Voltage and Power Measurements Fundamentals, Definitions, Products 60 Years of Competence in Voltage and Power Measurements

Total Page:16

File Type:pdf, Size:1020Kb

Voltage and Power Measurements Fundamentals, Definitions, Products 60 Years of Competence in Voltage and Power Measurements Voltage and Power Measurements Fundamentals, Definitions, Products 60 Years of Competence in Voltage and Power Measurements RF measurements go hand in hand with the name of Rohde & Schwarz. This company was one of the founders of this discipline in the thirties and has ever since been strongly influencing it. Voltmeters and power meters have been an integral part of the company‘s product line right from the very early days and are setting stand- ards worldwide to this day. Rohde & Schwarz produces voltmeters and power meters for all relevant fre- quency bands and power classes cov- ering a wide range of applications. This brochure presents the current line of products and explains associated fundamentals and definitions. WF 40802-2 Contents RF Voltage and Power Measurements using Rohde & Schwarz Instruments 3 RF Millivoltmeters 6 Terminating Power Meters 7 Power Sensors for URV/NRV Family 8 Voltage Sensors for URV/NRV Family 9 Directional Power Meters 10 RMS/Peak Voltmeters 11 Application: PEP Measurement 12 Peak Power Sensors for Digital Mobile Radio 13 Fundamentals of RF Power Measurement 14 Definitions of Voltage and Power Measurements 34 References 38 2 Voltage and Power Measurements RF Voltage and Power Measurements The main quality characteristics of a parison with another instrument is The frequency range extends from DC voltmeter or power meter are high hampered by the effect of mismatch. to 40 GHz. Several sensors with differ- measurement accuracy and short Rohde & Schwarz resorts to a series of ent frequency and power ratings are measurement time. Both can be measures to ensure that the user can required to cover the entire measure- achieved through utmost care in the fully rely on the voltmeters and power ment range. The Rohde & Schwarz design of the probe or sensor and meters supplied: sensors feature built-in calibration through the use of microprocessors for data memories and temperature sen- computed correction of frequency – Preaging of basic units and sensors in sors to ensure that the measuring response, temperature effect and line- temperature tests lasting several days instruments are calibrated and ready arity errors. with monitoring of the drift and aging for use immediately after the sensor is to identify unstable components plugged in. Manual calibration, a – High-quality RF connectors to ensure a potential error source, is thus avoided. Measurement accuracy constantly low SWR Two factors are decisive for the accu- – In-depth self-testing upon switch-on The calibration-data memory contains racy of power measurements: the pre- and during measurements all the relevant information required to cision of sensor calibration and the produce accurate results, plus the sen- degree of sensor matching to the sor-specific data like serial number, device under test. A great amount of Operation type and calibration date as well as hardware and software is involved In many applications, operating the the permissible measurement and fre- especially in calibration. To ensure Rohde & Schwarz voltmeters and quency ranges. It is merely the fre- that the calibration standards for the power meters just means connecting quency of the current measurement URV/NRV sensors (see pages 8/9) the DUT and selecting the display that has to be entered on the meter comply with the stringent require- mode for the result. Fast autoranging which will then automatically scan the ments, many of them are compared and a digital averaging filter matched data memory for the relevant calibra- directly with the primary standards at to the measurement range ensure opti- tion factors and perform any required the German Standards Laboratory mally worked out results. Individual interpolation (see also page 21). (PTB). settings can be made either via the menu or by direct key entry. All infor- Each sensor can be used with any of Measurement errors due to mismatch mation required on the instrument sta- the basic units of the URV/NRV series, are in practice the main source of tus (range hold, zero, etc) is displayed ie voltage and power measurements error (see page17 ff). Therefore the in plain text or using easy-to-under- are possible with one and the same power sensors of the NRV-Z series are stand symbols. instrument – with equally high accu- not only carefully calibrated but also racy. optimized for minimum SWR. The displays with digital reading fea- ture in addition a quasi-analog bar- graph indicator with selectable scale Reliability to immediately show the user instanta- Even a top-quality measuring instru- neously the trend in signal variations. ment may fail, either due to obvious Level Meter URV 35 combines a functional faults or – with severe con- pointer