Electrical Knowledge
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
AC & DC True RMS Current and Voltage Transducer Wattmeter
AC & DC true RMS current and voltage transducer Wattmeter, Voltmeter, Ammeter,…. Type CPL35 • Continuous or alternative RMS measures: Single-phase or balanced three-phase 0...440 Hz PWM, wave train, Phase angle variation, AC All high level harmonics signals • multi-sensor for current measurement: Shunt, transformer, Rogowski coil, Hall effect sensor or direct input 1A/ 5A • Programmable: Voltmeter, ammeter, wattmeter, varmeter, power factor, Cos phi, frequency meter • 4 digits measure display U, I, Cos, P, Q, Hz DC+AC • Up to 2 isolated analog outputs and 2 relay outputs • Wide range universal ac/dc power supply The CPL35 is a converter for measuring, monitoring and retransmission of electrical parameters. Implementa- tion is fast by simple configuration of transformer ratio or shunt sensitivity. The various output options allow a wide range of application: measurement, protection, control. Measurement: Block diagram: - DC or AC, single-phase or balanced three-phase network (configurable TP, CT ratio or shunt sensitivity), - 2 voltage calibers: 150V, 600V others on request up to 1000V, - 3 current calibers: 200mV (external shunt) ,1A or 5A internal shunt, - Hall effect current sensor (+/-4V input) - active (P), reactive (Q), apparent (S) powers, - cos (power factor) , frequency 1Hz…..440 Hz, - configurable integration time from 10 ms to 60 seconds for the measurement in slow waves train applications. Front face: - 4 digit alphanumeric LED matrix display for the measurement, - 2 red LEDs to display the status of relays, - 2 push buttons for: * The complete configuration of the device * Selecting the displayed value (U, I, Cos, P, Q, S, Hz) * Setting of alarm thresholds, ....... Relays (/R option): Up to 2 configurable relays: - In alarm, monitoring measure selection (U, I, Cos, P, Q, S, Hz), - Threshold, direction, hysteresis and delay individually adjustable on Associated current sensors each relay (on & off delay), shunt current transformer Hall effect sensor Rogowski coil - HOLD function (alarm storage with RESET by front face). -
Mutual Inductance and Transformer Theory Questions: 1 Through 15 Lab Exercise: Transformer Voltage/Current Ratios (Question 61)
ELTR 115 (AC 2), section 1 Recommended schedule Day 1 Topics: Mutual inductance and transformer theory Questions: 1 through 15 Lab Exercise: Transformer voltage/current ratios (question 61) Day 2 Topics: Transformer step ratio Questions: 16 through 30 Lab Exercise: Auto-transformers (question 62) Day 3 Topics: Maximum power transfer theorem and impedance matching with transformers Questions: 31 through 45 Lab Exercise: Auto-transformers (question 63) Day 4 Topics: Transformer applications, power ratings, and core effects Questions: 46 through 60 Lab Exercise: Differential voltage measurement using the oscilloscope (question 64) Day 5 Exam 1: includes Transformer voltage ratio performance assessment Lab Exercise: work on project Project: Initial project design checked by instructor and components selected (sensitive audio detector circuit recommended) Practice and challenge problems Questions: 66 through the end of the worksheet Impending deadlines Project due at end of ELTR115, Section 3 Question 65: Sample project grading criteria 1 ELTR 115 (AC 2), section 1 Project ideas AC power supply: (Strongly Recommended!) This is basically one-half of an AC/DC power supply circuit, consisting of a line power plug, on/off switch, fuse, indicator lamp, and a step-down transformer. The reason this project idea is strongly recommended is that it may serve as the basis for the recommended power supply project in the next course (ELTR120 – Semiconductors 1). If you build the AC section now, you will not have to re-build an enclosure or any of the line-power circuitry later! Note that the first lab (step-down transformer circuit) may serve as a prototype for this project with just a few additional components. -
Full Procedure List
PO Box 111113 Aurora, CO 80042 Phone 303.317.6670 [email protected] World’s Largest MET/CAL® Library! Cal Lab Solutions prides itself on developing the very best automated procedures in the industry. We develop solutions to address your lab’s unique requirements and are dedicated to finding the most cost- effective solution that meets your needs. One of the many services we provide includes the development of MET/CAL® procedures. We offer both off the shelf procedures matching the manufacturer’s written documentation and custom solutions based on the documentation of your choice. Below is a list of procedures ready for delivery. If you do not see what you’re looking for, please feel free to call or email for an immediate quote. MANUFACTURER MODEL DESCRIPTION Generic Caliper All Calipers Generic Micrometer All Micrometers Generic Pin Gauges All Pin Gauges Generic Torque Wrench All Torque Wrenches Generic Decade Resistor All Decade Resistors Acqiris DC265 PXI High Speed Waveform Analyzer Acqiris DC270 PXI High Speed Waveform Analyzer Acqiris DC271 PXI High Speed Waveform Analyzer Advantest R3131A Spectrum Analyzer Advantest R3261C Spectrum Analyzer Advantest R3261D Spectrum Analyzer Advantest R3265A Spectrum Analyzer Advantest R3271A Spectrum Analyzer Advantest R3361C Spectrum Analyzer Advantest R3361D Spectrum Analyzer Aeroflex 2023 Signal Generator Aeroflex 2024 Signal Generator Agilent/HP 16530A/31A Oscilloscope Module Agilent/HP 16532A Oscilloscope Module Agilent/HP 16533A Oscilloscope Module Agilent/HP 16534A Oscilloscope Module -
