UCLA UCLA Electronic Theses and Dissertations

Title Community-dependent Positive Interactions in Southern California Coastal Ecosystems

Permalink https://escholarship.org/uc/item/1vn6w0f6

Author Bryson, Sarah

Publication Date 2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library University of California UNIVERSITYOFCALIFORNIA

LosAngeles

CommunitydependentPositiveInteractionsin

SouthernCaliforniaCoastalEcosystems

Adissertationsubmittedinpartialsatisfactionofthe

requirementsforthedegreeDoctorofPhilosophy

inBiology

by

SarahBryson

2012

ABSTRACTOFTHEDISSERTATION

CommunitydependentPositiveInteractionsin

SouthernCaliforniaCoastalEcosystems

by

SarahBryson

DoctorofPhilosophyinBiology

UniversityofCalifornia,LosAngeles,2012

ProfessorPeggyFong,Cochair

ProfessorRichardR.Vance,Cochair

Ecologicalinteractionsarecontextdependent.Theneteffectofspeciesinteractionsincludesthe multifacetedimpactsofcommunitycompositionandabioticinfluencesoftheenvironment.I examinedhowbothbioticandabioticstressors,intheformofherbivorecompositionandsalinity stress,respectively,elicitedpositiveinteractionsbetweenspecies.InakelpforestIexamined howtherelationshipbetweenkelpandanencrustingbryozoan, Membranipora membranacea ,

shiftedtoanassociationaldefensedependingonherbivoreguildcomposition.Usinga

combinationofchoiceexperimentsandsurveysofgrazingdamage,Idemonstratedthatthe

mesograzers Lacuna unifasciata , Perampithoe humeralis ,and Idotea resecata almostentirely

avoided(<1%oftotaldiet)encrustedkelp.Thelargesnail Norrisia norrisi alsopreferredclean

ii kelp,butkelpcrabs, Pugettia producta ,targetedencrustedkelp.Fieldsurveysinamesograzer

dominatedcanopyfound2.5timesmoregrazingdamageonsparselyencrustedkelpthanon

heavilyencrustedkelpandfarmoregrazingintheuppercanopythanonthebladesfromthe

verticalstipesbelowthecanopy.Theseresultsindicatethat,whenmesograzersaredominant,

Membranipora provideskelpassociationalresistancetograzing.Suchprotectionmaybemore prominentintheuppercanopy.Additionally,Iexaminedtheroleofabioticstressonpositive

interactionsinahypersalinesaltmarsh.Followingdisturbancethatremovesestablished

vegetation,salttolerantspeciescanameliorateharshsoilsalinitiesforlesstolerantspeciesand

thereforepromotesecondarysuccession.However,whenabioticstressisextremelyhigh

ameliorationmaybeinadequatetoimprovegrowthofassociatedneighbors.Usingclipping

manipulationsof Batis maritima ,anearlysuccessionalhalophyte,Itestedwhether B.maritima

facilitatessecondarysuccessioninanexcessivelyhypersalinesaltmarshinsouthernCalifornia.

Experimentalplotswith B.maritima presentrecoveredfaster(27%comparedto14%

revegetationbymatrixspecies)andhadlowerincreasesinsoilsalinity. Salicornia pacifica and

Arthrocnemum subterminale werethedominantrecoveryspeciesinbothtreatmentsandno

differenceswerefoundinspeciesrichness,diversity,orevennessofrecoveryspeciesbetween

treatments.

Overall,myresearchindicatespositiveinteractionsplayaprominentroleinthesecoastal

ecosystemsthoughthatrolewilldependonthespecificnatureofthecommunity.

iii

ThedissertationofSarahBrysonisapproved.

RichardF.Ambrose

CherylAnnZimmer

RichardR.Vance,CommitteeCoChair

PeggyFong,CommitteeCoChair

UniversityofCalifornia,LosAngeles

2012

iv

TABLEOFCONTENTS

ABSTRACT…………………………………..……………………………………………..…..ii

COMMITTEEAPPROVAL…………………………………………………………………....iv

TABLEOFCONTENTS………………………………………………………………………..v

LISTOFFIGURES……...……………………………………………………………………...vi

LISTSOFTABLES…………………………………..………………………………………..vii

ACKNOWLEDGEMENTS…………………..………………………………………………..viii

VITA……………………………………………..……………………………………………...xi

Introduction ………………………………………………………………………………….….1

Introductionreferences……………………………………………………….….5

I. Community-dependent associational resistance in a kelp canopy …………………..8

References..……………………………………………………………………..24

II. Mesograzer abundance and grazing damage in a giant kelp forest canopy ………30

References………………………………………………………………………46

III. Facilitation of secondary succession in an ultrahypersaline salt marsh in

southern California ...... 51

References………………………………………………………………………68

Conclusions…………………………………………………………………………………….72

Conclusionreferences…………………………………………………………..75

v LISTOFFIGURES

Chapter 1 Communitydependentassociationalresistanceinakelpcanopy

Fig.1 Exampleofexperimentalkelpforsmallgrazers…………………….……….20

Fig.2 Preferenceforencrustedorunencrustedkelpofthefivegrazers..…...………21

Fig.3 Areagrazedonsparseanddensesidesofkelpbladescollectedduringfield

sampling……………………………………………………………...22

Chapter 2 Mesograzerabundanceandgrazingdamageinagiantkelpforestcanopy

Fig.1 Membranipora membranacea coloniesonakelpblade.……………………..43

Fig.2 Abundanceofamphipodsand Idotea resecata collectedfromtwodepthstrata

withinthekelpcanopy………………………………………………..44

Fig.3 Differencesingrazingscarcountsperbladebetweendepthstrata…………..45

Chapter 3 Facilitationofsecondarysuccessioninanultrahypersalinesaltmarshin

southernCalifornia

Fig.1 LocationandcloseupofMuguLagooninsouthernCalifornia.……………..63

Fig.2 Percentoftotalvegetationcoverofeachspeciespresentpriortoclearing…..64

Fig.3 Percentcoverofvegetationatfinalsamplingformatrixvegetationand

B.maritima alone………………………………...…………………...65

Fig.4 Soilsalinitydifferencesbetween B. maritima presentandclipped

treatments.…………………………………………...………………66

Fig.5 Finalspeciescomposition.……………………………………………...…….67

vi

LISTOFTABLES

Chapter 1 Communitydependentassociationalresistanceinakelpcanopy

Table1 Specificationsfrompreferencesassays….………………….………23

vii

ACKNOWLEDGMENTS ThisworkwasfundedbyawardsfromtheUniversityofCaliforniaNaturalReserveSystem

MildredE.MathiasGraduateStudentResearchGrantProgram,SigmaXiGrantinaidof

ResearchProgram,andresearchgrantsfromtheDepartmentofEcologyandEvolutionary

BiologyatUCLA.IreceivedfellowshipsupportfromtheEugeneCotaRoblesprogramthrough

theGraduateDivisionatUCLAandfromtheDepartmentofEcologyandEvolutionaryBiology

atUCLA.Withoutsuchsupportthisresearchcouldnothavebeencompleted.

IamdeeplygratefulforthetirelesssupportofmyadvisorPeggyFong.Shehasbeenasourceof

encouragement,collaboration,andresourcefulnessthroughoutthisprocess.Icouldnothave

completedthisresearchwithoutherefforts.Iamalsogratefulfortheadviceandthewillingness

toserveasasoundingboardformystudiesfrommycoadvisorRickVance.Ireceived

additionalsupport,constructiveadvice,andeditorialrevisionsfrommycommitteemembers

CherylAnnZimmerandRichAmbrose,whichhasbeenincrediblyhelpfulinthisprocess.I

wouldliketoacknowledgethetremendoussupportIreceivedfrommylabmembers,who providedfieldassistance,intellectualengagement,andconstructivecritiquesofmyprojects.I

amparticularlygratefultoLauriGreen,whowasanalwayswillingdiveandfieldassistant.Iam

alsoindebtedtotheeffortsofmanyundergraduateassistants,theFongfamily,andCarrie

Chasteenforfieldassistanceandsampleprocessing.Mostnotably,ElizabethShimer,Sarah

Hogan,andSarahJoyBittickprovidedextensiveassistanceinthefieldandwithprojectdesign.

viii ThisprojectcouldnothavebeencompletedwithouttheaccesstofieldsitesandequipmentthatI wasgiven.IwanttothanktheBodegaMarineLabforuseoftheirmarinelabfacilities.Ialso wanttothankLindaChiltonandtheCabrilloAquariumforgivingmespaceandaccessto equipmentandresourcestoconductthisresearch.IamgreatlyappreciativeofKingHarbor

MarinainRedondoBeach,Californiaforboatslipuse.And,IamutterlyindebtedtoMartin

RuaneoftheUSNavyEnvironmentalDivisionforallowingmyaccesstofieldsitesatMugu

Lagoon.

Myclosefriendsandfamilyhaveenduredthecompletionofthisresearch.Theyhavehelpedme throughridiculouslyhardtimesandhavealsoenjoyedthefuntimesalongsideme.Iamso gratefultothehoochies:TonyaKane,RachelKennison,NataliaKennedy,andJessicaLiederfor theallimportantemotionalsupportIneeded.Tonya,inparticular,haslistenedtomy complaints,stayeduplatewithmeinthelab,andofferedhelpwithoutbeingasked.Iwouldlike tosaythankyoutomyfamily.MyhusbandHankTruxillohasreadmygrantproposal,listened tomyanalysisproblems,watchedthekids,andhasallowsbeenencouragingandsupportive.My daughtersElenaandPennyTruxillohavebeensowonderfullypatientwhileI’vebeenwriting behindalockeddoororduringlongtripstofield.SometimesasIpackedtheminandpacked themout.Interestingthough,someonehasscribbledinmylabnotebook.Ofcourse,Ialsothank mymother,PamBryson,andfather,FredBryson,whohavealwayslistenedtomeand encouragedmeovertheyears.

Finally,Iofferspecialthankstoafewpeoplewhogoneaboveandbeyondtohelpmethrough thisresearch.JocelynYamaderaoftheEcologyandEvolutionaryBiologyDepartmenthasbeen

ix sowonderfullyreliableandinventiveinhersolvingofadministrativecriseswhilealsobeinga greatfriend.AuraPerezwasalwayswillingtolaughwithmeat1AM.WillyMcCarthywent outofhiswaytohelpmewithboatoperationandmaintenance.Iamveryappreciativeofallthe supportandencouragefromthemanyfriendsIhavegainedthroughmygraduatestudies.

x VITA

1996 BA,BrownUniversity,RI

19961997 EnvironmentalEducator

20012002 EnvironmentalConsultant MyraFrank&Associates 20032008 TeachingAssistant Dept.ofEcologyandEvolutionaryBiology UCLA 20112012 AcademicCounselor CollegeAcademicCounseling UCLA

PRESENTATIONS

2009 Bryson,SarahandFong,Peggy.CompetitiontoFacilitation:theeffectof Batis maritima acrossalternativestablestatesintheuppersaltmarsh 2008 Bryson,Sarah.Protectionfromgrazers:anassociationaldefensebetweenkelp andanepiphyticbryozoan?MildredMathiasSymposium,BodegaBay,CA. 2007 Bryson,Sarah.Protectionfromgrazers:anassociationaldefensebetweenkelp andanepiphyticbryozoan?EstuarineResearchFederationAnnualMeeting, Providence,RI. 2007 Bryson,Sarah.Plantgrowthinsaltmarshsaltpannes.California EstuarineResearchSocietyAnnualMeeting,BodegaBay,CA.Poster. 2007 Bryson,Sarah.Plantgrowthinsaltmarshsaltpannes.UCLABiology Symposium,LosAngeles,CA.Poster 1996 Bryson,SarahandSchmitt,Johanna.VariationinChlorophyllContentin Impatiens capensis inresponsetolightenvironment.SeniorResearch Symposium,BrownUniversity

xi INTRODUCTIONOFTHEDISSERTATION

Stressisdefinedasanydetrimentaleffectonabiologicalentity(Parkeretal.1999).

Resourcelimitation(Grime1989),toxicity(Zhu2001),andthreatstophysicalintegrity

(Hayetal.2004)arebasicstressorsthatreducethegrowth,reproduction,and/orsurvival oforganisms.Suchformsofstresscanarisefromabioticfactorsoftheenvironment

(Parkeretal.1999).Thesefactorscaninclude,amongstothers,salinity,desiccation,or temperature(reviewedinBertnessandLeonard1997).Stresscanalsoarisefromthe presenceofotherspecies,intheformofcompetition(Brookeretal.2005)and consumption(Barbosaetal.2009).Organismscopewithstressviaphysiological tolerance,eitherthroughevolutionaryadaptation(Penningsetal.2003)orplasticity

(Callawayetal.2003),orspeciescanassociatewithstressameliorators(Leslie2005).

Thereforeanassociationbetweenspeciesthatnegativelyimpacteachotherunderbenign conditionsmaybebeneficialunderelevatedstress(BertnessandCallaway1994,Brooker etal.2008).

ThispatternofshiftinginteractionswithlevelsofstresswasfirstdescribedbyBertness andCallaway(1994)andhascometobeknownastheStressGradientHypothesis

(SGH).Theshiftindirectionandmagnitudeoftheinteractionoccurswhenan amelioratorspeciesimprovesreproduction,growth,and/orsurvivalforaneighboring beneficiaryspecies,eventhoughtheymaycompeteforlimitedresources(Stachowicz

2001,HolmgrenandScheffer2010).Suchinteractionsexpandkeystonespecies’habitats byenablingtheirpersistenceunderconditionstooharshforindependentsurvival(Bruno

1 etal.2003).Thus,itisimportanttounderstandwhenandhowsuchinteractionsarise

since,whenstressiselevated,theyactasecologicalbufferstothecommunityasawhole.

Theobjectivesofthisresearcharetoexaminethepositiveinteractionsthatresultfrom bothbioticandabioticstresssourcesandidentifywhenthesecontextdependent

interactionsarelikelytooccur.

Bothbiotic(Hayetal.2004)andabiotic(Brookeretal.2008)sourcesofstresscangive

risetocommunityprotectingpositiveinteractionsbetweenneighbors.Intenseherbivory pressurecanelicitassociationbetweenneighborsthatprotectagainstconsumption(first

describedbyAtsattandO'Dowd1976).Thistypeofinteraction,termedassociational

resistancetograzing,hasbeenobservedinmanymarinecommunities(Hay1986,Fong

etal.2006,Levenbach2009).Similarly,thephysicalstressgradientsofintertidal

habitatscangiverisetoassociationsamongstneighborsthatreducephysicalstress.

Theseinteractions,calledfacilitations,protectandpromotetheresidentspecies(Bertness

andLeonard1997).Vascularplantsaresensitivetosalinity(Zhu2001)andoftenin

intertidalhabitatstheirassociationwithneighborscanreducestressviapassiveshading

ofthesoil(BertnessandEwanchuk2002,WhitcraftandLevin2007).Intwoseparate

marinehabitats,Iwillinvestigatewhetherpositiveinteractions,intheformof

associationalresistanceandfacilitationaroseinresponsetoherbivoryandsalinitystress

respectively.InChapter1and2Iwillexamineifapositivebioticassociationbetween

giantkelp, ,andthebryozoanepibiont, Membranipora membranacea ,mediatedgrazingpressurefromkelpherbivores.InChapter3Iwill

2 examinefacilitationbetweensaltmarshplantsinresponsetotheabioticstressassociated

withelevatedsoilsalinityduringsecondarysuccession.