instrument with an LCD scale. sequences – out-of-tolerance condi- tions that remain unnoticed. An increase in the measurement uncer- Individually calibrated and sensors tainty is very difficult to detect in par- The sensors of the URV5/NRV-Z family ticular with power meters, since there permit direct measurement of voltages are no reference instruments which between 200 µV and 1000 V and of are much more accurate and any com- powers between 100 pW and 30 W. Voltage and Power Measurements 3 Power Meters Depending on the application, there Diode sensors feature a higher sensi- Directional power meters are two types of power meters: tivity; their power measurement range starts at about 100 pW. Since they ... are inserted into an RF line and – Terminating power meters are con- are able to measure true RMS power measure the magnitude of the forward nected to the output of a source, down to 10 µW, they may even be and reverse wave separately with the absorb the wave incident on the used for signals with harmonic con- aid of a directional coupler. Direc- sensor and indicate the power of tents, noisy or modulated signals. tional Power Meters NRT and NAS this wave. can then be used to determine the – Directional power meters are con- Diode sensors with an integral 20 dB transmitter output power and the nected between source and load attenuator fill the gap between pure antenna or load matching in all stand- and measure − practically with no diode sensors and thermal sensors. ard communication bands up to loss − the power of the forward and They provide true RMS measurements 4 GHz and for transmitter powers up reflected wave. in a range up to 1 mW and satisfy the to the kilowatt range. Due to the low most exacting requirements on meas- insertion loss of the sensors, the power urement speed even for levels between meter can remain connected to the Terminating power meters 10 and 100 µW, where the use of transmitter for continuous monitoring. thermal sensors is limited. Special sensors with peak weighting Depending on the principle of opera- are available for measuring pulsed tion, the RF power is either converted Peak power sensors contain a peak signals such as in modern digital radio into heat or measured with the aid of hold circuit for measuring the peak networks (see page 10). diode rectifiers. envelope power (PEP). They enable direct measurement of pulsed signals NRT-Z43 and NRT-Z44 take a special The thermal sensors from R&S open up with a pulse width from 2 µs, eg of the place among the directional power a wide power range from 1 µW to TV sync pulse peak power or the sensors from Rohde & Schwarz. These 30 W. Irrespective of the waveform, power of TDMA radio signals. In the sensors can be operated even without they measure with extremely high range from 1 µW to 20 W these sen- basic power meter on any PC under a accuracy the RMS value over the full sors are a value-for-money alternative Windows user interface. They can be range and are thus easy to use. Sig- to special peak power meters. connected via a standard serial (RS- nals with harmonic contents or modu- 232) or PC Card interface adapter. lated and complex signals do not cause any additional measurement errors. Moreover, the R&S models feature an unrivalled linearity. Evolution in power measurements: Directional Power Sensor NRT-Z44 as a self-contained measuring instrument that can be connected to every PC WF 42665 4 Voltage and Power Measurements Voltmeters The sensors for the RF voltmeters from Which is the best? WF 39821 Rohde & Schwarz function similarly like diode power sensors. A diode Both methods – RF voltage and power rectifier in the sensors changes the measurement – have their merits and unknown AC voltage into DC voltage. drawbacks. Users of Rohde & This DC voltage is processed in the Schwarz Voltmeters URV 35 and basic unit (the rectifier characteristic URV 55 or Terminating Power Meters being linearized by the microproces- NRVS and NRVD however do not sor through correction) and indicated. have to make a decision: as pointed Voltmeters operating on this principle out before, all voltage and power sen- use the square weighting of the diode sors of the URV5-Z and NRV series can rectifier to measure the RMS value of be connected to any of the available small voltages up to about 30 mV (or meters with no loss in accuracy. This higher with divider) and the peak or – unique concept allows universal use of if a full-wave rectifier is used – the any model for the whole range of RF peak-to-peak value of voltages above measurements. 1 V. Due to linearization the meter reads the RMS value of a sinewave in the entire measurement range. The RF probe is indispensable for measurements on non-coaxial circuits and components. Small input capaci- tance and low losses enable low-load measurements directly in the circuit. Dividers increase the voltage measure- ment range and minimize the loading Probes and insertion units being used in RF voltage measurements of the DUT.