Super Megohmmeter Sm-8200 Series
SM-8200 SERIES SUPER MEGOHMMETER d Tim de er, Larg splay -loa com e LCD digital/analog di fully parator ctions , remote start & communication fun 2 l Digital numeric readout with virtual analog display. Easy-to- use combined digital-analog models*1 l Timer, comparator, remote start and command functions included as standard features to support new applications*1 l Many safety-enhancing features Display Features 1– Clear, three-mode liquid crystal display*1 Bright LCD simultaneously displays data in three modes: quasi-bar-graph, virtual needle and numeric values. 2– Clear graduated scale and precise data reading*1 The one-line graduated scale is always visible, and scales automatically according to the selected measurement voltage. Data is held on the display after measuring, so there is no hurry to read it. The numeric readout displays measured values at maximum resolution. 3– Enhanced response speed and reliability*1 Reliability is enhanced because, unlike analog meters, the LCD has no moving parts, and the virtual needle responds seven times faster than a mechanical needle. Installation in automated systems is supported. Usability Features 1– Timer function included as a standard feature*1 The need for counting complicated measurement time (by stopwatch) is eliminated. Timer settings are retained in internal memory even when power is turned off. 2– Comparator functions included as a standard feature*1 Easy-to-use GO/NO-GO (Pass/Fail) decisions NO-GO (Fail) decisions can be indicated by an alarm sound simultaneously with contact output. Comparator settings are retained even when power is turned off. 3– Remote Start function included as a standard feature*1 Measurement can be started hands-free, using a footswitch or trigger signal. -
Synchro Transmitter and Receiver Experiment Theory Pdf
Synchro Transmitter And Receiver Experiment Theory Pdf Smoky Jeth immingle, his mirador troop pulverize rumblingly. Henry usually wimbled gradationally or precook unlimitedly when bruising Tabbie nicher thereabouts and plumb. Epigenetic and verbatim Normie attend her Villeneuve communicators fet and chancing lopsidedly. Military standard synchro system connected turns the outputstage and stators are indebted to determine the study unit and may even further isolate the receiver synchro and one must begin the The specific screens are synchro transmitter, its rotor shaft angle can share, some form factor does the ship. The ladder logic was implemented in SIMANTIC manager. These brushes provide continuous electrical contact to the rotor during its rotation. The receiver receives its own weight, which is very large number of using it. Synchro transmitter receives only by experiments. You do not energized and is stored in synchro transmitter and receiver experiment theory pdf powered down eg volts to differentials and indicate? Propagation theory detailed mathematical formulations or involved instrumentation. Approximate infinite geometry for most experiments the theory must be recast for the. How to overcome its drawback of AC servo motor? Improper wiring to study of its reference position heavy loads on a concentrated winding is, operations relative to antennas eachdriven by using a computer. In this experiment the values of and old be intelligent along-with. This mode of events causes the transmitter and receiver to oblige in correspondence. The domain theory of magnetism also Tlains how a magnet can attr. A theoretical overall architecture of an NPP I C system in accordance with crowd control. This chapter discusses plasma waves and echoes. -
LTC3723-1/LTC3723-2 Synchronous Push-Pull PWM Controllers