Manyhavefoundthatpositiveinteractionsarehighlycontextdependent(reviewedin

Hayetal.2004).Muchremainsunknownastowhenandunderwhatconditionsthese

interactionseffectivelybuffertheirlocalcommunities.Thereforeitisimportantto

identifywhereinbothgeographicspaceandalongastresscontinuumpositive

interactionsarelikelytooccur.Inthecaseofherbivory,theSGHsuggeststhatpositive

interactionswillincreasewhenpressurefromconsumersishigh(BertnessandCallaway

1994).Thepresenceofapositiveinteractionsuchasassociationalresistancerequires pressurefromconsumersthataredeterredbytheassociatedneighbor.Yetgrazersand

theirabilitytoconsumefluctuategreatlyintimeandspace(LubchencoandGaines

1981).Usingthecommunityofagiantkelpcanopy,inChapter1,Iwillidentifywhich

canopygrazersreducedconsumptionofkelpinthepresenceofthekelpassociated

epibiont,Membranipora .Additionally,inChapter2,inanaturalkelpforestIwill

examinewhereinthecanopythemesograzers,whichmaybeparticularlysensitivetothe presenceof Membranipora ,arelocatedandcausegrazingdamage.Thesefindingswill

indicatewhereinthecanopyassociationalresistancetoherbivorybymesograzersis

likelytooccur.

Inthecaseofphysicalstress,thepresenceofpredictablyhighlevelsofstressorscanalso

influencetheeffectivenessofapositiveinteraction.Highlystressedhabitatsaretypically

inhabitedbystresstolerantspecies(Grime1989).RecentanalysisoftheSGH

3 (HolmgrenandScheffer2010)andempiricalstudies(Penningsetal.2003)suggestthat

facilitationmayberareamongstspeciesadaptedtoharshphysicalconditionsbecause

suchspeciesmaynotbenefitfromameliorationbyneighborstogrowthandreproduce.

SaltmarshesinMediterraneantypeclimatesexperiencehot,drysummersandare

characterizedbymuchsaltiersoilsthanhigherlatitudesaltmarshes(Zedler1982,

Callawayetal.1990)wheremuchofthepreviousworkonspeciesinteractionsand

zonationhavetakenplace.InChapter3Iwillexaminewhether Batis maritima isan effectivefacilitatorofrecoveryfromdisturbanceforthesesalttolerantspecies(Pennings andCallaway1992,KuhnandZedler1997)whenbarepatchesareexcessively hypersaline.Thoughafewempiricalstudieshaveexaminedcompetitiveandfacilitative interactionsattheextremeendofthestressgradient,whetherfacilitationcanpromote secondarysuccessioninextremelyhighstressregimesamongsttolerantspeciesis unknown.

ThroughthesestudiesIwillexaminehowherbivoryandsalinitystressalter speciesinteractionsbetweenprimaryproducersandtheircommunityandwhenpositive interactionsthatprotecttheprimaryproducersarelikelytoarise.

4 REFERENCES Atsatt,P.R.,andD.J.O'Dowd.1976.PlantDefenseGuild.Science 193 :2429.

Barbosa,P.,J.Hines,I.Kaplan,H.Martinson,A.Szczepaniec,andZ.Szendrei.2009. AssociationalResistanceandAssociationalSusceptibility:HavingRightor WrongNeighbors.AnnualReviewofEcology,Evolution,andSystematics 40 :1 20.

Bertness,M.D.,andR.Callaway.1994.Positiveinteractionsincommunities.Trendsin EcologyandEvolution 9:191193.

Bertness,M.D.,andP.J.Ewanchuk.2002.Latitudinalandclimatedrivenvariationin thestrengthandnatureofbiologicalinteractionsinNewEnglandsaltmarshes. Oecologia 132 :392401.

Bertness,M.D.,andG.H.Leonard.1997.Theroleofpositiveinteractionsin communities:lessonsfromintertidalhabitats.Ecology 78 :19761989.

Brooker,R.,Z.Kikvidze,F.I.Pugnaire,R.M.Callaway,P.Choler,C.J.Lortie,andR. Michalet.2005.Theimportanceofimportance.(vol109,pg63,2005).Oikos 111 :208208.

Brooker,R.W.,F.T.Maestre,R.M.Callaway,C.L.Lortie,L.A.Cavieres,G.Kunstler, P.Liancourt,K.Tielborger,J.M.J.Travis,F.Anthelme,C.Armas,L.Coll,E. Corcket,S.Delzon,E.Forey,Z.Kikvidze,J.Olofsson,F.Pugnaire,C.L.Quiroz, P.Saccone,K.Schiffers,M.Seifan,B.Touzard,andR.Michalet.2008. Facilitationinplantcommunities:thepast,thepresent,andthefuture.JournalOf Ecology 96 :1834.

Bruno,J.F.,J.J.Stachowicz,andM.D.Bertness.2003.Inclusionoffacilitationinto ecologicaltheory.TrendsinEcologyandEvolution18 :119125.

Callaway,R.M.,S.Jones,W.R.Ferren,andA.Parikh.1990.EcologyOfA MediterraneanClimateEstuarineWetlandAtCarpinteria,CaliforniaPlant DistributionsAndSoilSalinityInTheUpperMarsh.CanadianJournalOf BotanyRevueCanadienneDeBotanique 68 :11391146.

Callaway,R.M.,S.C.Pennings,andC.L.Richards.2003.Phenotypicplasticityand interactionsamongplants.Ecology 84 :11151128.

5 Fong,P.,T.B.Smith,andM.J.Wartian.2006.Epiphyticcyanobacteriamaintainshifts tomacroalgaldominanceoncoralreefsfollowingENSOdisturbance.Ecology 87 :11621168.

Grime,J.P.1989.Thestressdebate:symptomofimpendingsynthesis.Biological JournaloftheLinneanSociety 37 :317.

Hay,M.E.1986.Associationalplantdefensesandthemaintenanceofspeciesdiversity: turningcompetitorsintoaccomplices.TheAmericanNaturalist 128 :617641.

Hay,M.E.,J.D.Parker,D.E.Burkepile,C.C.Caudill,A.E.Wilson,Z.P.Hallinan,and A.D.Chequer.2004.Mutualismsandaquaticcommunitystructure:theenemyof myenemyismyfriend.AnnualReviewsofEcology,Evolution,andSystematics 35 :175197.

Holmgren,M.,andM.Scheffer.2010.Strongfacilitationinmildenvironments:thestress gradienthypothesisrevisited.JournalOfEcology 98 :12691275.

Kuhn,N.L.,andJ.B.Zedler.1997.Differentialeffectsofsalinityandsoilsaturationon nativeandexoticplantsofacoastalsaltmarsh.Estuaries 20 :391403.

Leslie,H.2005.Positiveintraspecificeffectstrumpnegativeeffectsinhighdensity barnacleaggregations.Ecology 86 :27162725.

Levenbach,S.2009.Grazingintensityinfluencesthestrengthofanassociationalrefuge ontemperatereefs.Oecologia 159 :181190.

Lubchenco,J.,andS.D.Gaines.1981.Aunifiedapproachtomarineplantherbivore interactions.I.Populationsandcommunities.AnnualReviewsofEcology, Evolution,andSystematics 12 :405437.

Parker,E.D.,V.E.Forbes,S.L.Nielsen,C.Ritter,C.Barata,D.J.Baird,W.Admiraal, L.Levin,V.Loeschke,P.LyytikainenSaarenmaa,H.HoghJensen,P.Calow, andB.J.Ripley.1999.Stressinecologicalsystems.Oikos 86 :179184.

Pennings,S.C.,andR.M.Callaway.1992.SaltMarshPlantZonation:TheRelative ImportanceofCompetitionandPhysicalFactors.Ecology 73 :681690.

6 Pennings,S.C.,E.R.Selig,L.T.Houser,andM.D.Bertness.2003.Geographic variationinpositiveandnegativeinteractionsamongsaltmarshplants.Ecology 84 :15271538.

Stachowicz,J.J.2001.Mutualism,facilitation,andthestructureofecological communities.Bioscience 51 :235246.

Whitcraft,C.R.,andL.A.Levin.2007.Regulationofbenthicalgaland communitiesbysaltmarshplants:Impactofshading.Ecology 88 :904917.

Zedler,J.B.1982.TheecologyofsouthernCaliforniacoastalsaltmarshes:acommunity profile.FWS/OBS81/54,UnitedStatesFishandWildlifeService.

Zhu,J.K.2001.Plantsalttolerance.TrendsInPlantScience 6:6671.

7 I Community-dependent associational resistance in a kelp canopy

ABSTRACT

Byalteringfeedingpreferencesofconsumers,epibiontscanenhanceorreduce consumptionoftheirhost.Whilepreviousstudieshavedocumentedhowasingle consumerspeciesresponds,fewstudieshaveexaminedhowmultiplegrazerspecies changetheirconsumptionofahostwhenanepibiontispresent.Inparticular,howthe smallbutabundantmembersofthemesograzercommunityrespondtoepibiontshasbeen largelyunexplored.Usingacombinationofchoiceexperimentsandinsituestimatesof grazing,Ievaluatedwhetheranencrustingepibiont, Membranipora membranacea, promotesordetersconsumptionofitshost,thegiantkelp Macrocystis pyrifera ,by invertebratecanopygrazers.Inlabchoiceexperiments,fourofthefivegrazers,the snails Lacuna unifasciata and Norrisia norrisi andthe Perampithoe humeralis and Idotea resecata ,preferentiallyconsumedunencrustedkelp.Ofthese,the mesograzers( Lacuna , Perampithoe ,and Idotea )almostentirelyavoided(<1%oftotal diet) Membranipora encrustedkelp.Kelpcrabs, Pugettia producta ,thelargestofthe grazers,targetedencrustedkelp.Fieldsurveyscomparedrelativegrazing damagebetweendenselyandsparselyencrustedkelpinacanopydominatedby amphipodandisopodmesograzers.Ifound2.5timesmoregrazingdamageonsparsely encrustedkelpthanondenselyencrustedkelp.Theseresultsindicatethat Membranipora providesassociationalresistancetograzingwhenthesemesograzersaredominant consumers.Thus,whether Membranipora reducesorpromotesgrazingonkelpwill dependonthespeciescompositionofthegrazingguild.

INTRODUCTION

Duetocloseproximity,anepibiontcanstronglyinfluenceitshost.Thesespeciesliving

directlyonthesurfaceofanotherorganismarecommoninmarinesystems,andmuch

attentionhasbeenpaidtothedirectnegativeeffectsepibiontstypicallyimposeonthe

host(reviewedinWahl1989).Sucheffectsincludereducednutrienttransferbetweenthe

hostandambientwater(e.g.Hurdetal.1994),increasedbladeloss(e.g.Fongetal.2000,

e.g.SaundersandMetaxas2009)andreducedgrowth(e.g.Littleretal.1995,Stachowicz

andWhitlatch2005,Rohdeetal.2008).Lessattentionhasbeengiventohowan

epibiontaffectsthehostindirectlybychanginginteractionswithothermembersofthe

community.

8

Oneimportantinteractionisconsumption,whichcanbemodulated,positivelyor

negatively,bythepresenceofanepibiont(WahlandHay1995).Epibiontscanreduce

consumptionofthehost(e.g.Vance1978,DuranteandChia1991,Grayetal.2005,

Fongetal.2006,Thornber2007).Theserelationships,termedassociationalresistance

(describedbyAtsattandO'Dowd1976),canprotectahostbyinterferingwitha

consumer’sattachmentmechanismordetectionabilities,ordefendingthehost

chemicallyand/orphysically(reviewedinWahl2008).Alternatively,apalatable

epibiontmaybeharmfulbyattractingconsumers(e.g.Karezetal.2000,e.g.Enderleinet

al.2003,e.g.daGamaetal.2008)aphenomenontermed“shareddoom”byWahland

Hay(1995).Sincepalatabilityisspeciesspecific(LubchencoandGaines1981,Duffy

andHay1990)someconsumersmayreducegrazingonthehostwhileothersmay

increasetheirconsumptionwhenanepibiontispresent.

Moststudiesexaminingtheinteractionbetweengiantkelpandtheencrustingbryozoan

Membranipora membranacea havedocumentednegativeimpactsonthekelphost.

Membranipora reducesnutrienttransfer(Hurdetal.1994)anddecreaseslight penetrationtotheunderlyingtissues(WingandClendenning1971).Whenpresentin

highabundance, Membranipora acceleratesbladelosson Macrocystis pyrifera (Dixonet

al.1981)andotherkelpspecies(Lambertetal.1992,SaundersandMetaxas2009),

causesbladedeformities(NeushulandHaxo1963),and,asaninvasivespeciesalongthe

northernAtlanticcoastoftheUnitedStates, Membranipor areducesgrowthandpercent

coverofnativekelps(Levinetal.2002).However,atmoderateabundancesandwithin

9 itsnativerange,Membranipora doesnotappeartoreducegrowthofthehost(Hepburn andHurd2005).Thepotentialpositiveeffectofassociationalresistancetograzinghas yettobeexamined.

Ihypothesizedthatdifferentspeciesofcanopygrazershavedifferentmagnitudesof attractiontooravoidanceof Membranipora . Membraniporaiscommoningiantkelp bedsalongthecoastofCalifornia(WoollacottandNorth1971),attimescoveringalmost allofthesurfaceareaofthealgalhost(Jones1971,Harvelletal.1990,Chessand

Hobson1997).Mesograzers,thesmall(<2.5cm)canopydwellinggrazers(Brawley

1992)andintermediatesizedgrazers(definedhereasbetween2.5cmand10cmin length)arepresentingiantkelpcanopies(Jones1971,Leighton1971,Coyer1984,

Kushneretal.1995,Hobday2000,SalaandGraham2002)andlikelyencounterthe bryozoanregularly. Membranipora coloniescontaincalciumcarbonate(Ryland1970) andindividualsproducedefensivespineswhenpreyedupon(Harvell1998),bothof whichmaydetersomeconsumers.Lidgard(2008)notedthattypicalbryozoan consumerswereeitherlargeenoughtotoleratetheirdefensesorspecializeonremoving onlythesofttissueportionsofcolonies.Ipredictedthatmesograzersmayhavedifficulty penetratingthecolonies.However,sincemostherbivoresarethoughttobenefitfrom nitrogenenrichedfoodsources(reviewedinFongandPaul2011),consumersnot deterredbydefensesmayreceiveadditionalnutritionalbenefitsovereatingkelpalone.

Inthisstudy,Iexaminedwhether Membranipora altersthefeedingpreferencesofseveral commoninvertebratekelpgrazers.UsingchoiceexperimentsItestedwhether5grazer

10 species(2gastropodsand3crustaceans)presentinsouthernCaliforniakelpcanopies prefertoconsumeencrustedorunencrustedportionsof Macrocystis pyrifera .Further,to

assessifgrazingwasreducedonheavilyencrustedkelpwhenmesograzerswere

dominant,Isurveyedrelativelevelsofgrazingpressurebetweendenselyandsparsely

encrustedkelpinalocalkelpbed.

METHODS

Grazer preference assays

Todetermineifinvertebrategrazerspreferentiallychooseunencrustedorencrustedkelp

surfacesforconsumption,grazerswerecollected,starved,andthenexposedwithin

replicatearenastopartiallyencrustedkelpblades.ExperimentstookplacefromJune

throughNovember2006attheCabrilloMarineAquariumnearLosAngeles,California.

Icollectedadultgrazerspriortothedayofexperiment(Table1).Thetwolargerspecies,

Pugettia producta (kelpcrabs)and Norrisia norrisi (Norris’topsnail),werecollectedon

snorkelfromkelpcanopiesatCabrilloBeach,40kmsouthofLosAngeles,CA.The

mesograzers, Lacuna unifasciata (Oneband Lacuna snail), Perampithoe humeralis

(amphipodkelpcurlers),and Idotea resecata (kelpisopods)wereeitherremovedfrom kelpwhileonkayakinsidetheCabrilloHarbororinthelabfromcollectedblades.