Recommended publications
  • 1806-A Electronic Voltmeter, Manual
    OPERATING INSTRUCTIONS TYPE 1806-A ELECTRONIC VOLTMETER Form 1806-0100-C March, 1967 Copyright 1963 General Radio Company West Concord, Massachusetts, USA GENERAL RADIO COMPANY WEST CONCORD, MASSACHUSETTS, USA SPECIFICATIONS DC VO~TMETER Voltage Ro.nge: Four ranges, 1.5, 15, 150, and 1500 V, full scale, positive or negative. Minimum reading is 0.005 V. Input Resistance: 100 M!'l, ±5%; also "open grid" on all but the 1500-V range. Grid current is less than I0-10 A. Accuracy: ±2% of indicated value from one-tenth of full scale to full scale; ±0.2% of full scale from one-tenth of full scale to zero. Scale is logarithmic from one-tenth of full scale to full scale, permitting constant-percentage readability over that range. AC VOLTMETER Voltage Range: Four ranges, 1.5, 15, 150, and 1500 V, full scale. Minimum reading on most sensitive range is 0.1 V. Input Impedance: Probe, approximately 25 Mn in parallel with 2 pF; with TYPE 1806-P2 Range Multiplier, 2500 M!'l in parallel with 2 pF; at binding post on panel, 25 Mn in parallel with 30 pF. Accuracy: At 400 c/ s, ±2% of indicated value from 1.5 V to 1500 V; ±3% of indicated value from 0.1 V to 1.5 V. Waveform Error: On the higher ac-voltage ranges, the instrument operates as a peak voltmeter, calibrated to read rms values of a sine wave or 0.707 of the peak value of a complex wave. On distorted waveforms the percentage deviation of the reading from the rms value may be as large as the percentage of harmonics present.
    [Show full text]
  • The Accuracy Comparison of Oscilloscope and Voltmeter Utilizated in Getting Dielectric Constant Values
    Proceeding The 1st IBSC: Towards The Extended Use Of Basic Science For Enhancing Health, Environment, Energy And Biotechnology 211 ISBN: 978-602-60569-5-5 The Accuracy Comparison of Oscilloscope and Voltmeter Utilizated in Getting Dielectric Constant Values Bowo Eko Cahyono1, Misto1, Rofiatun1 1 Physics Departement of MIPA Faculty, Jember University, Jember – Indonesia, e-mail: [email protected] Abstract— Parallel plate capacitor is widely used as a sensor for many purposes. Researches which have used parallel plate capacitor were investigation of dielectric properties of soil in various temperature [1], characterization if cement’s dielectric [2], and measuring the dielectric constant of material in various thickness [3]. In the investigation the changing of dielectric constant, indirect method can be applied to get the dielectric constant number by measuring the voltage of input and output of the utilized circuit [4]. Oscilloscope is able to measure the voltage value although the common tool for that measurement is voltmeter. This research aims to investigate the accuracy of voltage measurement by using oscilloscope and voltmeter which leads to the accuracy of values of dielectric constant. The experiment is carried out by an electric circuit consisting of ceramic capacitor and sensor of parallel plate capacitor, function generator as a current source, oscilloscope, and voltmeters. Sensor of parallel plate capacitor is filled up with cooking oil in various concentrations, and the output voltage of the circuit is measured by using oscilloscope and also voltmeter as well. The resulted voltage values are then applied to the equation to get dielectric constant values. Finally the plot is made for dielectric constant values along the changing of cooking oil concentration.