LTC3723-1/LTC3723-2 Synchronous Push-Pull PWM Controllers FEATURES DESCRIPTIO U ■ High Efficiency Synchronous Push-Pull PWM The LTC®3723-1/LTC3723-2 synchronous push-pull PWM ■ 1.5A Sink, 1A Source Output Drivers controllers provide all of the control and protection func- ■ Supports Push-Pull, Full-Bridge, Half-Bridge, and tions necessary for compact and highly efficient, isolated Forward Topologies power converters. High integration minimizes external ■ Adjustable Push-Pull Dead-Time and Synchronous component count, while preserving design flexibility. Timing The robust push-pull output stages switch at half the ■ Adjustable System Undervoltage Lockout and Hysteresis oscillator frequency. Dead-time is independently pro- ■ Adjustable Leading Edge Blanking grammed with an external resistor. Synchronous rectifier ■ Low Start-Up and Quiescent Currents timing is adjustable to optimize efficiency. A UVLO pro- ■ Current Mode (LTC3723-1) or Voltage Mode gram input provides precise system turn-on and turn off (LTC3723-2) Operation voltages. The LTC3723-1 features peak current mode ■ Single Resistor Slope Compensation control with programmable slope compensation and lead- ■ ing edge blanking, while the LTC3723-2 employs voltage VCC UVLO and 25mA Shunt Regulator ■ Programmable Fixed Frequency Operation to 1MHz mode control with voltage feedforward capability. ■ 50mA Synchronous Output Drivers The LTC3723-1/LTC3723-2 feature extremely low operat- ■ Soft-Start, Cycle-by-Cycle Current Limiting and ing and start-up currents. Both devices provide reliable Hiccup Mode Short-Circuit Protection short-circuit and overtemperature protection. The ■ 5V, 15mA Low Dropout Regulator LTC3723-1/LTC3723-2 are offered in a 16-pin SSOP ■ Available in 16-Pin SSOP Package package. -
Megger Electrical Test Instruments Catalog
Megger 5/10-kV Insulation Test Equipment ................ 2 Electrical Test 1-kV Insulation Test Equipment ..................... 6 Additional Insulation Test Equipment ......... 11 Instruments Ground Resistance Test Equipment ............. 13 AC Loop Impedance Testers ......................... 17 Catalog Digital Low Resistance Ohmmeters ............. 18 Multimeters ................................................... 22 Clampmeters ................................................. 23 Time Domain Reflectometers ....................... 24 Datacom Test Equipment .............................. 26 Substation Test Equipment .......................... 27 Battery Impedance Test Equipment ............. 28 Special Maintenance Equipment ................. 30 Safety Test Equipment .................................. 34 Test and Measurement Software ................. 35 Cross Reference Guide .................................. 36 Valley Forge Corporate Center 2621 Van Buren Avenue TOLL FREE Norristown, PA 19403-2329 USA CUSTOMER SERVICE NUMBER Phone: 866-254-0962 Phone: 610-676-8500 WWW.MEGGER.COM/US Fax: 610-676-8610 1-866-254-0962 WWW.MEGGER.COM/US Contact us regarding questions, customer service and product repairs The word “Megger” is a registered trademark MEG-19961/18.5/M/2.2010 Megger 1-kV Insulation Testers… … Consist of a range of instruments for varying needs and budgets … Provide end users with more testing capability … Offer a rock solid design, making these instruments the best value proposition on the market today Look inside for information -
Lci's and Synchronous Motors Applied to Roller Mills
LCI'S AND SYNCHRONOUS MOTORS APPLIED TO ROLLER MILLS For Presentation at the IEEEIPCA Cement Industry Technical Conference Salt Lake City, UT May 2000 By: James F. Zayechek G E Industrial Systems 1. Abstract A cement company concerned about high power-factor penalty costs requested an evaluation of the feasibility of using synchronous motors starting through LCl's to drive three new roller mills at a cement plant. The prior experience with roller mills centered about the application of wound rotor induction motors with either cascaded secondary resistance or liquid rheostat. By utilizing synchronous motors, there was the possibility of providing leading power factor to reduce the reactive power demands seen by the utility feeding the cement plant. It was theorized that, if sufficient power factor correction could be obtained, the payback period of the incremental additional cost of the synchronous motor drive system would be very short. After payback of the initial investment, all future energy savings gravitate directly to the bottom line as additional revenue. Several key concerns had to be addressed in evaluating the use of synchronous motors for these relatively high starting torque requirement applications. This paper discusses the electrical and mechanical evaluation leading up to the decision to proceed with this new application of synchronous motors started through an LCI. 2. Introduction Roller mills, also known as vertical mills, are becoming more prevalent in modern cement plants. These mills have application both for raw material preparation and clinker grinding to final specifications. The increasingly competitive nature of today's business environment is pushing the mill OEM's to larger mills with greater throughput. -
Voltage and Power Measurements Fundamentals, Definitions, Products 60 Years of Competence in Voltage and Power Measurements