Grazerswerekeptinflowthroughseawatertablespriortoeachexperiment.SinceIwas interestedinpreferenceandthereforewantedtoreducethedurationoftheexperiments andminimizeautogenicchangesanddegradationofthekelp(perPetersonandRenaud

1989),mostgrazerswerenotfedforseveraldays(seeTable1).However,individualsof

11 Perampithoe wereusedimmediatelyuponcollectionbecausetheydidnotsurvive starvationinthelab.AllfivegrazingspeciesarefoundinsouthernCaliforniakelpbeds, butdonotnecessarilycooccuratallbedsandalltimes(Kushneretal.1995,pers.obs.).

Jones(1971)notedfromobservationthatinsouthernCaliforniakelpbeds,ofallthe invertebratecanopygrazers, Perampithoe and Idotea probablyconsumethemostkelp.

Plasticcontainersarrangedinanindoorseawatertablewereusedasexperimentalarenas.

Thelargerspecies, Norrisia and Pugettia ,wereplacedin40x27x16cm(LxWxH) containerswhile15x15x9cm(LxWxH)containerswereusedfor Idotea ,

Perampithoe ,and Lacuna .Eachcontainerhadaroughly5x5cmsectionofeachside removedandreplacedwithplasticmeshtoallowwaterflow.Toincreasereplication, mostexperimentswereconductedintwoseparatetrialsondifferentdays(SeeTable1).

Macrocystis pyrifera bladeswerecollectedfromCabrilloHarboronthedayofeach experimentaltrial.Sincethedistalportionofabladeisolderthantheproximalportion

(AbbottandHollenberg1997)andgrazerscanshowpreferencesduetobladeage

(DuranteandChia1991,VanAlstyneetal.2001),Itargetedkelpwitharelativelyeven distributionof Membranipora alongthelengthofeachbladetominimizethe confoundingeffectsofkelpage(Fig.1).Largerspecies, Norrisia and Pugettia ,received onewholeblade(tatteredendremoved),rubberbandedatthepneumatocysttoaglass slideanchor.Todetermineif,despiteprecautions,kelpbladeageconfoundedmyresults, usingtwosidedWilcoxonsignedrankedtests,Itestedfordifferencesin Membranipora cover( Norrisia :p=0.28, Pugettia :p=0.31)orgrazedarea( Norrisia :p=0.74,

12 Pugettia :p=0.38)betweentheolderandyoungerhalvesofeachbladeandfoundno significantdifferences.Thethreesmallerspeciesreceivedcutpiecesofkelp,onaverage

26cm 2(Table1),withencrustedandunencrustedareasofthesameagepresentto

minimizeageeffectsongrazerpreferences(Fig.1).Sincethepiecesweresmalland

hencetissueagedifferencesminimal,Ididnottestforageeffects.Cutpieceswere

rubberbandedflatontwosidestoaglassslideandplacedinanexperimentalarena.One

individualgrazerwashaphazardlyplacedineachexperimentalunitexceptfor Lacuna for whichIemployed3snailsperarenatoincreasereplicateswithgrazing.Eachspecies waslefttograzeforashortdurationnotlongerthan24hourssuchthatmostreplicates hadgrazingactivity(Table1).Ididnotusenograzingtreatmentstocontrolfor autogenicchangesusedsincetheproportionofencrustedkelpdidnotvisiblychange duringtheexperiments.

Iquantifiedinitialpercentcoverof Membranipora andareaofgrazingdamageinboth encrustedandunencrustedregionsbycomparingbeforeandafterphotosofthe experimentalkelppiecesusingNIHImageJsoftware. Lacuna , Norrisia , Perampithoe , and Idotea leftscarsthatdidnotpenetratethroughtheentirebladeandwerelocated predominatelyonasinglesideofthekelp.ThereforeIonlyusedphotosoftheheavily grazedsidetodeterminegrazedarea. Pugettia ,however,shredandconsumewhole pieces,andsoIusedphotosofbothsidesofthekelptodeterminegrazingdamage.

Foreachgrazerspecies,preferenceforencrustedorunencrustedkelpwasanalyzedby comparingtheproportionofencrustedkelpeatentotheproportionofencrustedkelp

13 availabletotheconsumerusingaWilcoxonsignedranktestsincethedatadidnotmeet theassumptionsofapairedttest.Perreplicate,Icompared:

Ae to Aee

At A te

whereAe istheareaofkelpencrusted,Atisthetotalareaofthepieceofkelp,Aee isthe areaeatenthatwasencrusted,andA te isthetotalareaeaten.Iftheaverageproportionof

encrustedkelpconsumedwassignificantlylessthantheproportionofencrustedkelp

available,thespecieswasconsideredtoshowavoidanceofencrustedareas.

Alternatively,iftheaverageproportionofconsumedkelpthatwasencrustedwas

significantlygreaterthantheproportionofencrustedareaavailable,thespecieswas

consideredtoshowapreferencefor Membranipora encrustedkelp.SinceIwas

comparinggrazingrates,replicatesinwhichkelpwasneverconsumedwerenotincluded

intheanalysis(Table1).DatafromtrialsoccurringondifferentdayswerepooledsinceI

foundnodifferencesintheproportionof Membranipora encrustedkelpconsumed betweendaysforallspecies( Lacuna ,p=1.0, Norrisia ,p=0.26 Idotea ,p=0.15,

Pugettia ,p=0.14,Wilcoxonranksumtest).

Grazing patterns in the field

Todetermineif Membranipora coloniesreducedgrazingdamageonkelpblades,I

conductedafieldsurveyofgrazingdamageondenselyandsparselyencrustedkelpin

August2007.Thisstudywasconductedinthecanopyofa Macrocystis pyrifera forestat

LunadaBay(33 °77’19.52”N,118 °42’79.47”W),onthenorthernsideofthePalosVerdes

Peninsula,approximately46kmsouthwestofLosAngeles,California.Collectiontook placeontheseawardedgeofthebedwhere Membranipora istypicallymostabundant

14 (BernsteinandJung1979,pers.obs.).Activegrazersatthesiteincludedgammarid amphipods, Idotea ,andNorrisia (Bryson,unpubl.data),allofwhichleavevisible

grazingscars(pers.obs.).Onsnorkel,Icollectedindividualkelpbladeswithvisible

differencesin Membranipora coverbetweenthetwosides.

Aftercollectionandpriortoanalysis,thedistaltatteredend(~30%)ofeachbladewas removed.Ascomparisonsweremadebetweentwosidesofthesameblade,thekelpwas theexactsameageonbothsidesoftheblade.Eachblade,includingpatchesof

Membranipora andgrazingscars,wastracedontoasheetofclearplastic.Imageswere scanned,andtotalarea,encrustedarea,andgrazedareawerequantifiedusingNIH

ImageJsoftware.Fromexperiencewiththegrazingpreferenceexperimentsand observationsinthefield,Iidentifiedmostofthegrazingscarsencounteredonthissurvey asamphipodand Idotea bites.Bothspeciesleavesmall,~0.12cm 2,irregularly

distributedscarsthatdonotentirelypenetratethoughthekelpblade.Thescarsfromeach

speciescouldnotbedistinguishedfromeachotherreliably,andthereforeIcombined

thesescarstogethertoquantifymesograzerdamage.Onlyfresh,crispscarswiththe

kelp’syellowmedullatissuestillpresentwerecountedsoastoquantifyonlyrecent

grazingdamagewithrespecttorecentlevelsofencrustation.Atotalof499freshscars

wereincludedintheanalysiswhile109oldertatteredholesthatpenetratedalltheway

throughbothsidesofthekelpwereomittedfromthe21bladesanalyzed.Usingapaired

ttest,Icomparedtheareaofmesograzerinflicteddamagebetweenthesparsely

encrusted,(sparseside)anddenselyencrusted(denseside)sidesoftheblades.Thedata

werelogtransformedtofittheassumptionsofthetest.Onlyonebladehadgrazing

15 damagefromanotherspecies,thatof Norrisia ,whichleavesmuchlarger,~4.0cm 2,

meanderingswathsacrosstheblade.Thisbladewasexcludedfromanalysis.

RESULTS

Grazer preference assays

Bothgastropodspecies, Lacuna and Norrisia ,stronglytargetedareasofkelpblades

without Membranipora (Fig.2ab).Almosthalfofthekelpofferedto Lacuna was

encrustedwith Membranipora ,yetnonewasconsumed.While Norrisia didnotentirely

avoideatingencrustedkelp,over80%thedietwascomposedofunencrustedkelp

comparedtotheapproximately60%thatwasavailable(Fig.2b).

Thetwosmallercrustaceans, Perampithoeand Idotea ,stronglyavoidedconsuming portionsofkelpbladescoveredwithMembranipora .Thesespeciesincludedalmostnone oftheencrustedkelpintheirdiets(Fig.2cd)eventhoughthesegrazerswereoffered30% and47%encrustedkelponaveragerespectively. Pugettia producta ,incontrast, preferentiallyselected Membranipora encrustedkelp.Proportionately,thedietofthe crabsconsistedofalmosttwiceasmuchencrustedkelpaswasavailable(Fig.2e).

Grazing patterns in the field

Confirmingmyselectionofsurveyedblades,thesidedesignatedasthedensesideofthe bladewassignificantlymoreencrustedthanthesparseside(p<0.0001,Wilcoxonsigned ranktest).Onaverage,thedenseandsparsesideswere41.6% ±3.7%(mean ±SE)and

11.1% ±2.1%encrusted,respectively,withtheminimumdifferencebeing14.7%

16 betweenthetwosidesofoneblade.Smallcrustaceansconsumedmorethandoublethe areaonthesparselyencrustedsidethanonthedenseside(Fig.3).Allgrazingscarswere locatedinunencrustedareas.

DISCUSSION

Myresultsdemonstratedthat Membranipora modifiedthepalatabilityofkelp,withthe directionofthiseffectdependentongrazerspecies.All5speciesItestedshowed significantalterationsofgrazingrateswithrespecttothepresenceof Membranipora ,4 negativeand1positive.Previousstudieshavefoundexamplesofepibioticbryozoans protectingtheirhosts(DuranteandChia1991,Grayetal.2005),butstudiesof

Membranipora ’seffectsonhostconsumptiontodatehaveonlyfound Membranipora to attractconsumption.Forexample,thepresenceofMembranipora madetheunpalatable alga Zonaria tournefortii palatabletothegeneralistseaurchin, Arbacia punctulata (Wahl andHay1995).Further,theomnivorousfish, Oxyjulis californica hasbeenobservedto consume Membranipora encrustedportionsof Macrocystis blades(Yoshioka1973,

BernsteinandJung1979,ChessandHobson1997).Mystudyexpandstheseothersby showingthattheeffectsof Membranipora ongrazerscanbeeitherpositiveornegative,

dependingonthespecies,and,attimes,actstoprotectthekelphost.

Membranipora isanespeciallyeffectivedeterrenttosmallsizedconsumers.Allthreeof

themesograzersstronglyavoidedencrustedkelpinboththelabexperimentsandinthe

field.Thecalciumcarbonate(CaCO 3)inthecoloniesmayprotecttheunderlyingalgal tissuefrommesograzers.PreviousstudieshavedocumentedCaCO 3beingadeterrentfor

17 similarspecies.Hayetal.(1994)foundthatCaCO3deterredfeedingbyaspeciesof amphipodwhenincorporatedintoartificialfood.SteneckandWatling(1982)notedthat thegenus Lacunahasamorphologicaltypeofradulanottypicallyusedforgrazing calcifiedalgae.Additionally,Gaines(1985)foundthat Idotea wosnesenskii wasdeterred bytherelativelyharderoutercuticleoftheredalga Iridaea cordata suggestingthat

Idotea may,ingeneral,bedeterredfromgrazingbyhardsubstances.Thus,sizemaybea

moreimportantpredictorthantaxonomicaffiliationindeterminingthedirectionofthe

effectsof Membranipora ongrazers.

WhileIobservedaclearassociationaldefenseinanaturalkelpcanopy,itdoesnot automaticallyfollowthat Macrocystis benefitsfromthisdefense. Membranipora may

havebothpositiveandnegativeimpactsonthekelphost.Theindirectbenefitsof

reducedconsumptioncanoutweighnegativedirectimpactswhenconsumptionishigh

(Fongetal.2006)orwhennegativeimpactsareminimal.Ididfindareductionin

grazingdamageatthelevelofthebladeandHepburnandHurd(2005)foundnoeffectof

Membranipora coveronkelpgrowthrates,suggestingthatevenrelativelysmallbenefits fromhostingcoloniesmayexceedcostsifcolonizationismodest.Still,thegrazing pressureIobservedinthefieldwaslow,1.5%ofthesparsesideofthebladewas damaged.Giventhehighgrowthratesof Macrocystis ,2%drymassincreasedaily(Reed

etal.2008), Macrocystis canlikelytoleratelowlevelsofgrazingquitewell.However, grazingratesbymesograzerscanbemuchhigherthanIobservedinmyfieldsurveys.

Rarebutdestructiveinfestations,whichmayresultfromreducedfishdensities(Tegner andDayton1987)sincepredatoryfishmoderatemesograzerdensitiesandbehaviors

18 (DuffyandHay2000,DavenportandAnderson2007,PerezMatusandShima2010),can severelydefoliatekelp(Jones1965,TegnerandDayton1987,Graham2004).Ipredict thatduringthesetimesofincreasedabundancesofmesograzers Membranipora couldbe animportantfactorlimitingovergrazing,actingasabuffertothecommunity.

Oneimportantimplicationofmyresultsisthatthespeciescompositionofthecanopy grazingguildwilllikelyaffectthedirectionoftheinteractionbetween Membranipora andkelp.Localabundancesofgrazerschangeseasonallyandfromsitetosite(Wicksten andBostick1983,North1987,Kushneretal.1995)andseveralspeciesotherthanthe mesograzersIobservedatmysitehavebeendocumentedtobesignificantkelp consumersinotherlocales(i.efish,BernsteinandJung1979,kelpcrabs,Brackenand

Stachowicz2007).Clearly, Membranipora reducedgrazingonkelpinmysitebutmay promotegrazinginothersites,especiallyiflargerspeciesdominatethegrazer community.Shiftsinindirectinteractionsfrompositivetoneutralornegativehavebeen documentedinmarinecommunities(Berlow1999,Hayetal.2004,Wahl2008).I predictthatasthegrazingguildsinkelpforestschangefromdominancebymesograzers tomacrograzerstheassociationalresistancetograzingprovidedby Membranipora will likelyshifttoshareddoom.

19 OLDER ~6cm

YOUNGER

~4cm

Fig. 1. Exampleofexperimentalkelpforsmallgrazers . Pieceswerecuttoincorporatesameagedareas withandwithout Membranipora . Membranipora encrustedareasdepictedhereascheckerboardpatches.

20 120 a. Lacuna p = 0.001 b. Norrisia p = 0.0081 100

80 % Unencrusted 60 % Encrusted

40

20

0 Available Consumed Available Consumed 21 120 c. Perampithoe p < 0.0001 d. Idotea p < 0.0001 e. Pugettia p = 0.0195 100

80

60

40

20

0 Available Consumed Available Consumed Available Consumed

Fig.2ae.Preferenceforencrustedorunencrustedkelpofthefivegrazers.Theleftbarineachpanelisthepercentofencrustedandunencrustedkelpavailable. Therightbaristhepercentofencrustedandunencrustedkelpeaten.ReportedpvaluesfromWilcoxonsignedrankedtests.ab.Gastropodsarrangedfrom smallbodied(left)tolargebodied(right).ce.Crustaceansarrangedinsameway.

