Angeles William D. Berry, Political Science, Florida State University Kenneth A. Bollen, Sociology, University of North Carolina, Chapel Hill Linda B. Bourque, Public Health, University of California, Los Angeles Jacques A. Hagenaars, Social Sciences, Tilburg University Sally Jackson, Communications, University of Arizona Richard M. Jaeger, Education, University of North Carolina, Greensboro Gary King, Department of Government, Harvard University Roger E. Kirk, Psychology, Baylor University Helena Chmura Kraemer, Psychiatry and Behavioral Sciences, Stanford University Peter Marsden, Sociology, Harvard University Helmut Norpoth, Political Science, SUNY, Stony Brook Frank L. Schmidt, Management and Organization, University of Iowa Herbert Weisberg, Political Science, The Ohio State University Publisher Sara Miller McCune, Sage Publications, Inc. INSTRUCTIONS TO POTENTIAL CONTRIBUTORS For guidelines on submission of a monograph proposal to this series, please write Michael S. Lewis-Beck, Editor Sage QASS Series Department of Political Science University of Iowa Iowa City, IA 52242 Page i Series/Number 07-082 Summated Rating Scale Construction An Introduction Paul E. Spector University of South Florida SAGE PUBLICATIONS The International Professional Publishers Newbury Park London New Delhi Page ii Copyright © 1992 by Sage Publications, Inc.
    [Show full text]
  • Factor Analysis and Scale Revision
    Psychological Assessment Copyright 2000 by the American Psychological Association, Inc. 2000, Vol. 12, No. 3, 287-297 1040-3590/00/S5.00 DOI: 10.1037//1040-3590.12.3.287 Factor Analysis and Scale Revision Steven P. Reise Niels G. Waller University of California, Los Angeles Vanderbilt University Andrew L. Comrey University of California, Los Angeles This article reviews methodological issues that arise in the application of exploratory factor analysis (EFA) to scale revision and refinement. The authors begin by discussing how the appropriate use of EFA in scale revision is influenced by both the hierarchical nature of psychological constructs and the motivations underlying the revision. Then they specifically address (a) important issues that arise prior to data collection (e.g., selecting an appropriate sample), (b) technical aspects of factor analysis (e.g., determining the number of factors to retain), and (c) procedures used to evaluate the outcome of the scale revision (e.g., determining whether the new measure functions equivalently for different populations). Personality measurement by self-report questionnaire is a thriv- principal-components analysis (see Velicer & Jackson, 1990) or ing enterprise of critical importance to theory development and multidimensional scaling (Davison, 1994). Second, we discuss the testing in many psychological disciplines such as clinical psychol- use of confirmatory factor analysis (CFA) in scale revision only ogy. At least three journals focus on statistical analyses of ques- sparingly because more extended treatments of this topic are tionnaire data: Psychological Assessment, Journal of Personality available elsewhere (see Finch & West, 1997, or Floyd & Wida- Assessment, and Assessment. Many of the articles in these journals man, 1995).
    [Show full text]
  • Development of Scales to Measure and Analyse the Relationship Of
    International Journal of Environmental Research and Public Health Article Development of Scales to Measure and Analyse the Relationship of Safety Consciousness and Safety Citizenship Behaviour of Construction Workers: An Empirical Study in China Xiangcheng Meng 1 , Huaiyuan Zhai 2,* and Alan H. S. Chan 1 1 School of System Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China; [email protected] (X.M.); [email protected] (A.H.S.C.) 2 School of Economics and Engineering Management, Beijing Jiaotong University, Beijing 100044, China * Correspondence: [email protected]; Tel.: +86-152-1057-6816 Received: 9 April 2019; Accepted: 17 April 2019; Published: 19 April 2019 Abstract: China’s construction industry has experienced a long period of development and reform but compared to developed countries, safety on construction sites in China continues to present serious problems. Safety consciousness and safety citizenship behaviour are influential factors related to safety issues in the construction industry and may play a direct role in improving the safety of personnel on construction sites. However, recently no research has been focused on the relationship between safety consciousness and safety citizenship behaviour. Therefore, this paper aimed to investigate the relationship between safety consciousness and safety citizenship behaviour for personnel working on construction sites in China by using a questionnaire survey and statistical analysis, so that correlation between safety consciousness and safety citizenship can be demonstrated and effective measures suggested to improve the safety of construction workers in China, and perhaps in other countries as well. Keywords: construction workers; safety consciousness; safety citizenship behaviour; questionnaire survey 1.