    [Show full text]
  • An Oscilloscope Correction Method for Vector-Corrected RF Measurements
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1 An Oscilloscope Correction Method for Vector-Corrected RF Measurements Sebastian Gustafsson, Student Member, IEEE, Mattias Thorsell, Member, IEEE, Jörgen Stenarson, Member, IEEE, and Christian Fager, Member, IEEE Abstract— The transfer characteristics of the RF front-end circuit components. As these errors must be compensated for circuitry of a real-time oscilloscope (RTO) are not only frequency to achieve accurate signal sampling [4], several correction dependent and nonlinear with signal amplitude but also depen- techniques have been introduced [5], [6]. Other correction dent on the voltage range setting of the oscilloscope. A correction table in the frequency domain is proposed to account for the techniques have also been introduced [7]–[12], but they are additional gain and delay introduced when switching between only valid for sampling oscilloscopes. Previous research different voltage ranges. The table was extracted from the has focused on correction techniques for a certain set of measured data in which a continuous-wave signal source was instrument settings, e.g., a particular voltage range. Hence, connected to the oscilloscope ports, whereas the input power, the changing the settings would make the correction invalid. frequency, and voltage ranges were varied. The importance of the corrections is demonstrated by its use in an RTO-based two-port However, changing the range is desirable in some applications, vector-corrected measurement system. Measurements from the to fully utilize the voltage range of the ADC.
    [Show full text]
  • AC & DC True RMS Current and Voltage Transducer Wattmeter
    AC & DC true RMS current and voltage transducer Wattmeter, Voltmeter, Ammeter,…. Type CPL35 • Continuous or alternative RMS measures: Single-phase or balanced three-phase 0...440 Hz PWM, wave train, Phase angle variation, AC All high level harmonics signals • multi-sensor for current measurement: Shunt, transformer, Rogowski coil, Hall effect sensor or direct input 1A/ 5A • Programmable: Voltmeter, ammeter, wattmeter, varmeter, power factor, Cos phi, frequency meter • 4 digits measure display U, I, Cos, P, Q, Hz DC+AC • Up to 2 isolated analog outputs and 2 relay outputs • Wide range universal ac/dc power supply The CPL35 is a converter for measuring, monitoring and retransmission of electrical parameters. Implementa- tion is fast by simple configuration of transformer ratio or shunt sensitivity. The various output options allow a wide range of application: measurement, protection, control. Measurement: Block diagram: - DC or AC, single-phase or balanced three-phase network (configurable TP, CT ratio or shunt sensitivity), - 2 voltage calibers: 150V, 600V others on request up to 1000V, - 3 current calibers: 200mV (external shunt) ,1A or 5A internal shunt, - Hall effect current sensor (+/-4V input) - active (P), reactive (Q), apparent (S) powers, - cos (power factor) , frequency 1Hz…..440 Hz, - configurable integration time from 10 ms to 60 seconds for the measurement in slow waves train applications. Front face: - 4 digit alphanumeric LED matrix display for the measurement, - 2 red LEDs to display the status of relays, - 2 push buttons for: * The complete configuration of the device * Selecting the displayed value (U, I, Cos, P, Q, S, Hz) * Setting of alarm thresholds, ....... Relays (/R option): Up to 2 configurable relays: - In alarm, monitoring measure selection (U, I, Cos, P, Q, S, Hz), - Threshold, direction, hysteresis and delay individually adjustable on Associated current sensors each relay (on & off delay), shunt current transformer Hall effect sensor Rogowski coil - HOLD function (alarm storage with RESET by front face).
    [Show full text]
  • Equivalent Resistance
    Equivalent Resistance Consider a circuit connected to a current source and a voltmeter as shown in Figure 1. The input to this circuit is the current of the current source and the output is the voltage measured by the voltmeter. Figure 1 Measuring the equivalent resistance of Circuit R. When “Circuit R” consists entirely of resistors, the output of this circuit is proportional to the input. Let’s denote the constant of proportionality as Req. Then VRIoeq= i (1) This is the same equation that we would get by applying Ohm’s law in Figure 2. Figure 2 Interpreting the equivalent circuit. Apparently Circuit R in Figure 1 acts like the single resistor Req in Figure 2. (This observation explains our choice of Req as the name of the constant of proportionality in Equation 1.) The constant Req is called “the equivalent resistance of circuit R as seen looking into the terminals a- b”. This is frequently shortened to “the equivalent resistance of Circuit R” or “the resistance seen looking into a-b”. In some contexts, Req is called the input resistance, the output resistance or the Thevenin resistance (more on this later). Figure 3a illustrates a notation that is sometimes used to indicate Req. This notion indicates that Circuit R is equivalent to a single resistor as shown in Figure 3b. Figure 3 (a) A notion indicating the equivalent resistance and (b) the interpretation of that notation. Figure 1 shows how to calculate or measure the equivalent resistance. We apply a current input, Ii, measure the resulting voltage Vo, and calculate Vo Req = (1) Ii The equivalent resistance can also be measured using and ohmmeter as shown in Figure 4.