21

3 p=0.0083 2.5

) 2 2

1.5

1 Areagrazed(cm 0.5

0 Sparseside Denseside

Fig. 3. Areagrazedonthesparseanddensesidesofkelpbladescollectedduringfieldsampling.Barsare means±SE.

22 Table 1.Specificationsfrompreferencesassays.Lengthreferstotheanteriorposteriordistanceoftheorganism. Whenexperimentswererunontwodates,Ireportcombinedaveragesforsizeofkelpandconsumptionrate. Species Length Days Date of Size of Replicates Not Duration Consumption (mm) Starved Trial(s) Kelp (eating) eating (hr) Rate

Lacuna 3.6* 35 09/25/2006 27.67cm 2± 6 4 24 0.00065 unifasciata 09/28/2006 1.49 4 5 24 cm 2/hr ± .00028 Norrisia 42.3± 1013 06/22/2006 144.7cm 2± 6 0 22 0.95cm 2/hr ± norrisi 1.58 08/1/2006 20.9 6 0 24 0.22 2 2 23 Perampithoe 18.1± 0 10/11/2006 20.6cm ± 15 0 23.5 0.084cm /hr ± humeralis 0.97 1.25 0.0073 Idotea 19.3± 35 09/06/2006 29.7cm 2± 8 7 2 0.24cm 2/hr ± resecata 0.67 09/12/2006 0.60 13 2 2.5 0.050 Pugettia 33.9±4.2 57 11/02/2006 148.3cm 2± 5 0 1 11.1cm 2± producta 11/14/2006 18.5 5 0 1 3.7 *Lacuna testsubjectswerenotmeasuredforlength,ameasurementfromJones(1971)isincludedforcomparative purposes.

23

REFERENCES Abbott,I.A.,andG.J.Hollenberg.1997.MarineAlgaeofCalifornia.Stanford UniversityPress,Stanford,CA.

Atsatt,P.R.,andD.J.O'Dowd.1976.PlantDefenseGuild.Science 193 :2429.

Berlow,E.L.1999.Strongeffectsofweakinteractionsinecologicalcommunities. Nature 398 :330+.

Bernstein,B.B.,andN.Jung.1979.SelectivePressuresandCoevolutioninakelp canopycommunityinsouthernCalifornia.EcologicalMonographs 49 :335355.

Bracken,M.E.S.,andJ.J.Stachowicz.2007.Topdownmodificationofbottomup processes:selectivegrazingreducesmacroalgalnitrogenuptake.MarineEcology ProgressSeries 330 :7582.

Brawley,S.1992.Mesoherbivores.Pages235263 in D.M.John,S.J.Hawkins,andJ. H.Price,editors.Plantanimalinteractionsinthemarinebenthos.Publishedfor theSystematicsAssociationbyClarendonPress;OxfordUniversityPress, Oxford;Oxford;NewYork.

Chess,J.R.,andE.S.Hobson.1997.BenthicInvertebratesoffoursouthernCalifornia marinehabitatspriortoonsetofoceanwarmingin1976,withlistsoffish predators.NOAATechnicalMemorandumNMFS:8388.

Coyer,J.A.1984.Theinvertebrateassemblageassociatedwiththegiantkelp, Macrocystispyrifera,atSantaCatalinaIsland,California:Ageneraldescription withemphasisonamphipods,copepods,mysids,andshrimp.FisheriesBulletin 82 :5566.

daGama,B.A.P.,R.P.D.Santos,andR.C.Pereira.2008.Theeffectofepibiontson thesusceptibilityoftheredseaweedCryptonemiaseminervistoherbivoryand fouling.Biofouling 24 :209218.

Davenport,A.C.,andT.W.Anderson.2007.PositiveIndirectEffectsofReefFisheson KelpPerformance:TheImportanceofMesograzers.Ecology 88 :15481561.

24 Dixon,J.,S.C.Schroeter,andJ.Kastendiek.1981.Effectsoftheencrustingbryozoan, Membranipora membranacea ,onthelossofbladesandfrondsbythegiantkelp, Macrocystis pyrifera (Laminariales).JournalOfPhycology 17 :341345.

Duffy,E.J.,andM.E.Hay.1990.Seaweedadaptationstoherbivory.BioScience 40 :368 375.

Duffy,J.E.,andM.E.Hay.2000.Strongimpactsofgrazingamphipodsonthe organizationofabenthiccommunity.EcologicalMonographs 70 :237263.

Durante,K.M.,andF.S.Chia.1991.Epiphytismon Agarum fimbriatum :canherbivore preferencesexplaindistributionsofepiphyticbryozoans?MarineEcology ProgressSeries 77 :279287.

Enderlein,P.,S.Moorthi,H.Rohrscheidt,andM.Wahl.2003.Optimalforagingversus shareddoomeffects:interactiveinfluenceofmusselsizeandepibiosison predatorpreference.JournalOfExperimentalMarineBiologyAndEcology 292 :231242.

Fong,C.W.,S.Y.Lee,andR.S.S.Wu.2000.Theeffectsofepiphyticalgaeandtheir grazersontheintertidalseagrassZosterajaponica.AquaticBotany 67 :251261.

Fong,P.,andV.J.Paul.2011.CoralReefAlgae.Pages241272 in Z.DubinskyandN. Stambler,editors.CoralReefs:AnEcosysteminTransition.SpringerScience+ BusinessMediaB.V.

Fong,P.,T.B.Smith,andM.J.Wartian.2006.Epiphyticcyanobacteriamaintainshifts tomacroalgaldominanceoncoralreefsfollowingENSOdisturbance.Ecology 87 :11621168.

Gaines,S.D.1985.HerbivoryandBetweenHabitatDiversity:TheDifferential EffectivenessofDefensesinaMarinePlant.Ecology 66 :473.

Graham,M.H.2004.Effectsoflocaldeforestationonthediversityandstructureof southernCaliforniagiantkelpforestfoodwebs.Ecosystems 7:341357.

Gray,C.A.,C.D.McQuaid,andM.T.DaviesColeman.2005.Asymbioticshell encrustingbryozoanprovidessubtidalwhelkswithchemicaldefenceagainstrock lobsters.AfricanJournalofMarineScience 27 :549556.

25 Harvell,C.D.1998.Geneticvariationandpolymorphismintheinduciblespinesofa marinebryozoan.Evolution 52 :8086.

Harvell,C.D.,H.Caswell,andP.Simpson.1990.Densityeffectsinacolonial monoculture:experimentalstudieswithamarinebryozoan( Membranipora membranacea L.).Oecologia 82 :227237.

Hay,M.E.,Q.E.Kappel,andW.Fenical.1994.SynergismsInPlantDefensesAgainst HerbivoresInteractionsOfChemistry,Calcification,AndPlantQuality. Ecology 75 :17141726.

Hay,M.E.,J.D.Parker,D.E.Burkepile,C.C.Caudill,A.E.Wilson,Z.P.Hallinan,and A.D.Chequer.2004.Mutualismsandaquaticcommunitystructure:theenemyof myenemyismyfriend.AnnualReviewsofEcology,Evolution,andSystematics 35 :175197.

Hepburn,C.D.,andC.L.Hurd.2005.Conditionalmutualismbetweenthegiantkelp Macrocystis pyrifera andcolonialepifauna.MarineEcologyProgressSeries 302 :3748.

Hobday,A.J.2000.Persistenceandtransportoffaunaondriftingkelp(Macrocystis pyrifera(L.)C.Agardh)raftsintheSouthernCaliforniaBight.JournalOf ExperimentalMarineBiologyAndEcology 253 :7596.

Hurd,C.L.,K.M.Durante,F.S.Chia,andP.J.Harrison.1994.Effectofbryozoan colonizationoninorganicnitrogenacquisitionbythekelps Agarum fimbriatum and Macrocystis integrifolia .MarineBiology 121 :167173.

Jones,L.G.1965.CanopygrazingatsouthernPointLoma.W.M.KeckLaboratoryof EnvironmentalHealthandEngineering,CaliforniaInstituteofTechnology, Pasadena,California.

Jones,L.G.1971.Studiesonselectedsmallherbivorousinvertebratesinhabiting Macrocystis canopiesandholdfastsinsouthernCaliforniakelpbeds.Pages343 368 in W.J.North,editor.TheBiologyofGiantKelpBeds(Macrocystis)in California.NovaHedwigia,Lehre.

Karez,R.,S.Engelbert,andU.Sommer.2000.'Coconsumption'and'protectivecoating': twonewproposedeffectsofepiphytesontheirmacroalgalhostsinmesograzer epiphytehostinteractions.MarineEcologyProgressSeries 205 :8593.

26 Kushner,D.J.,D.Lerma,J.Mondragon,andJ.Morgan.1995.KelpForestMonitoring 1995AnnualReport.TechnicalReportCHIS9701,NationalParkService, ChannelIslandsNationalPark.

Lambert,W.J.,P.S.Levin,andJ.Berman.1992.ChangesinthestructureofaNew England(USA)kelpbed:theeffectsofanintroducedspecies?MarineEcology ProgressSeries 88 :303307.

Leighton,D.L.1971.GrazingactivitiesofbenthicinvertebratesinsouthernCalifornia kelpbeds.Pages421453 inW.J.North,editor.TheBiologyofGiantKelpBeds. NovaHedwigia.

Levin,P.S.,J.A.Coyer,R.Petrik,andT.P.Good.2002.Communitywideeffectsof nonindigenousspeciesontemperaterockyreefs.Ecology 83 :31823193.

Lidgard,S.2008.Predationonmarinebryozoancolonies:taxa,traitsandtrophicgroups. MarineEcologyProgressSeries 359 :117131.

Littler,M.M.,D.S.Littler,andP.R.Taylor.1995.Selectiveherbivoreincreases biomassofitsprey:achitoncorallinereefbuildingassociation.Ecology 76 :1666 1681.

Lubchenco,J.,andS.D.Gaines.1981.Aunifiedapproachtomarineplantherbivore interactions.I.Populationsandcommunities.AnnualReviewsofEcology, Evolution,andSystematics 12 :405437.

Neushul,M.,andF.T.Haxo.1963.StudiesOnGiantKelp,Macrocystis.1.GrowthOf YoungPlants.AmericanJournalOfBotany 50 :349353.

North,W.J.1987.Biologyofthe Macrocystis resourceinNorthAmerica.Pages265311 in M.S.Doty,J.F.Caddy,andB.Santelices,editors.CaseStudiesofSeven CommercialSeaweedResources.FAOFish.Tech.

PerezMatus,A.,andJ.S.Shima.2010.Densityandtraitmediatedeffectsoffish predatorsonamphipodgrazers:potentialindirectbenefitsforthegiantkelp Macrocystispyrifera.MarineEcologyProgressSeries 417 :151U168.

Peterson,C.H.,andP.E.Renaud.1989.Analysisoffeedingpreferenceexperiments. Oecologia 80 :8286.

27 Reed,D.C.,A.Rassweiler,andK.K.Arkema.2008.Biomassratherthangrowthrate determinesvariationinnetprimaryproductionbygiantkelp.Ecology 89 :2493 2505.

Rohde,S.,C.Hiebenthal,M.Wahl,R.Karez,andK.Bischof.2008.Decreaseddepth distributionofFucusvesiculosus(Phaeophyceae)intheWesternBaltic:effectsof lightdeficiencyandepibiontsongrowthandphotosynthesis.EuropeanJournalOf Phycology 43 :143150.

Ryland,J.S.1970.Bryozoans.Hutchinson&Co,London.

Sala,E.,andM.H.Graham.2002.Communitywidedistributionofpredatorprey interactionstrengthinkelpforests.ProceedingsoftheNationalAcademyof Sciences 99 :36783683.

Saunders,M.I.,andA.Metaxas.2009.Populationdynamicsofanonindigenous epiphyticbryozoanMembraniporamembranaceainthewesternNorthAtlantic: effectsofkelpsubstrate.AquaticBiology 8:8394.

Stachowicz,J.J.,andR.B.Whitlatch.2005.Multiplemutualistsprovidecomplementary benefitstotheirseaweedhost.Ecology 86 :24182427.

Steneck,R.S.,andL.Watling.1982.FeedingCapabilitiesAndLimitationOf HerbivorousMollusksAFunctionalGroupApproach.MarineBiology 68 :299 319.

Tegner,M.J.,andP.K.Dayton.1987.ElNiñoEffectsonSouthernCaliforniaKelp ForestCommunities.AdvancesInEcologicalResearch Volume 17 :243279.

Thornber,C.2007.Associationalresistancemediatespredatorpreyinteractionsina marinesubtidalsystem.MarineEcologyAnEvolutionaryPerspective 28 :480 486.

VanAlstyne,K.L.,S.L.Whitman,andJ.M.Ehlig.2001.Differencesinherbivore preferences,phlorotanninproduction,andnutritionalqualitybetweenjuvenileand adulttissuesfrommarinebrownalgae.MarineBiology 139 :201210.

Vance,R.R.1978.Amutualisticinteractionbetweenasessilemarineclamandits epibionts.Ecology 59 :679685.

28 Wahl,M.1989.MarineEpibiosis.1.FoulingAndAntifoulingSomeBasicAspects. MarineEcologyProgressSeries 58 :175189.

Wahl,M.2008.Ecologicalleverandinterfaceecology:epibiosismodulatesthe interactionsbetweenhostandenvironment.Biofouling 24 :427438.

Wahl,M.,andM.E.Hay.1995.Associationalresistanceandshareddoom:effectsof epibiosisonherbivory.Oecologia 102 :329340.

Wicksten,M.K.,andC.R.I.Bostick.1983.MigrationofKelpCrabs(Pugettiaproducta) atSanPedro,California.JournalofCrustaceanBiology 3:364.

Wing,B.L.,andK.A.Clendenning.1971.Kelpsurfacesandassociatedinvertebrates. Pages319341 in W.J.North,editor.TheBiologyofGiantKelpBeds.Nova Hedwigia.

Woollacott,R.M.,andW.J.North.1971.BryozoansofCaliforniaandNorthernMexico kelpbeds.Pages455479 in W.J.North,editor.TheBiologyofGiantKelpBeds. NovaHedwigia.

Yoshioka,P.M.1973.ThePopulationdynamicsandecologyoftheencrustingectoproct Membraniporaserrilamella .UniversityofCaliforniaSanDiego,SanDiego.

29 II Mesograzer abundance and grazing damage in a giant kelp forest canopy

ABSTRACT

Mesograzersareoftenabundantmembersofmarinecommunitiesthatlinkhighertrophic levelstoprimaryproductivity,yetlittleisknownabouttheirgrazingpatterns.Inagiant kelpforestcanopyinsouthernCaliforniaIconductedtwosurveystodetermine mesograzerabundance,levelsofgrazingdamageonkelpblades,andlevelofcoverby

Membranipora membranacea,akelpepibiontknowntodeterconsumptionby mesograzers.Ifoundthetwodominantmesograzertaxa,theisopod Idotea resecata and anassemblageofgammaridamphipodspecies,andthemajorityofgrazingdamageto varywithdepth.Grazingdamage,measuredasabundanceofgrazingscars,andthe abundanceof Idotea ,werehigherintheupperhorizontalportionofthekelpcanopy, whilesignificantlylessgrazingwasfoundinthedeeper,middleportionofthekelp canopywhereamphipodsweremorecommon.Ialsofoundatrendofreducedgrazingby mesograzerswhenthebryozoan, Membranipora membranaceawaspresentinsufficient abundance.Myfindingssuggestthatmesograzerconsumptiondisproportionately impactsthemorephotosyntheticallyactivebladesinakelpforest.Howeversuch impactsmaybemoderatedbythepresenceofotherkelpassociatedspecies.