Voltage and Power Measurements Fundamentals, Definitions, Products 60 Years of Competence in Voltage and Power Measurements RF measurements go hand in hand with the name of Rohde & Schwarz. This company was one of the founders of this discipline in the thirties and has ever since been strongly influencing it. Voltmeters and power meters have been an integral part of the company‘s product line right from the very early days and are setting stand- ards worldwide to this day. Rohde & Schwarz produces voltmeters and power meters for all relevant fre- quency bands and power classes cov- ering a wide range of applications. This brochure presents the current line of products and explains associated fundamentals and definitions. WF 40802-2 Contents RF Voltage and Power Measurements using Rohde & Schwarz Instruments 3 RF Millivoltmeters 6 Terminating Power Meters 7 Power Sensors for URV/NRV Family 8 Voltage Sensors for URV/NRV Family 9 Directional Power Meters 10 RMS/Peak Voltmeters 11 Application: PEP Measurement 12 Peak Power Sensors for Digital Mobile Radio 13 Fundamentals of RF Power Measurement 14 Definitions of Voltage and Power Measurements 34 References 38 2 Voltage and Power Measurements RF Voltage and Power Measurements The main quality characteristics of a parison with another instrument is The frequency range extends from DC voltmeter or power meter are high hampered by the effect of mismatch. to 40 GHz. Several sensors with differ- measurement accuracy and short Rohde & Schwarz resorts to a series of ent frequency and power ratings are measurement time. Both can be measures to ensure that the user can required to cover the entire measure- achieved through utmost care in the fully rely on the voltmeters and power ment range. -
THE ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE the ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE
THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE Mitch Tilbury New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159589-9 The material in this eBook also appears in the print version of this title: 0-07-149737-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. -
Circuit-Analysis-With-Multisim.Pdf
BÁEZ-LÓPEZ • GUERRERO-CASTRO SeriesSeriesSeries ISSN:ISSN: ISSN: 1932-31661932-3166 1932-3166 BÁEZ-LÓPEZ • GUERRERO-CASTRO BÁEZ-LÓPEZ • GUERRERO-CASTRO SSSYNTHESISYNTHESISYNTHESIS L LLECTURESECTURESECTURES ON ONON MMM MorganMorganMorgan & & & ClaypoolClaypoolClaypool PublishersPublishersPublishers DDDIGITALIGITALIGITAL C CCIRCUITSIRCUITSIRCUITS AND ANDAND S SSYSTEMSYSTEMSYSTEMS &&&CCC SeriesSeriesSeries Editor:Editor: Editor: Mitchell MitchellMitchell Thornton,Thornton, Thornton, Southern SouthernSouthern Methodist MethodistMethodist University UniversityUniversity CircuitCircuitCircuit Analysis AnalysisAnalysis with withwith Multisim MultisimMultisim DavidDavidDavid Báez-LópezBáez-López Báez-López andand and FélixFélix Félix E.E. E. Guerrero-CastroGuerrero-Castro Guerrero-Castro CircuitCircuitCircuit AnalysisAnalysisAnalysis withwithwith UniversidadUniversidadUniversidad dede de laslas las Américas-Puebla,Américas-Puebla, Américas-Puebla, MéxicoMéxico México ThisThisThis bookbook book isis is concernedconcerned concerned withwith with circuitcircuit circuit simulationsimulation simulation usingusing using NationalNational National InstrumentsInstruments Instruments Multisim.Multisim. Multisim. ItIt It focusesfocuses focuses onon on MultisimMultisimMultisim thethethe useuse use andand and comprehensioncomprehension comprehension ofof of thethe the workingworking working techniquestechniques techniques forfor for electricalelectrical electrical andand and electronicelectronic electronic circuitcircuit circuit simulation.simulation. simulation. -
Synchro Servo Loop.Pdf
CHAPTER 2 SERVOS LEARNING OBJECTIVES Upon completion of this chapter you will be able to: 1. Define the term "servo system" and the terms associated with servo systems, including open-loop and closed-loop control systems. 2. Identify from schematics and block diagrams the various servo circuits; give short explanations of the components and their characteristics; and of each circuit and its characteristics. 3. Trace the flow of data through the components of typical servo systems from input(s) to outputs(s) (cause to effect). SERVOS Servo mechanisms, also called SERVO SYSTEMS or SERVOS for short, have countless applications in the operation of electrical and electronic equipment. In working with radar and antennas, directors, computing devices, ship's communications, aircraft control, and many other equipments, it is often necessary to operate a mechanical load that is remote from its source of control. To obtain smooth, continuous, and accurate operation, these loads are normally best controlled by synchros. As you already know, the big problem here is that synchros are not powerful enough to do any great amount of work. This is where servos come into use. A servo system uses a weak control signal to move large loads to a desired position with great accuracy. The key words in this definition are move and great accuracy. Servos may be found in such varied applications as moving the rudder and elevators of a model airplane in radio-controlled flight, to controlling the diving planes and rudders of nuclear submarines. Servos are powerful. They can move heavy loads and be remotely controlled with great precision by synchro devices.