    [Show full text]
  • Future of Vector Network Analysis Dylan Williams and Nate Orloff Integrated Circuits Drive Wireless Communications
    Future of Vector Network Analysis Dylan Williams and Nate Orloff Integrated Circuits Drive Wireless Communications Application Frequency (GHz) 10 30 100 300 1000 100 10 Transit Frequency (GHz) Frequency Transit 1990 1995 2000 2005 2010 2015 2020 Year We Cannot Take the Integrated Circuit for Granted at mmWaves 2 Next 15 Years of Wireless Manufacturing by Country The United States still dominates mmWave manufacturing Enables $12.3T in Total Economic Growth (2020-2035) Communication Providers Want Speed of Fiber on Your Phone Millimeter-Waves are the Next Wireless Frontier Measurements and Calibrations Matter at mmWaves Before Calibration 64 QAM at 44 GHz After Calibration mmWave Measurement Challenge of our Era Not a Single RF Connector! On-Wafer IC and System-Level Test OTA System-Level Test Transistor models IC Test System-Level Test End-to-End Verification On-Wafer Connectorized Free-Space Goals for Vector Network Analysis in CTL Project Calibration Reference Planes On-Wafer and to OTA Test On-Wafer Measurements • Innovations in Calibration • Support Device Models to System-Level Test • State-Of-The-Art Instruments for US mmWave NR Manufacturers Vector Network Analysis • Platform for Traceable System-Level Tests Across CTL • Close the Connector-Less Gap mmWave Design Extremely Complex Accurate measurements are a must 80 80 GHz GHz 160 ~ GHz 240 GHz • Highly nonlinear operating states required for efficiency • Characterize, capture, control and reuse harmonics • Must maintain linearity On-Wafer Measurement the Only Way to Test ICs Yesterday
    [Show full text]
  • P50xxa Streamline Series Vector Network Analyzer 2/4-Port up to 53 Ghz
    P50xxA Streamline Series Vector Network Analyzer 2/4-port Up to 53 GHz. 2/4/6-port Up to 20 GHz Compact Form. Zero Compromise. P5000A/P5020A 9 kHz to 4.5 GHz P5001A/P5021A 9 kHz to 6.5 GHz P5002A/P5022A 9 kHz to 9 GHz P5003A/P5023A 9 kHz to 14 GHz P5004A/P5024A 9 kHz to 20 GHz P5005A/P5025A 100 kHz to 26.5 GHz P5006A/P5026A 100 kHz to 32 GHz P5007A/P5027A 100 kHz to 44 GHz P5008A/P5028A 100 kHz to 53 GHz Find us at www.keysight.com Page 1 Keysight P500xA and P502xA Streamline Series VNA The freedom of portable network analysis doesn’t have to mean a compromise in performance. The P50xxA Series brings high-end performance and flexibility to the portable Keysight Streamline Series. Gain confidence in your measurements with best-in-class performance offering fast, reliable, and repeatable results. Explore the complete characterization of your devices with a rich portfolio of software applications that transform the compact network analyzer into a complete RF measurement solution. The P50xxA Series, a member of Keysight’s Streamline Series offers the performance required for testing passive components, amplifiers, mixers or frequency converters. The vector network analyzer (VNA) provides best-in-class key specifications such as dynamic range, measurement speed, trace noise and temperature stability. Choose from 2- or 4-port models up to 53 GHz, or 2-, 4- or 6-port models up to 20 GHz. The VNA is packaged in a compact chassis and controlled by an external computer with powerful data processing capabilities and functionalities.