INTRODUCTION

Althoughherbivoryiswelldocumentedtobeastrongforceinstructuringmanymarine communities(e.gEstesandPalmisano1974,LubchencoandGaines1981,Hayand

Fenical1988,Hughes1994,Babcocketal.1999,Graham2004,HeckandValentine

2007),lessisknownaboutmesograzersandtheiractivitiesandimpactsinthesehabitats.

30 Thesesmall(<2.5cm),mobileepifaunaareoftenpresentinextremelyhighdensitiesbut aredifficulttostudyduetotheirsmallsize(reviewedinBrawley1992).While

“mesograzers”denotesawidevarietyofspecieswithdifferentfeedinghabitstheterm generallyreferstoaguildofconsumersthatspecializeonepiphytes(Brawley1992,

DuffyandHarvilicz2001),thoughsomespeciesconsumehosttissue(Farlinetal.2010).

Twostudiesassessingtheinfluenceofmesograzersinearlysuccessionalprocessesfound astronginfluenceonthedevelopingcommunityviatopdowncontrol(Brawleyand

Adey1981,DuffyandHay2000).However,littleisknownaboutmesograzersandtheir activitiesinafullydevelopedalgalcanopy(butseeDavenportandAnderson2007,Poore etal.2009).

Whilegiantkelpforests,dominatedby Macrocystis pyrifera ,supportadiversesuiteof mesograzersspecies(Jones1971,Coyer1984,Hobday2000),therolethesegrazersplay inthecommunityisunderstudied.Ofthemesograzersthatliveinthekelpcanopy,some areknowntoconsumekelpdirectly(Leighton1971,SalaandGraham2002,Bryson,

Chapter1).Suchconsumptionbymesograzersismoderatedbythepresenceof microcarnivorousfishes(DavenportandAnderson2007,PerezMatusandShima2010).

However,consumptionofkelpbymesograzershasbeenknowntospiketodestructive levelsonrareoccasions(forexamplesseeJones1965,TegnerandDayton1987,Graham

2002).Outsideoftherecognitionthatconsumptionbymesograzersdoesnotoften devastatekelpbiomass(North1987),thegrazingpressureexertedbymesograzersinthe canopyremainslargelyunknown.

31 Thebryozoan Membranipora membranacea isakelpepibiont(Fig.1)thathasbeen

showntodetergrazingbymesograzers(Bryson,Ch.1). Membranipora isacommon

invertebratepresentinthekelpcanopy(WoollacottandNorth1971)thatcanbecomeso

denseastocovermostofthekelpthallus(Jones1971,Harvelletal.1990,Chessand

Hobson1997).Withsuchastrongpresenceinkelpbeds, Membranipora mayfrequently

interactwithkelpconsumers.Because Membranipora reducesconsumptionofkelpby

mesograzers,thepresenceofthebryozoanmayaffectgrazingdamagepatternsinthe

field.

Myobjectiveswereto 1.examinespatialpatternsofgrazingintensitymeasuredasthe

accumulationofgrazingscarsfrommesograzersinanatural Macrocystis canopy, 2.

relategrazingintensitytoabundancesofmesograzers,and, 3.evaluatewhetherthe presenceof Membranipora reducedgrazingpressurefrommesograzers.

METHODS

Toaccomplishmyobjectives,IconductedtwosurveysinthekelpforestatLunadaBay

(33 °77’19.52”N,118 °42’79.47”W)onthenorthsideofthePalosVerdesPeninsula,

approximately46kmsouthwestofLosAngeles,California,USA.Thekelpbedatthis

siteoccupiedabout21.0hectaresofoceanbottom,butfluctuatedinsizeseasonally

thoughitpersistedyearround.Waterdepthrangedfrom7.5mto12m.Likeallsouthern

Californiakelpforests, Macrocystis pyrifera ,orgiantkelp,wasthedominantstructural

kelpofthecommunity.Thekelpoccurredatadensityof2.2holdfasts/m 2(Bryson, unpublisheddata);thisrelativelyhighdensityistypicalofafrequentlydisturbed

32 community(North1987).Surveysandcollectionstookplaceontheseawardsideofthe kelpbedwhereencrusting Membranipora coloniesweremostabundant(pers.obs.).

Membranipora waspresentonvirtuallyallkelpthalli.

ToevaluatespatialpatternsofgrazingwithdepthIquantifiedgrazingwithintwodepth ranges(topandmid)ofthekelpbed.Thetoprangewascomprisedoftheuppercanopy, fromthesurfacetoapproximately1.0mdepth,definedaswherethekelplieshorizontally onthesurface.Mostkelpbladesexistedinthisregion,asnotedelsewhere(North1987), andbladeswereusuallyspaced<0.05mapart.Themiddepthoccurredbetween2.5m

4mdepths,wherekelpstipeswereverticalandbladesfewerandspacedatapproximately

0.2mintervals.Deeperdepthswerenotconsideredsincefewbladeswerepresentbelow

4matthissite.

Preliminarygrazersurveysconfirmedthedominanceoftwomesograzertaxa,amixed assemblageofgammaridamphipodsandtheisopod Idotea resecata ,inthekelpcanopyat

LunadaBay.BotharecommoninsouthernCaliforniakelpforests(Jones1971,Kushner etal.1995).Therearemanyspeciesofgammaridamphipodsassociatedwithkelp;

Coyer(1984)found20speciesinkelpforestsatSantaCatalinaIsland,onaverage approximately23mminlength.Someofthesekelpassociatedgammaridsarekelp consumers(Light1975,DavenportandAnderson2007,Cerdaetal.2009).Theisopod,

Idotea resecata ,islarger,upto39mminlength(Morrisetal.1980),andisknownto consumekelp(Jones1971).Thisspeciesmaybelessabundantthanthegammarid amphipods(Coyer1984).

33

OnMay11,2007,Icollectedportionsofkelpthallitoassessgrazingdamageand quantifymesograzerabundance.Twoseriesofrandomnumbersweregeneratedto designatecollectionpointsinthetopandmiddepthsalongahaphazardlyplacedtransect intheseawardsideofthebed,paralleltothebededge.Inthetopdepth,ateachsampling pointIcollectedtheneareststipewithattachedbladesat0m(n=10).Similarly,a secondswimwasconductedtocollectstipeswithattachedbladesinthemidrangeat

3.3mdepth(n=11).Astipewithattachedbladeswascollectedonlyifitcamefroma frondlongenoughtoreachthesurfacetoensureitwasoldenoughtohaveaccumulated

Membranipora andgrazingscars.Eachsectionofstipe,approximately1.3minlength,

wascut,gentlydisentangledfromneighboringstipes,andplacedin9.4literreclosable plasticbag.Priorexperiencewithsamplingrevealedthatmesograzersclingtokelpand

thatquickhandlingoftheshortstipesfromcuttingtoplacementinplasticbagsensured

thatfewifanymesograzerswerelostintheprocess.Nonewereobservedtoescape.

Bagsofkelpwereplacedinacoolerandtransportedtothelab.

Todetermineifmesograzerabundancevarieswithdepth,Icountedmesograzers

collectedwiththekelpfromboththetopandmiddepthranges.Eachstipesegmentwas

consideredareplicate.Toestimatemesograzerdensityperblade,Icountedthenumber

ofbladesthatwerelongerthan40cminlength.Iexcludedimmaturebladesnearthe

apicalmeristem,heredefinedasthoselessthan40cminlength,becausetheyaremuch

smallerthanthematurebladesanddonotcontributesubstantiallytototalkelpsurface

area(Jacksonetal.1985).Stipesegmentswererinsedinfreshwater,agitated,andthe

34 invertebratesstrainedthrough60micronmeshandplacedin65%ethanol/seawater preservative(adaptedfromCoyer1984).Allspeciesofgammaridamphipodswere pooledandcountedduetothedifficultyinidentifyinggammaridstospecies.Individual

Idotea resecata werealsocounted.Toobtainestimatesofmesograzerabundance,for amphipodsand Idotea separately,Icalculatedtotalnumberofindividualsperblade longerthan40cmoneachstipesection.Ianalyzeddifferencesinamphipods/blade betweenthetopandmiddepthsusingaStudent’sttestfollowingalogtransformationof thedatatomeettheassumptionsofthetest.Sincetransformationsof Idotea /bladedid notimprovethefittotheassumptionsofattest,differencesbetweendepthrangeswere analyzedusingaWilcoxonranksumtest.

Icountedgrazingscarstodetermineifdamageonkelpbladesfrommesograzer consumptiondifferedbetweendepthsinthecanopy.Eachbladeover40cminlengthwas assignedanidentificationnumber,and,usingaseriesofrandomnumbers,fiveblades wereselectedforassessmentofgrazingdamage.Grazingscarsproducedbyboth amphipodsand Idotea weresmall,ragged,approximately0.12cm 2(n=7)inarea,anddid notpenetratethroughthekelpblade.Becausescarscouldnotbereliablydistinguished bygrazeridentitytheywerepooled.Thesescarsoccurredonlyintheunencrustedspaces between Membranipora colonies,confirmingpreviousfindings(Bryson,Ch.1)thatthe

coloniespreventalmostallgrazingbymesograzersonunderlyingkelp.Onlyfresh,crisp

scarswiththemedullaofthekelpbladeintactwerecounted.Asafrondgrows,thedepth

ofanindividualbladewillchangeastheapicalmeristemapproachesthesurfaceofthe

water(North1971).Recentlycreatedfreshscarsaremoreindicativeofthegrazing

35 pressureonthebladeatitscurrentdepthinthewatercolumn.Scarsonbothsidesofthe bladewerecountedandIaverageddatafromthefivebladesofeachsampledstipeto generateaveragegrazingscarcountsperbladeforeachreplicate.Icomparedmean grazingscarcounts/bladebetweendepthsusingatwosidedttestfollowingasquareroot transformationtoensurethatthedatasatisfiedtheassumptionsofthetest.Ialsoassessed

Membranipora coverontheseblades.However,duetogreatlyunevendistributionof covercategoriesbetweendepthrangesIcouldnotassessgrazingdifferenceswithrespect to Membranipora fromdatagarneredfromthissurvey.Thisaspectisexaminedonthe

surveydiscussedbelow.

Icomparedmesograzerabundanceandgrazingdamageonaperbladebasisusingblades perstipeasaproxyforthesurfaceareaavailabletograzers(asdescribedabove).This

comparisonassumesallbladestobeofequalsize.SinceIemployedshortstipesegments

allattachedbladesfromasinglestipeweresimilarlysized.However,bladesfrom

differentstipes,andinparticular,betweendepthsappearedtodiffer,withthesmaller,

youngerbladesmorecommoninthetopdepthasexpected(Parker1971,Jacksonetal.

1985).TogenerateroughestimatesofareadifferencesbetweenbladesintheTopand

Middepthranges,Ihaphazardlyselectedasinglebladeperstipeandapproximatedblade

2 areausingtheformula: /3*bladelength*widthbasedontheshapeoftheblade.On average,bladesintheMidhad1.4timesthesurfaceareathanbladesfromtheTop.

Therefore,measuresIemployedwilltendtounderestimateabundanceofgrazersand grazingscarsperactualsurfaceareainthetoprelativetothemiddepth.

36 OnMay6,2007,Iconductedan in situ surveyofgrazingdamageand Membranipora coverinthefield.OnSCUBA,Isurveyedbladesinthetopdepth(n=28)at0mand withinthemiddepth(n=32)at3.3matrandomlyselectedpointsalongahaphazardly placedtransect.Selectedthalliweretallenoughtoreachthesurface.Ateach predeterminedsamplingpoint,consideredtobeasinglereplicate,threesequentialblades alongtheselectedstipeweresurveyed.Ivisuallyestimated Membranipora coverand placedeachreplicateintooneofthreecovercategories:low(05%),medium,(6%

39%),andhigh(40%+).Sincethethreebladeswerealmostidenticalinageandadjacent toeachotheralongthestipe,theywerealwaysinthesamecovercategory;cover categorydidvarybetweenreplicates.Grazingscarsfromthethreebladeswerecounted andaveragedforeachreplicateasdescribedabove.Sincetransformationsdidnot effectivelyimprovethefitofthedatatotheassumptionsofthetestIwasunableto compareaveragegrazingscarcountsbetweendepthsand Membranipora covercategories simultaneously.Consequently,Iconductedtwoseparateanalyses.Ianalyzeddifferences ingrazingscarcountsbetweendepthswithaWilcoxonranksumtest.Then,fromdata collectedfromthetopdepthonly,Icomparedaveragegrazingscarcounts/bladebetween thethreedifferentcategoriesof Membranipora coverusingaonewayANOVA followingasquareroottransformationofthedata.Allthreecovercategorieswerenot wellrepresentedbymysamplinginthemiddepthandthereforedatafromthisdepth rangecouldnotbeanalyzedwithrespectto Membranipora cover.

37 RESULTS

Overall,amphipodsweremoreabundantthan Idotea (Fig.2).Fromallthemesograzers collected,Ifoundamphipodstobeabout12timesmoreabundantthan Idotea overall

(1763vs.142individualsrespectively).Ialsoquantifiedapartitioningofmesograzer

taxabetweendepthsinthekelpcanopy.Amphipodsweresignificantlymoreabundant(>

2timesmoreabundant)intheMidthantheTopdepth(Fig.2a).However, Idotea was

almostanorderofmagnitudemoreabundantinthetopdepth(Fig.2b).Almostall(214

of224) Idotea individualswerefoundinthetopofthekelpcanopy.Naturalvariationin bladesizewilltendtolessenthedifferencesfoundinamphipodabundancesbutamplify differencesin Idotea abundancebetweendepthranges.

Mesograzersexertedthemajorityoftheirgrazingimpactwithinthetopportionofthe kelpforest(Fig.3).Ifoundthispatternusingbothsurveytechniques.Mesograzerscars wereapproximately9and6timesmoreabundantinthetopthanthemiddepthonthe in situ andkelpcollectionsurveysrespectivelyeventhoughkelpbladesinthetopdepth weresmallerthanthoseatdeeperdepths.Averagegrazingscars/bladewere approximately4timesgreateronthekelpcollectionsurveythanthe in situ surveywith

8.6±2.0grazingscars/blade(±SE)and2.0±0.39grazingscars/blade(±SE)onaverage respectively.

Therewasatrendoflessgrazingscarswhen Membranipora wasabundant(Fig.3a).

Bladesfromthetopdepthwithhighlevelsof Membranipora coverhadfewerscarsthan bladeswithmediumorlowcoverthoughthisdifferencewasonlymarginallysignificant.

38 And,eventhoughtherewerefewscarsonbladesfromthemiddepth,bladeswithlow

Membranipora coverappearedtohavemoregrazingscarsthanbladeswithmediumand highlevelsofcover.

DISCUSSION

Myresultssuggestthat Idotea maybedrivingtheoverallgrazingdamagepattern.I foundfarmoregrazinginthetopdepthofthekelpcanopywhereIdotea individualswere predominatedlocatedthaninthemidregionwheremostoftheamphipodswerefound.

Coyer(1984)alsofoundhigherabundancesofamphipods,fourtimesmore,inthemiddle thirdportionofthekelpforest,butdidnotquantifygrazingpressure.Sincemany amphipodsconsumeepiphytesratherthanthehostmacrophyte(Duffy1990,Brawley

1992,HeckandValentine2006,Christieetal.2009,Farlinetal.2010)itispossiblethe amphipodsIcollectedmaynotbekelpconsumers.Additionally,whilefewer Idotea individualswerecollected,theyweremuchlarger,upto39mminlength(Morrisetal.

1980)comparedtotheaverageamphipod,approximately23mminlength(Coyer1984).

Withasizedifferenceofthismagnitude,thesparsepopulationof Idotea mayactually consumemorekelpthantherelativelydensepopulationofamphipods.