    [Show full text]
  • Identifying the Component Structure of Satisfaction Scales by Nonlinear Principal Components Analysis
    Quality Technology & Quantitative Management QTQM Vol. 7, No. 2, pp. 97-115, 2010 © ICAQM 2010 Identifying the Component Structure of Satisfaction Scales by Nonlinear Principal Components Analysis Marica Manisera1, Anita J. van der Kooij2 and Elise Dusseldorp3 1Department of Quantitative Methods, University of Brescia, Italy 2Data Theory Group, Department of Education, Leiden University, The Netherlands 3TNO Quality of Life, Department of Statistics, The Netherlands (Received March 2007, accepted December 2007) ______________________________________________________________________ Abstract: The component structure of 14 Likert-type items measuring different aspects of job satisfaction was investigated using nonlinear Principal Components Analysis (NLPCA). NLPCA allows for analyzing these items at an ordinal or interval level. The participants were 2066 workers from five types of social service organizations. Our results suggest that taking into account the ordinal nature of the items was most appropriate. On the basis of a stability study, a two-component structure was found, from which we extracted two subscales (“Motivation” and “Hygiene”) with reliabilities of .81 and .77. A Multiple Group analysis confirmed this structure. We also investigated whether workers in the five types of organizations differed with respect to the component structure, employing a feature of the program CATPCA. We found that the organizations did not differ much with respect to the job satisfaction components. Keywords: CATPCA, Herzberg, monotonic transformations, multiple group method, nonlinear principal components analysis, satisfaction survey data, scale construction. ______________________________________________________________________ 1. Introduction n the social and economic sciences, numerous studies have investigated which factors I affect the quality of services and products supplied. The literature about the quality of services and products underlines the opportunity to consider both customer and job satisfaction (among others [10, 15, 28, 30, 31]).
    [Show full text]
  • Stages of Psychometric Measure Development: the Example of the Generalized Expertise Measure (GEM)
    893 Stages of Psychometric Measure Development: The example of the Generalized Expertise Measure (GEM) Marie-Line Germain Barry University & City College This paper chronicles the steps, methods, and presents hypothetical results of quantitative and qualitative studies being conducted to develop a Generalized Expertise Measure (GEM). Per Hinkin (1995), the stages of scale development are domain and item generation, content expert validation, and pilot test. Content/face validity and internal consistency of the scores of the GEM are discussed, as well as directions to ensure that the psychometric properties of the scale are theoretically and empirically sound. Keywords: Measure, Research Methods, Expertise Since its humble beginnings in the late 1950s, expertise has slowly permeated the human resource development literature. This seemingly obscure concept became an intriguing research topic as artificial intelligence and cognitive psychology further developed in the mid- to late sixties. Swanson & Holton (2001) define expertise as a “displayed behavior within a specialized domain and / or related domain in the form of consistently demonstrated actions of an individual that are both optimally efficient in their execution and effective in their results.” (p. 241). The absence of empirical evidence may well be the main reason of the gradual development of understanding of expertise in the last three decades (cf. Bédard & Chi, 1992). The meticulous standards of scientific methodologies invalidate the pervasive existence of anecdotal evidence in the popular press of expertise in organizational settings. The past 15 years, however, have seen an upsurge in the pace of expertise research, as indicated in the growing number of peer-reviewed publications in the area (Holton & Swanson, 2001).
    [Show full text]
  • Scale Construction Notes
    Scale Construction Notes Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 June 5, 2000 These notes were prepared with the support of a grant from the Dutch Science Foundation to GÄunSemin. I would like to thank Heather Claypool and Dick Heslin for comments made on earlier versions of these notes. If you wish to cite the contents of this document, the APA reference for them would be DeCoster, J. (2005). Scale Construction Notes. Retrieved <month, day, and year you downloaded this ¯le> from http://www.stat-help.com/notes.html For future versions of these notes or help with data analysis visit http://www.stat-help.com ALL RIGHTS TO THIS DOCUMENT ARE RESERVED. Contents 1 Introduction 1 2 Creating Items 2 3 Data Collection and Entry 5 4 Validity and Reliability 7 5 Measuring More than One Variable with a Scale 13 6 The Role of Revision 15 7 Reporting a Scale 17 i Chapter 1 Introduction ² The purpose of scale construction is to design a questionnaire that provides a quantitative measurement of an abstract theoretical variable. ² Scale construction can be seen as a specialized area of survey design. Not all surveys are scales, however. Before trying to apply the procedures presented here to the construction of your questionnaire you should decide whether it really is a scale. The most obvious key is that a scale uses a moderately large number of items to measure a single construct. The items within a scale are typically interchangeable, meaning that the response to one item has exactly the same theoretical meaning as the response to any other item within the scale.
    [Show full text]