    [Show full text]
  • 10 Factors in Choosing a Basic Oscilloscope 10 Factors in Choosing a Basic Oscilloscope Contents Intro 1 2 3 4 5 6 7 8 9 10 11 Contact 2
    10 FACTORS IN CHOOSING A BASIC OSCILLOSCOPE 10 FACTORS IN CHOOSING A BASIC OSCILLOSCOPE CONTENTS INTRO 1 2 3 4 5 6 7 8 9 10 11 CONTACT 2 10 Factors in Choosing a Basic Oscilloscope There are several ways to navigate this interactive PDF document: Click on the table of contents (page 3) Basic oscilloscopes are used as windows into signals for troubleshooting Use the navigation at the top of each page to jump circuits or checking signal quality. They generally come with bandwidths to sections or use the page forward/back arrows from around 50 MHz to 200 MHz and are found in almost every design lab, Use the arrow keys on your keyboard education lab, service center and manufacturing cell. Use the scroll wheel on your mouse Whether you buy a new scope every month or every five years, this guide will Left click to move to the next page, right click to move to the previous page (in full-screen mode only) give you a quick overview of the key factors that determine the suitability of a Click on the icon ß to enlarge the image. basic oscilloscope to the job at hand. The digital storage oscilloscope Oscilloscopes are the basic tool for anyone designing, manufacturing or repairing electronic equipment. A digital storage oscilloscope (DSO, on which this guide concentrates) acquires and stores waveforms. The waveforms show a signal’s voltage and frequency, whether the signal is distorted, timing between signals, how much of a signal is noise, and much, much more. 10 FACTORS IN CHOOSING A BASIC OSCILLOSCOPE CONTENTS INTRO 1 2 3 4 5 6 7 8 9 10 11
    [Show full text]
  • Oscilloscope & Multimeter
    INSTRUCTION OVERVIEW FOR Oscilloscope & Multimeter Stock No.64573 Part No.O20M/3C IMPORTANT: PLEASE READ THESE INSTRUCTIONS CAREFULLY TO ENSURE THE SAFE AND EFFECTIVE USE OF THIS PRODUCT. GENERAL INFORMATION These instructions accompanying the product are the original instructions. This document is part of the product, keep it for the life of the product passing it on to any subsequent holder of the product. Read all these instructions before assembling, operating or maintaining this product. This manual has been compiled by Draper Tools describing the purpose for which the product has been designed, and contains all the necessary information to ensure its correct and safe use. By following all the general safety instructions contained in this manual, it will ensure both product and operator safety, together with longer life of the product itself. AlI photographs and drawings in this manual are supplied by Draper Tools to help illustrate the operation of the product. Whilst every effort has been made to ensure the accuracy of information contained in this manual, the Draper Tools policy of continuous improvement determines the right to make modifications without prior warning. 1. TITLE PAGE 1.1 INTRODUCTION: USER MANUAL FOR: OSCILLOSCOPE & MULTIMETER Stock no. 64573 Part no. O20M/3C 1.2 REVISIONS: Date first published March 2015 As our user manuals are continually updated, users should make sure that they use the very latest version. Downloads are available from: http://www.drapertools.com/b2c/b2cmanuals.pgm DRAPER TOOLS LIMITED WEBSITE: drapertools.com HURSLEY ROAD PRODUCT HELPLINE: +44 (0) 23 8049 4344 CHANDLER’S FORD GENERAL FAX: +44 (0) 23 8026 0784 EASTLEIGH HAMPSHIRE SO53 1YF UK 1.3 UNDERSTANDING THIS MANUALS SAFETY CONTENT: WARNING! Information that draws attention to the risk of injury or death.
    [Show full text]
  • Lab 1 – Measurements of Frequency
    Physics of Music PHY103 Lab Manual Lab 1 – Measurements of Frequency EQUIPMENT and PREPARATION Part A: • Oscilloscopes (get 5 from teaching lab) • BK Precision function generators (get 5 from Thang or teaching lab) • Counter/timers (PASCO, 4 + 1 other) • Connectors and cables (BNC to BNC’s, banana plug pairs) connecting function/signal generators to oscilloscopes and speaker. • BNC to 2 leads • Adaptors: mike to BNC so that output of preamps can be looked at on oscilloscope. • BNC to banana adapters • BNC T- adapters • Oscilloscope probes • Pasco open speakers • Microphones, preamps, mic stands • Strobes (3) optional Warning: do not place speakers near oscilloscope screens as they can damage the CRT (cathode ray tube) screens. Note: The professor will attempt to have the equipment out and available for the labs. However the TAs/TIs should check that the equipment is ready to use, that every lab setup has all the necessary equipment. The TA/TIs should also be familiar with the lab and know how to troubleshoot the equipment. INTRODUCTION In this lab, we will be measuring the frequency of a signal using three different methods. The first method involves the use of the function generator. A function generator is an instrument that can produce sine, square, and triangular waves at a given frequency. The second method makes use of the oscilloscope. An oscilloscope is an instrument principally used to display signals as a function of time. The final method for measuring the frequency uses the counter/timer. A counter/timer is an instrument that can give a very accurate measurement of the frequency of a signal by counting each time a voltage crosses a particular value.