Itispossiblethatdifferentspeciesorevensizeclassesofamphipodshavedifferent verticaldistributionswithinthekelpforestandthatthoseinthetopdepthconsumemore kelp.Vastdifferencesinmodesofeatingandlifestylesexistbetweengammarid amphipodspecies.Someconsumetheirmacrophytehostandothersdonot(Hayetal.

1987,Duffy1990,Brawley1992,Pooreetal.2008,Farlinetal.2010).Thetube

39 buildingamphipodsofthegenus Perampithoe (Cerdaetal.2010)areknown toeatkelp

(Jones1971,Cerdaetal.2009),howeversomeoftheotherspeciesarelikelytobe

epiphyteconsumers(Farlinetal.2010).Additionally,Coyer(1984)notedthatlarger

individualswerepresentinthecanopyandfoundseveralamphipodspecies, Hyale frequens and Perampithoe plea ,thattendedtoresideintheuppercanopyratherthanat

deeperdepths.Thesespeciesarefromgeneraknowntoconsumekelp(Farlinetal.

2010).JorgensonandChristie(2003)describeddifferentmesograzerspecies

compositionsbetweendifferentdepthsalongthethalliinNorwegiankelpbedsand

suggestthatlocalfactorsofcomplexityandlongevityofthehoststronglyinfluencethe

compositionoftheepifaunacommunity.Suchdifferencescouldseparatethose

amphipodsthatactivelyconsumekelpandthosethatdonot,leadingtogreateramphipod

grazingdamageintheupperdepthrangeofthekelpcanopy.

Finally,itislikelythatthepresenceoffishesstronglyaffectsratesofmesograzer

consumption.Fewfisheswerevisuallyobservedinthetopwhilemanymorewere presentinthemidandbottomregions(pers.obs.),apatternalsonotedinotherCalifornia

kelpbeds(Limbaugh1955,Coyer1984).Microcarnivorousfishesreducemesograzer

abundances,movement,andconsumptioninmarinecommunities(Nelson1979,Duffy

andHay2000,DavenportandAnderson2007,PerezMatusandShima2010).Ofthe

fishesknowntoconsumemesograzers(Quast1971,BrayandEbeling1975,Bernstein

andJung1979),senoritas, Oxyjulis californica ,wereabundantatthissitealongwith juvenilekelpbass, Paralabrax clathratus toalesserextent(pers.obs.).Pertheextensive

surveysofkelpassociatedfishesalongthePacificcoastofNorthAmericaboththese

40 speciestendtoresidewithinkelpstipesbutarenotcommonintheuppercanopy

(Stephensetal.2006).Itispossiblethatevenwithhighamphipodabundancesinthemid region,theriskofpredationmaybetoohighforactiveforagingbyamphipods.Thereare manyfactorsthatchangewithincreaseddepthinakelpforest,suchasreducedirradiance

(Arkemaetal.2009),reducednumbersofblades(Jacksonetal.1985),increasedageof theblades(North1971),andreducedflowspeed(Bertnessetal.2001)thatmaydirectly orindirectlyinfluencemesograzerconsumptionrates.However,Iexpectthepresenceof predatoryfishestostronglyimpacttheabilityofmesograzerstoactivelyconsumekelp.

Thepresenceof Membranipora mayalsoplayaroleinmediatinggrazingby

mesograzers.Ifoundsupportforpreviousfindingsthat Membranipora reducesdamage

frommesograzersonkelp(Bryson,Ch.1).Dependingongrazeridentity, Membranipora

candetergrazing(for Perampithoe humeralis , Idotea ,andthesnails Lacuna unifasciata and Norrisia norrisi ,BrysonCh.1)orpromotegrazing(forthefish Oxyjulis californica ,

BernsteinandJung1979,seaurchins,WahlandHay1995,kelpcrabs,BrysonCh.1).

Since Membranipora iscommon(WoollacottandNorth1971)andoftendensely

abundant(Jones1971,Harvelletal.1990,ChessandHobson1997)inkelpforestsalong

thecoastofCalifornia,itmayregularlyinteractwithmesograzerstoreducetheir

consumptionofkelp.

Whethernaturalabundancesofmesograzersregularlyinfluencehostgrowthandsurvival

islargelyunknown.InAustralianalgalbeds,Pooreetal.(2009),usingexperimental

removalviapesticides,foundthattheassociatedamphipodsdidnotaffectthegrowthrate

41 ofthebrownalga Sargassum linearifolium.Theauthorsconcludedthatgrazingpressure bytheamphipodswaslowenoughtohavenodetectableeffectsonthehostgrowthrate.

Whetherthisresultcanbegeneralizedtootheralgalbedsisunknown.Ifoundgrazing damageonkelp,butonlyasmallportionofthebladewaslosttograzingbymesograzers.

Similarly,DavenportandAnderson(2007)reportedapproximately1.0%oftheblade consumedoveraoneandhalfmonthtimeperiodwithnaturallevelsofmesograzers present.However,evenmodestlevelsofgrazingcanimpactkelpifgrazingtargets importantstructuresofthealga(Dugginsetal.2001,BrackenandStachowicz2007).

Thekelpbladesinthetopdeptharemorephotosyntheticallyactiveandcontributemore toalgalproductionthanbladesatdeeperdepths(North1971,ColomboPallottaetal.

2006).Damagetothesebladescoulddisproportionatelyaffectthealga.Additionally,

Cerdaetal.(2009)demonstrateddefensivegrowthstrategiesin Macrocystis integrifolia whengrazedbyamphipodsindicatinganevolvedresponsetosuchgrazing.Whileitis unclearifthelevelofgrazingIobservedrepresentsasizableimpact,furtherstudyis neededtounderstandhowthekelpassociatedmesograzersinfluencetheirhost.

42 43

Fig. 1 Membranipora membranacea coloniesonakelpblade.

43

16 1 a p = 0.014 b p = 0.0009 14 0.8 12

10 0.6 /blade 8

44 0.4

6 Idotea

Amphipods/blade 4 0.2 2

0 0 Top Mid Top Mid Fig. 2. Abundanceof a.amphipodsand b. Idotea resecata (individuals/blade)collectedfromtwodepthstrata (Top,n=10,Midn=11)withinthekelpcanopy.Barsrepresentmean±SE.Amphipoddatawerelog transformedandanalyzedwithttestand Idotea datawereanalyzedbyaWilcoxonranksumtest.Note differentscales.

44

Kelp Collection Survey In Situ Survey 20 20 Membranipora cover p < 0.0001 a b depth, p < 0.0001 category n = 12 Low n = 10 15 15 Med High

45 10 10 cover, p = 0.068

n = 12 Grazingcounts/blade scar Grazing scar counts/blade Grazingscar n = 6 5 5 n = 11 n = 10 n = 14 n = 16 n = 2 0 0 Top Mid Top Mid

Fig. 3 Differencesingrazingscarcountsperbladebetweendepthstrata.Barsrepresentmean±SE.a.thekelpcollection survey.Dataanalyzedbyatwosidedttestafterasquareroottransformation. b. In Situ survey.Depthcomparisonanalyzed byaWilcoxonranksumtest,andgrazingscarcountsbetweenbladeswithdifferentlevelsof Membranipora comparedbya onewayANOVAaftersquareroottransformationofthedata.

45 REFERENCES Arkema,K.K.,D.C.Reed,andS.C.Schroeter.2009.Directandindirecteffectsofgiant kelpdeterminebenthiccommunitystructureanddynamics.Ecology 90 :3126 3137.

Babcock,R.C.,S.Kelly,N.T.Shears,J.W.Walker,andT.J.Willis.1999.Changesin communitystructureintemperatemarinereserves.MarineEcologyProgress Series 189 :125134.

Bernstein,B.B.,andN.Jung.1979.SelectivePressuresandCoevolutioninakelp canopycommunityinsouthernCalifornia.EcologicalMonographs 49 :335355.

Bertness,M.,S.D.Gaines,andM.E.Hay.2001.MarineCommunityEcology.Sinauer Associates,Inc.,Sunderland,MA.

Bracken,M.E.S.,andJ.J.Stachowicz.2007.Topdownmodificationofbottomup processes:selectivegrazingreducesmacroalgalnitrogenuptake.MarineEcology ProgressSeries 330 :7582.

Brawley,S.1992.Mesoherbivores.Pages235263 in D.M.John,S.J.Hawkins,andJ. H.Price,editors.Plantanimalinteractionsinthemarinebenthos.Publishedfor theSystematicsAssociationbyClarendonPress;OxfordUniversityPress, Oxford;Oxford;NewYork.

Brawley,S.H.,andW.H.Adey.1981.Theeffectofmicrograzersonalgalcommunity structureinacoralreefmicrocosm.MarineBiology 61 :167.

Bray,R.N.,andA.W.Ebeling.1975.Food,Activity,AndHabitatOf3PickerType MicrocarnivorousFishesInKelpForestsOffSantaBarbara,California.Fishery Bulletin 73 :815829.

Cerda,O.,I.A.Hinojosa,andM.Thiel.2010.NestBuildingBehaviorbytheAmphipod Peramphithoe femorata (Kroyer)ontheKelpMacrocystispyrifera(Linnaeus)C. AgardhFromNorthernCentralChile.BiologicalBulletin 218 :248258.

Cerda,O.,U.Karsten,E.Rothausler,F.Tala,andM.Thiel.2009.Compensatorygrowth ofthekelpMacrocystisintegrifolia(Phaeophyceae,Laminariales)againstgrazing

46 ofPeramphithoefemorata(,)innortherncentralChile. JournalOfExperimentalMarineBiologyAndEcology377 :6167.

Chess,J.R.,andE.S.Hobson.1997.BenthicInvertebratesoffoursouthernCalifornia marinehabitatspriortoonsetofoceanwarmingin1976,withlistsoffish predators.NOAATechnicalMemorandumNMFS:8388.

Christie,H.,K.M.Norderhaug,andS.Fredriksen.2009.Macrophytesashabitatfor fauna.MarineEcologyProgressSeries 396 :221233.

ColomboPallotta,M.F.,E.GarciaMendoza,andL.B.Ladah.2006.Photosynthetic performance,lightabsorption,andpigmentcompositionofMacrocystispyrifera (Laminariales,Phaeophyceae)bladesfromdifferentdepths.JournalOfPhycology 42 :12251234.

Coyer,J.A.1984.Theinvertebrateassemblageassociatedwiththegiantkelp, Macrocystispyrifera,atSantaCatalinaIsland,California:Ageneraldescription withemphasisonamphipods,copepods,mysids,andshrimp.FisheriesBulletin 82 :5566.

Davenport,A.C.,andT.W.Anderson.2007.PositiveIndirectEffectsofReefFisheson KelpPerformance:TheImportanceofMesograzers.Ecology 88 :15481561.

Duffy,J.E.1990.AmphipodsOnSeaweedsPartnersOrPests.Oecologia 83 :267276.

Duffy,J.E.,andA.M.Harvilicz.2001.Speciesspecificimpactsofgrazing,amphipods inaneelgrassbedcommunity.MarineEcologyProgressSeries 223 :201211.

Duffy,J.E.,andM.E.Hay.2000.Strongimpactsofgrazingamphipodsonthe organizationofabenthiccommunity.EcologicalMonographs 70 :237263.

Duggins,D.,J.E.Eckman,C.E.Siddon,andT.Klinger.2001.Interactiverolesof mesograzersandcurrentflowinsurvivalofkelps.MarineEcologyProgress Series 223 :143155.

Estes,J.A.,andJ.F.Palmisano.1974.SeaOttersTheirRoleInStructuringNearshore Communities.Science 185 :10581060.

47 Farlin,J.P.,L.S.Lewis,T.W.Anderson,andC.T.Lai.2010.Functionaldiversityin amphipodsrevealedbystableisotopesinaneelgrassecosystem.MarineEcology ProgressSeries 420 :277281.

Graham,M.H.2002.Prolongedreproductiveconsequencesofshorttermbiomasslossin seaweeds.MarineBiology 140 :901911.

Graham,M.H.2004.Effectsoflocaldeforestationonthediversityandstructureof southernCaliforniagiantkelpforestfoodwebs.Ecosystems 7:341357.

Harvell,C.D.,H.Caswell,andP.Simpson.1990.Densityeffectsinacolonial monoculture:experimentalstudieswithamarinebryozoan( Membranipora membranacea L.).Oecologia 82 :227237.

Hay,M.E.,J.E.Duffy,andC.A.Pfister.1987.ChemicalDefenseAgainstDifferent MarineHerbivoresAreAmphipodsInsectEquivalents.Ecology 68 :15671580.

Hay,M.E.,andW.Fenical.1988.MarinePlantHerbivoreInteractionsTheEcologyOf ChemicalDefense.AnnualReviewOfEcologyAndSystematics 19 :111145.

Heck,K.L.,andJ.F.Valentine.2006.Plantherbivoreinteractionsinseagrassmeadows. JournalOfExperimentalMarineBiologyAndEcology330 :420436.

Heck,K.L.,andJ.F.Valentine.2007.Theprimacyoftopdowneffectsinshallow benthicecosystems.EstuariesAndCoasts 30 :371381.

Hobday,A.J.2000.Persistenceandtransportoffaunaondriftingkelp(Macrocystis pyrifera(L.)C.Agardh)raftsintheSouthernCaliforniaBight.JournalOf ExperimentalMarineBiologyAndEcology 253 :7596.

Hughes,T.P.1994.Catastrophes,PhaseShifts,AndLargeScaleDegradationOfA CaribbeanCoralReef.Science 265 :15471551.

Jackson,G.A.,D.E.James,andW.J.North.1985.MorphologicalRelationshipsAmong FrondsOfGiantKelpMacrocystisPyriferaOffLaJolla,California.Marine EcologyProgressSeries 26 :261270.

48 Jones,L.G.1965.CanopygrazingatsouthernPointLoma.W.M.KeckLaboratoryof EnvironmentalHealthandEngineering,CaliforniaInstituteofTechnology, Pasadena,California.

Jones,L.G.1971.Studiesonselectedsmallherbivorousinvertebratesinhabiting Macrocystis canopiesandholdfastsinsouthernCaliforniakelpbeds.Pages343 368 in W.J.North,editor.TheBiologyofGiantKelpBeds(Macrocystis)in California.NovaHedwigia,Lehre.

Jorgensen,N.M.,andH.Christie.2003.Diurnal,horizontalandverticaldispersalof kelpassociatedfauna.Hydrobiologia 503 :6976.

Kushner,D.J.,D.Lerma,J.Mondragon,andJ.Morgan.1995.KelpForestMonitoring 1995AnnualReport.TechnicalReportCHIS9701,NationalParkService, ChannelIslandsNationalPark.

Leighton,D.L.1971.GrazingactivitiesofbenthicinvertebratesinsouthernCalifornia kelpbeds.Pages421453 in W.J.North,editor.TheBiologyofGiantKelpBeds. NovaHedwigia.

Light,S.F.1975.Light'smanual:intertidalinvertebratesofthecentralCaliforniacoast, 3rdedition.UniversityofCaliforniaPress,Berkeley.

Limbaugh,C.1955.Fishlifeinthekelpbedsandtheeffectsofkelpharvesting. in .

Lubchenco,J.,andS.D.Gaines.1981.Aunifiedapproachtomarineplantherbivore interactions.I.Populationsandcommunities.AnnualReviewsofEcology, Evolution,andSystematics 12 :405437.

Morris,R.H.,D.P.Abbott,andE.C.Haderlie.1980.IntertidalInvertebratesof California.StanfordUniversityPress,Stanford,California.

Nelson,W.G.1979.ExperimentalStudiesOfSelectivePredationOnAmphipods ConsequencesForAmphipodDistributionAndAbundance.JournalOf ExperimentalMarineBiologyAndEcology 38 :225245.

North,W.J.1971.IntroductionandBackground.Pages196 in W.J.North,editor.The BiologyofGiantKelpBeds.NovaHedwigia.

49 North,W.J.1987.Biologyofthe Macrocystis resourceinNorthAmerica.Pages265311 in M.S.Doty,J.F.Caddy,andB.Santelices,editors.CaseStudiesofSeven CommercialSeaweedResources.FAOFish.Tech.

Parker,B.C.1971.TheInternalStructureof Macrocystis .Pages99121 in W.J.North, editor.TheBiologyofGiantKelpBeds.NovaHedwigia.

PerezMatus,A.,andJ.S.Shima.2010.Densityandtraitmediatedeffectsoffish predatorsonamphipodgrazers:potentialindirectbenefitsforthegiantkelp Macrocystispyrifera.MarineEcologyProgressSeries 417 :151U168.

Poore,A.G.B.,A.H.Campbell,andP.D.Steinberg.2009.Naturaldensitiesof mesograzersfailtolimitgrowthofmacroalgaeortheirepiphytesinatemperate algalbed.JournalOfEcology 97 :164175.

Poore,A.G.B.,N.A.Hill,andE.E.Sotka.2008.Phylogeneticandgeographicvariation inhostbreadthandcompositionbyherbivorousamphipodsinthefamily Ampithoidae.Evolution 62 :2138.

Quast,J.C.1971.Observationsonthefoodofthekelpbedfishes.Pages541579 in W. J.North,editor.TheBiologyofGiantKelpBeds( Macrocystis )inCalifornia. NovaHedwigia,Lehre.

Sala,E.,andM.H.Graham.2002.Communitywidedistributionofpredatorprey interactionstrengthinkelpforests.ProceedingsoftheNationalAcademyof Sciences 99 :36783683.

Stephens,J.S.,R.J.Larson,andD.J.Pondella.2006.TheEcologyofMarineFishes: CaliforniaandAdjacentWaters.

Tegner,M.J.,andP.K.Dayton.1987.ElNiñoEffectsonSouthernCaliforniaKelp ForestCommunities.AdvancesInEcologicalResearch Volume 17 :243279.

Wahl,M.,andM.E.Hay.1995.Associationalresistanceandshareddoom:effectsof epibiosisonherbivory.Oecologia 102 :329340.

Woollacott,R.M.,andW.J.North.1971.BryozoansofCaliforniaandNorthernMexico kelpbeds.Pages455479 in W.J.North,editor.TheBiologyofGiantKelpBeds. NovaHedwigia.

50 III Facilitation of secondary succession in an ultrahypersaline salt marsh in

southern California

ABSTRACT

Facilitationbyearlycolonizersisanimportantmechanismpromotingsecondarysuccession insaltmarshes.Thesesalttolerantpioneersshadebarepatchesandameliorateharshsoil salinities,therebypromotingthegrowthoflesstolerantspecies.However,thisprocesshas notbeenevaluatedinwarmclimatemarsheswherepositiveinteractionsbetweenhighlysalt tolerantspeciesmayberare.Usingmanipulationsofthepresenceoftheearlycolonizing halophyte, Batis maritima ,Iexaminedwhetherthisspeciesfacilitatedsecondarysuccession inexperimentallyclearedpatchesinamediterraneantypeclimatesaltmarsh(southern

California).Only4%coverof B. maritima waspresentintheexperimentalplotsinwhich B. maritima wasallowedtogrow,yettheseplotshadsignificantlymorecoverofmarshmatrix vegetation,27%comparedto14%inthetreatmentlacking B. maritima .Soilsalinity increasedinallplotsoverthegrowingseason(springthroughfall),thoughthisincreasewas lessinthe B. maritima present(55±4ppt)thanin B. maritima clipped(72ppt±6) treatment.Themostabundantcolonizerswere Salicornia pacifica and Arthrocnemum subterminale inbothtreatments.Ifoundnoevidencethat B. maritima promotedparticular speciesasindicatedbynonsignificantdifferencesinspeciesrichness,diversity,evenness, andthecompositionofrecolonizingspeciesbetweentreatments.Mostimportantly, facilitationwasseentopromoterecoveryofsalttolerantplantsunderseveresoilsalinities typicalofsaltmarshesexposedtomediterraneanclimaticconditions.

51 INTRODUCTION

TheStressGradientHypothesis(SGH),originallydescribedbyBertnessandCallaway

(1994),predictsanincreaseoffacilitativeinteractionswhenabioticstressiselevated,yet recentworkquestionsthegeneralityofthispredictionunderconditionsofextremeabiotic stress(Brookeretal.2008,Maestreetal.2009).Undermoderatelyelevatedstress(relative tolowlevels)thebenefitsofneighborscanoutweighthenegativeeffectsofcompetitionif theassociationamelioratesstressfulconditions(reviewedinStachowicz2001,Brunoetal.

2003,Brookeretal.2008,Maestreetal.2009,HolmgrenandScheffer2010).Numerous studieshavedocumentedspeciesspeciesinteractionsshiftingfromcompetitivetofacilitative whenabioticstresslevelsareelevated(i.e.Callaway1994,BertnessandLeonard1997,

Leslie2005,Penningsetal.2005).However,recentresearchfailedtofindfacilitationwhen abioticstressisextremelyhigh(AbbottandHollenberg1997,TielborgerandKadmon2000,

Penningsetal.2003,MaestreandCortina2004).InarecentreviewoftheSGH,Holmgren andScheffer(2010)suggestedthatfacilitationsmaybelesscommonandlessimportantin habitatspredictablycharacterizedbyextremelyhighlevelsofabioticstressorsbecausethe residentspeciesareadaptedtothelocalconditionsandcanthrivewithoutamelioration.If andwhenfacilitationoccursinverystressfulhabitatsneedsfurtherstudy.

Saltmarshplantcommunitiesareidealtostudytherelationshipbetweenstressand facilitationbecausetheyarecharacterizedbysoilsalinitygradients(Zedler1982,Vinceand

Snow1984,BertnessandEllison1987,Callawayetal.1990,Albertietal.2010)that stronglyinfluencethespatialarrangementofplantspecies(PenningsandCallaway1992,

BertnessandPennings2002,GreerandStow2003,Wetzeletal.2004,Penningsetal.2005)

52 andaffectthedirectionofspeciesinteractions(Bertness1991,BertnessandShumway1993,

Penningsetal.2005).Severalstudieshavedocumentedbeneficialassociationsbetween tolerantandintolerantplantspeciesinareasofthesaltmarshwithelevatedsoilsalinities, thoughinteractionsbetweenthesamespeciesarecompetitiveorneutralinregionswith lowersalinity(Bertness1991,Penningsetal.2005).Inthisstudy,Iexaminedwhether facilitationoccurswithinasalttolerantplantcommunitylivinginultrahypersalinesoils characteristicofsaltmarshesinmediterraneantypeclimates.

Stressamelioratingfacilitationmaybeofkeyimportanceduringsecondarysuccessioninsalt marshes.Secondarysuccessionoccursfollowinganydisturbancesuchaswrackburial

(Breweretal.1998),icescouring(EwanchukandBertness2003),orattackbyparasitic plants(PenningsandCallaway1996)thatopensrelativelysmallbarepatchesinmarsh vegetation.DisturbancegeneratedbarepatchescommonlyoccurinthenortheasternUnited

States(Breweretal.1998),andrecoveryratesdependonsalinityregime(Crainetal.2008).

Thisphenomenonislessstudiedinwestcoastmarshesandmaybelesscommoninsouthern

Californiabecauselowerlatitudemarshesdonotexperiencewinterdieoffsandassociated heavyaccumulationsofwrack(PenningsandRichards1998).However,inespeciallystormy yearsthickmatsofsmotheringwrackaccumulatedontothesaltmarshplain(pers.obs.),and

PenningsandCallaway(1996)documentedthefrequentoccurrenceofpatchescreatedby mortalityfollowingattacksbyparasiticplants.Ifvegetationisremoved,resultingpatches havehighersoilsalinitiesthanthesurroundingvegetatedmarshasdemonstratedinbotheast andwestcoastmarshes(Bertness1991,Shumway1995,WhitcraftandLevin2007).Higher salinitieshavebeenattributedtohigherratesofevapotranspiration(Zedler1982,Pennings

53 andBertness1999),whichcanhinderbarepatchrecovery(Bertness1991,Bertnessetal.

1992).However,recoverycanbefacilitatedbyplantsthattoleratehighsoilsalinitiesandact asnurseplantsbyprovidingshade,reducingevaporationandhencesoilssalinities,and speedingestablishmentoflesstolerantspecies(BertnessandShumway1993,Callaway

1994).Whetherfacilitationofsecondarysuccessionofbarepatchesinultrahypersaline conditionsoccurshasneverbeenstudied.

Saltmarshesinmediterraneantypeclimatesprovideanidealopportunitytoexpandour understandingoftherelationshipbetweenfacilitationandstresstoleranceduringsecondary succession.Manyacknowledgethatregionalclimatecanaffectthefrequencyoffacilitations

(BertnessandEwanchuk2002,Penningsetal.2003).Duetohotterclimates,lowerlatitude marsheshavestrikinglyhighersoilsalinitiesthansaltmarshesinthenortheasternUnited

States(BertnessandPennings2002)whichistrueinsouthernCaliforniasaltmarshes experiencingamediterraneantypeclimatewithhot,drysummers(Zedler1982,Callawayet al.1990).Callaway(1990)documentedultrahypersalinesoils,40100pptundervegetation intheuppermarshwhichissubstantiallysaltierthansoilsintheuppermarshofaNew

Englandsaltmarsh,1418pptundervegetation(Bertness1991).And,ingeneral,warmer climatemarshesarecomposedofmoresalttolerantplants(KuhnandZedler1997,Pennings andBertness1999)thatmaynotbenefitfromameliorators.Indeed,Penningsetal.(2003) foundfacilitationrareamongstthesalttolerantspeciesinthewarmclimateofthe southeasternUnitedStates.Yet,evensalttolerantspeciesaresensitivetosalinity.Pennings andRichards(1998)foundwrackdepositiontofacilitategrowthofmarshvegetationinpart duetomoderationofsalinity.InsouthernCalifornia,Zedler(1996)notedthattolerantmarsh

54 plantsestablishmoreeasilyduringbriefreductionsofextremesalinityfollowingfreshwater input.ThereforeIpredictthatthepresenceofasalinityreducingneighborwithweak competitiveabilitiesmaybebeneficialeventothesalttolerantinhabitantsoftheupper marshinsouthernCalifornia.

Iexaminedwhetherthepresenceoftheearlycolonizinghalophyte, B. maritima,promoted

theinitialphaseofsecondarysuccessionintheupperzonesofahypersalinemediterranean

typesaltmarshinCalifornia,USA.Ihypothesized: 1. followingdisturbance, Batis maritima

facilitatesrecolonizationofvegetationintobarepatchesoftheuppermarsh; 2.facilitationby

Batis maritima isassociatedwithlowersoilsalinities;and 3. Batis maritima

disproportionatelypromotesparticularspeciesduringrecovery.Toaddressthesehypotheses,

Imanipulatedthepresenceof B.maritima inartificiallyclearedplotsandmonitoredregrowth

rates,soilsalinities,andspeciescompositionduringvegetativerecovery.

METHODS

Site and Species Description

TheexperimentwasconductedatMuguLagoon,87kmwestofLosAngeles,CA,USA

(Fig.1).LocatedontheNavalBaseVenturaCounty,PointMugu,thesaltmarshis597

hectares,relativelylargecomparedtoothersouthernCaliforniasaltmarshes(Onuf1987).

Theexperimenttookplaceneartheupperlimitofthefullyvegetatedmarsh(Fig.1),or

high Salicornia zone(sensuPenningsandCallaway1992),withinthetidalreachofhigh

springtideswithinundationat≈5days/mo(pers.obs.).Observedtidalfloodingagreed

withthatobservedbyCallaway(1990)inasimilarlyvegetatedzoneofanearbymarsh.

55 Thesubshrub, Frankenia salina andthesucculent Salicornia pacifica werethespatially dominantspeciesofthemarshmatrixvegetationatthiselevation. Batis maritima

(Bataceae)wasalsopresentinthiszone. B. maritima isadecumbent(withstemslying ontheground),salttolerantsucculentfoundinmidandhighintertidalzonesthroughout itsrange(Lonardetal.2011)andcommontosaltmarshesofthearea(Zedler1982).As anearlycolonizingspecies(MilbrandtandTinsley2006,Lonardetal.2011), B. maritima quicklyexpandsintoopenareas(Zedler1982,PenningsandRichards1998).

Toevaluatewhethertherearefacilitativeeffectsof B. maritima ontheearlyphaseof secondarysuccession,Iconductedanexperimentthatvariedregrowthof B. maritima into clearedplots.Imonitoredtherespectiveratesofrevegetationduringthegrowingseason fromApril2008toAugust2008.Experimentalplotswithnaturallyoccurring B. maritima wererandomlychosenusingatableofrandomcompassheadingsandnumbers ofwalkedsteps.Noplotswereclosertoeachotherthan2mandmaximumdistance betweenneighboringplotswas10m.Acircularringapproximately0.25m 2wasplaced oneachplotandpercentcoverofplantspecieswithintheringwasmeasuredusingthe pointinterceptmethod(rectangularquadratoveracirculararea,43points±2SE).To determineifthereweredifferencesinpreexperimentspeciescomposition,Iused estimatesofpercentcoverpriortoclearingtocalculatetheproportioneachspecies comprisedofthetotalvegetation.AMANOVAevaluatedifproportionalspecies compositionpriortoexperimentalclearingdifferedbetweenthe B. maritima presentand

B. maritima clippedtreatments.

56 Fromeachplot,allabovegroundandnearsurface(depthof12cm)belowground vegetationwasgentlyremovedbyhandorwithahandshovel.Fourmarkerswereplaced aroundeachperimetertodesignatetheoriginalareacleared.Fiveclearedpatcheswere randomlyassignedtoeachof2treatments:B. maritima permittedtorecolonizethe clearedplot( B. maritima present)andB. maritima clippedmonthlytoprevent B.

maritima recolonization( B. maritima clipped).Imonitoredrevegetationratesinplots

withdigitalanalysisofphotosusingNIHImageJsoftware.Alevel,overheadphotowas

takenofeachplotatthebeginningandendofthegrowingseason.Theregrowthratein

eachplotwascalculatedbytotalingthepercentcoverofeachmatrixspeciespresent,

excludingthemanipulated B. maritima ,atthefinaltimepoint.Thedifferenceinthe

regrowthratesbetweentreatmentswasstatisticallyanalyzedusingaonesidedStudent’s

ttestsinceIexpectedfasterratesofregrowthwhen B. maritima waspresent.

Toquantifyporewatersalinity,soilcores(5cmdeepand2cmindiameter)werecollected

nearthecenteroftheplotoninitialandfinaldates.Soilsampleswerestoredinsealed plasticbags,putoniceinacoolerduringtransportationtoalab,andplacedinafreezer

untilprocessed.Frozensoilswereweighed,driedinadryingoven,reweighedto

determinewatercontent,andgroundtoafinepowderwithamortarandpestle.Soil

subsamples(5g)wereplacedinabeakerwith20mlofdistilleddeionizedwater,stirred,

andallowedtoextractfor30minutes.Salinityofthesupernatantwasmeasuredwitha

refractometerandoriginalporewatersalinitycalculatedfortheinitialamountofwater presentinthecore.Becausesoilsalinityattheendofthegrowingseasonishighly

dependentoninitialsoilsalinitywecalculatedthedifferenceinsoilsalinityineach

57 replicateandemployedaonesidedttesttodeterminewhethertheincreaseinsoil salinitydifferedbetweenthe B. maritima presentand B. maritima clippedtreatments.