    [Show full text]
  • Circuit-Analysis-With-Multisim.Pdf
    BÁEZ-LÓPEZ • GUERRERO-CASTRO SeriesSeriesSeries ISSN:ISSN: ISSN: 1932-31661932-3166 1932-3166 BÁEZ-LÓPEZ • GUERRERO-CASTRO BÁEZ-LÓPEZ • GUERRERO-CASTRO SSSYNTHESISYNTHESISYNTHESIS L LLECTURESECTURESECTURES ON ONON MMM MorganMorganMorgan & & & ClaypoolClaypoolClaypool PublishersPublishersPublishers DDDIGITALIGITALIGITAL C CCIRCUITSIRCUITSIRCUITS AND ANDAND S SSYSTEMSYSTEMSYSTEMS &&&CCC SeriesSeriesSeries Editor:Editor: Editor: Mitchell MitchellMitchell Thornton,Thornton, Thornton, Southern SouthernSouthern Methodist MethodistMethodist University UniversityUniversity CircuitCircuitCircuit Analysis AnalysisAnalysis with withwith Multisim MultisimMultisim DavidDavidDavid Báez-LópezBáez-López Báez-López andand and FélixFélix Félix E.E. E. Guerrero-CastroGuerrero-Castro Guerrero-Castro CircuitCircuitCircuit AnalysisAnalysisAnalysis withwithwith UniversidadUniversidadUniversidad dede de laslas las Américas-Puebla,Américas-Puebla, Américas-Puebla, MéxicoMéxico México ThisThisThis bookbook book isis is concernedconcerned concerned withwith with circuitcircuit circuit simulationsimulation simulation usingusing using NationalNational National InstrumentsInstruments Instruments Multisim.Multisim. Multisim. ItIt It focusesfocuses focuses onon on MultisimMultisimMultisim thethethe useuse use andand and comprehensioncomprehension comprehension ofof of thethe the workingworking working techniquestechniques techniques forfor for electricalelectrical electrical andand and electronicelectronic electronic circuitcircuit circuit simulation.simulation. simulation.
    [Show full text]
  • Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science
    Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 - Circuits and Electronics Fall 2004 Lab Equipment Handout (Handout F04-009) Prepared by Iahn Cajigas González (EECS '02) Updated by Ben Walker (EECS ’03) in September, 2003 This handout is intended to provide a brief technical overview of the lab instruments which we will be using in 6.002: the oscilloscope, multimeter, function generator, and the protoboard. It incorporates much of the material found in the individual instrument manuals, while including some background information as to how each of the instruments work. The goal of this handout is to serve as a reference of common lab procedures and terminology, while trying to build technical intuition about each instrument's functionality and familiarizing students with their use. Students with previous lab experience might find it helpful to simply skim over the handout and focus only on unfamiliar sections and terminology. THE OSCILLOSCOPE The oscilloscope is an electronic instrument based on the cathode ray tube (CRT) – not unlike the picture tube of a television set – which is capable of generating a graph of an input signal versus a second variable. In most applications the vertical (Y) axis represents voltage and the horizontal (X) axis represents time (although other configurations are possible). Essentially, the oscilloscope consists of four main parts: an electron gun, a time-base generator (that serves as a clock), two sets of deflection plates used to steer the electron beam, and a phosphorescent screen which lights up when struck by electrons. The electron gun, deflection plates, and the phosphorescent screen are all enclosed by a glass envelope which has been sealed and evacuated.
    [Show full text]