Finaltotalsoilsalinitiesofbothtreatmentsarealsopresented.

Toevaluateifthepresenceof B. maritima alteredthepatternofrecoverybymatrix vegetation,Ideterminedwhetherproportionalspeciescompositiondifferedbetweenthe twotreatmentsattheendoftheexperiment.Icalculatedtheproportionoftotal vegetation,notincluding B. maritima ,representedbyeachspeciesineachtreatment

throughimageanalysis(seeabove)andconductedaMANOVAtodetectanydifferences betweentreatments.Additionally,excluding B. maritima ,Icalculatedspeciesrichness,

Shannon’sdiversityindex(H),andspeciesevennessonthefinaldate.Foreachmeasure,

IexaminedtreatmentdifferencesbyWilcoxonranksumtestsbecausethedatadidnotfit

theassumptionsofattest.

RESULTS

Priortoclearing, F. salina and S. pacifica dominatedtheplots,makingup73%ofallthe

vegetation(Fig.2).Initialspeciescompositiondidnotdifferbetweentreatments(p=

0.70,MANOVA).Overallmeansoilsalinityattheonsetoftheexperimentwas59ppt±

5(±SE)anddidnotdiffersignificantlybetweentreatments(p=0.82,twosidedttest).

Thepresenceof B. maritima promotedgrowthofvegetation(Fig.3).Inplotswith B.

maritima ,percentcoverbymatrixspecieswasalmosttwicethatinthe B. maritima clippedplots(Fig.3a).Anadditional4%±1.3%(±SE)oftheplotinthe B. maritima

58 presentplotswascoveredby B. maritima (Fig.3b).Noneoftheencroaching B. maritima

stemswererootedintheplots,rathertheyweredecumbentonbaresoil.Inplotsofboth

treatments,almostallplantcoverappearedtoresultfromlocalvegetativegrowth.Only

Cressa truxillensis ,accountingfor1.5%±1%(±SE)ofthefinalvegetation,appearedto

growfromseeds.

Increasesinsoilsalinitywerelowerwhen B. maritimawaspresent(Fig.4).Overthe

courseoftheseason,soilsbecamesaltierunderbothtreatments,113±7ppt(±SE)for B.

maritima presentand132±10ppt(±SE)for B. maritima clippedatfinalsampling.In B.

maritima clippedplots,theincreaseinsoilsalinityoverthecourseoftheexperimentwas

30%higherthaninplotswithB. maritima present(Fig.4).

Ididnotfindevidencethatthepresenceof B. maritima promotedparticularspecies

(Fig.5).Speciescompositiondidnotdiffersignificantlybetweentreatments(p=0.93

MANOVA). S. pacifica and A. subterminale werethemostandsecondmostcommon

speciesforbothtreatmentsattheseasonendsampling.Speciesrichness(p=0.41),

Shannon’sDiversityIndex(H)(p=0.92),orevenness(p=0.92)alsodidnotdiffer

significantlybetweentreatments.

DISCUSSION

Facilitationwasaprominentmechanismacceleratingsecondarysuccessioninthis

extremelyhypersalinemarsh.Thepresenceof B. maritima promotedmorerapid

recolonizationofplantspecies,presumablybyreducingsoilsalinitiesintheexperimental

59 plots.TwostudiesinthenortheasternUnitedStatesdemonstratedsimilarfacilitationin theprocessofbarepatchclosure(Bertness1991,BertnessandShumway1993).Inthe uppermarsh,BertnessandShumway(1993)reportedbarepatchclosureratesinthe presenceoffacilitatingneighborsofapproximately50%coveraftertwogrowingseasons, whichissimilartothe31%coverIobservedafteronegrowingseasonwith B. maritima .

Althoughrecoveryrateswerecomparable,saltmarshesinthenortheastexperiencea milderandcoolerclimate.Inthesemarshesthereislessevaporationfromsoilsand thereforefarlesssalinesoils,30pptinbarepatches(Bertness1991,Bertnessetal.1992), thanIobservedintheuppermarshatMuguLagoon.Whilerecentempiricalfindings

(Penningsetal.2003)andexpansionsoftheStressGradientHypothesisindicatethat extremelyhighlevelsofstressorsshouldproducelessandweakerfacilitationsinstress tolerantcommunities(Brookeretal.2008,HolmgrenandScheffer2010),myexperiment demonstratedthatsalinitystressinducedfacilitationcanbeanimportantprocessduring secondarysuccessionwithintheplantcommunitiesofmediterraneanclimatemarshes.

Asmallamountof B. maritima playedaveryeffectiveroleinfacilitatingtheearlyphase ofsecondarysuccession.Only4%oftheplotwascoveredby B. maritima atfinal

sampling,yetmorematrixvegetationcoverandlowersoilsalinitieswerefoundinthese plots.Incontrast,duringsecondarysuccessioninthenortheast,thefacilitatorspecies

Distichlis spicata coveredmorethan50%oftheplotinthefirstyearofrecovery

(Bertness1991).Mechanismsthathavebeenposedinsuchfacilitationsinclude

sequesteringofsaltsandshadeprovision(Bertnessetal.1992).Inmystudy,biological

compartmentalizingofsaltionswasunlikelysinceB. maritima wasnotrootedinthe

60 clearedplots.Shadeprovision,whichhasbeendemonstratedelsewhere(Bertnessetal.

1992,WhitcraftandLevin2007),isamorelikelymeansofloweringsoilsalinities.

However,since B. maritima doesnotappeartocastshadebroadly(Penningsand

Richards1998,pers.obs.)theeffectof B. maritima onsoilsalinityisprobablyindirect.

Whilethedense,butsmallprostratematsappearedtoheavilyshadethesoilsdirectly

underneath,reducingsalinityby66pptdirectlybelow B. maritima inotherlocations

(Bryson,inprep),thishighlylocalizedsalinityreductionwouldnotbedetectedbythe

salinitysamplingprotocolemployedinthisstudy.Analternativeexplanationisthat

theseextremelylocalchangesinsoilsalinitypermittedfastergrowthofthelarger,shade

castingplantslike Salicornia pacifica thatcanreducelightatthesoilsurfaceby85%(per

WhitcraftandLevin2007).PenningsandBertness(1999)positedthatafeedbackexists betweensoilsalinityandmatrixvegetationinwarmclimates,viashading,thatreduces

soilsalinitiesandfurtherenablesthegrowthandsurvivalofvegetation.During

secondarysuccession, B. maritima maytriggerthedevelopmentofthisfeedback.

Thepresenceof B. maritima didnotappeartopromoteparticularspecies disproportionately;ratheritappearedthatthelocallyresidentspeciesencroachedfaster when B. maritima waspresent.Thevastmajorityofrevegetationbymatrixspecies resultedfromvegetativegrowth,mostlythroughobservableencroachmentof abovegroundvegetationfromoutsidetheclearedplot(pers.obs.).Mostplantgrowthin hypersalinezonesofsouthernCaliforniamarshesisvegetative(reviewedinZedleretal.

2003).Hypersalinesoilssubstantiallyreduceseedlinggermination(NoeandZedler

2000)andsurvival(Zedleretal.2003).Inthisearlyphaseofrecovery,itappearsthat B.

61 maritima promotedvegetativeexpansionoflocalresidents.Iexpect,then,thatlater

successionalphaseswillapproachcompositionssimilartotheimmediatelylocal

community.

Specificfeaturesof B. maritima mayenablefacilitationathighersoilsalinitiesthanother benefactorspecies.Thenatureoftheparticularspeciesandtypeofstressmayinfluence

whenfacilitationisfunctionalinhighlystressfulhabitats(Michaletetal.2006,Maestre

etal.2009).Clonallyintegratedspecies,like B. maritima ,arethosethatexpandintonew

territorywithrunnersphysicallyconnectedtorootedadults.Idealforearlycolonizers,

thismorphologyallowsrunnerstosharewaterwithphysicallyconnectedportionsinless

extremehabitatswhileinvadingharsh,exposedsoils(Shumway1995,Penningsand

Callaway2000).Also,asadecumbentspecies, B. maritima islikelyapoorcompetitor

forlight.Thereforethecosttobenefitratioofassociatingwith B. maritima maybelow,

andsoevensalttolerantspecieslike S. pacifica and A. subterminale (Penningsand

Callaway1992,KuhnandZedler1997)benefitduringsecondarysuccession.Twoother

studiesdocumentedfacilitationsinwarmclimatemarshes(Callaway1994,Penningset

al.2003)thoughPenningsetal.(2003)foundcompetitionfarmorecommon.However,

inboththesestudiesthebeneficiaryspecieswererelativelysaltintolerant.The propertiesof B. maritima appeartoexpandfacilitationtotolerantspecies.While

facilitationmaybelesscommoninhighlyphysicallystressedregimes,awellsuited benefactorcanfacilitateevenhighlystresstolerantspecies.

62 63

PhotocourtesyoftheUSNavy Fig. 1 LocationandcloseupofMuguLagooninsouthernCalifornia.Experimentsitein theuppermarshi ndicatedwithovalandarrow.

63 60

50

40

30

20

% of totalvegetation cover 10

0 Frank Sal Arth Batis Dist Dead

Fig. 2 .Meanpercentoftotalvegetationcoverofeachspeciespresentpriorto clearing.SpeciesabbreviationsareFrank( Frankenia salina ),Sal( Salicornia pacifica ),Arth,( Arthrocnemum subterminale ),Batis( Batis maritima ),Dist (Distichlis littoralis ),andDead(combineddeadspecies).Barsaremeans±SE.

64 40 40 a p = 0.013 b 35 35

30 30

25 25

20 B.maritima 20

15 15

10 10 %cover of % cover of matrix covermatrix % vegetation of 5 5

0 0 B. maritima present B. maritima clipped B. maritima

Fig. 3 Percentcoverofvegetationatfinalsamplingfora.matrixvegetation, notincluding B.maritima and b. B.maritima alone.Reportedpvaluesfroma ttest.Barsaremeans±SE.

65 160 p = 0.0297, change in salinity 140 Change in salinity Initial salinity 120

100

80

60 Soil(ppt) Salinity

40

20

0 B. maritima present B. maritima clipped

Fig. 4 .Soilsalinitydifferencesbetween B. maritima presentand B. maritima clippedtreatments.Blackbarsareinitialsalinities.Whitebarsstackedontop initialsalinitiesarechangeinsalinityfromtheinitialandfinalsampling. Reportedpvaluefromattestonchangeinsalinitybetweentreatments.Bars aremeans±SE.

66

70

Frank Sal 60 Arth Cressa Dist Dead 50

40

30 % % of vegetationtotal cover 20

10

0 B. maritima present B. maritima clipped

Fig. 5 Finalspeciescomposition.Nodifferencesincomposition betweentreatments(p=0.93,MANOVA).Speciesabbreviations asinFig.2,additionallyCressa( Cressa truxillensis ).Barsare means±SE.

67 REFERENCES

Abbott,I.A.,andG.J.Hollenberg.1997.MarineAlgaeofCalifornia.StanfordUniversityPress, Stanford,CA.

Alberti,J.,A.M.Casariego,P.Daleo,E.Fanjul,B.Silliman,M.Bertness,andO.Iribarne.2010. AbioticstressmediatestopdownandbottomupcontrolinaSouthwesternAtlanticsalt marsh.Oecologia 163 :181191.

Bertness,M.,andS.C.Pennings.2002.Spatialvariationinprocessandpatterninsaltmarsh plantcommunitiesineasternNorthAmerica. in M.P.WeinsteinandD.A.Kreeger, editors.ConceptsandControversiesinTidalMarshEcology.KluwerAcademic Publishers,NewYork.

Bertness,M.D.1991.InterspecificInteractionsamongHighMarshPerennialsinaNewEngland SaltMarsh.Ecology 72 :125137.

Bertness,M.D.,andR.Callaway.1994.Positiveinteractionsincommunities.TrendsinEcology andEvolution 9:191193.

Bertness,M.D.,andA.M.Ellison.1987.DeterminantsOfPatternInANewEnglandSalt MarshPlantCommunity.EcologicalMonographs 57 :129147.

Bertness,M.D.,andP.J.Ewanchuk.2002.Latitudinalandclimatedrivenvariationinthe strengthandnatureofbiologicalinteractionsinNewEnglandsaltmarshes.Oecologia 132 :392401.

Bertness,M.D.,L.Gough,andS.W.Shumway.1992.SaltTolerancesAndTheDistributionOf FugitiveSaltMarshPlants.Ecology 73 :18421851.

Bertness,M.D.,andG.H.Leonard.1997.Theroleofpositiveinteractionsincommunities: lessonsfromintertidalhabitats.Ecology 78 :19761989.

Bertness,M.D.,andS.W.Shumway.1993.Competitionandfacilitationinmarshplants.The AmericanNaturalist 142 :718724.

68 Brewer,J.S.,J.M.Levine,andM.D.Bertness.1998.Interactiveeffectsofelevationandburial withwrackonplantcommunitystructureinsomeRhodeIslandsaltmarshes.JournalOf Ecology 86 :125136.

Brooker,R.W.,F.T.Maestre,R.M.Callaway,C.L.Lortie,L.A.Cavieres,G.Kunstler,P. Liancourt,K.Tielborger,J.M.J.Travis,F.Anthelme,C.Armas,L.Coll,E.Corcket,S. Delzon,E.Forey,Z.Kikvidze,J.Olofsson,F.Pugnaire,C.L.Quiroz,P.Saccone,K. Schiffers,M.Seifan,B.Touzard,andR.Michalet.2008.Facilitationinplant communities:thepast,thepresent,andthefuture.JournalOfEcology 96 :1834.

Bruno,J.F.,J.J.Stachowicz,andM.D.Bertness.2003.Inclusionoffacilitationintoecological theory.TrendsinEcologyandEvolution 18 :119125.

Callaway,R.M.1994.Facilitativeandinterferenceeffectsof Arthrocnemum subterminale on winterannuals.Ecology 75 :681686.

Callaway,R.M.,S.Jones,W.R.Ferren,andA.Parikh.1990.EcologyOfAMediterranean ClimateEstuarineWetlandAtCarpinteria,CaliforniaPlantDistributionsAndSoil SalinityInTheUpperMarsh.CanadianJournalOfBotanyRevueCanadienneDe Botanique 68 :11391146.

Crain,C.M.,L.K.Albertson,andM.D.Bertness.2008.SecondarySuccessionDynamicsIn EstuarineMarshesAcrossLandscapeScaleSalinityGradients.Ecology 89 :28892899.

Ewanchuk,P.J.,andM.D.Bertness.2003.RecoveryofanorthernNewEnglandsaltmarsh plantcommunityfromwintericing.Oecologia 136 :616626.

Greer,K.,andD.Stow.2003.VegetationTypeConversioninLosPeñasquitosLagoon, California:AnExaminationoftheRoleofWatershedUrbnization.Environmental Management 31 :489503.

Holmgren,M.,andM.Scheffer.2010.Strongfacilitationinmildenvironments:thestress gradienthypothesisrevisited.JournalOfEcology 98 :12691275.

Kuhn,N.L.,andJ.B.Zedler.1997.Differentialeffectsofsalinityandsoilsaturationonnative andexoticplantsofacoastalsaltmarsh.Estuaries 20 :391403.

Leslie,H.2005.Positiveintraspecificeffectstrumpnegativeeffectsinhighdensitybarnacle aggregations.Ecology 86 :27162725.

69 Lonard,R.L.,F.W.Judd,andR.Stalter.2011.TheBiologicalFloraofCoastalDunesand Wetlands: Batis maritima C.Linnaeus.JournalofCoastalResearch 27 :441449.

Maestre,F.T.,R.M.Callaway,F.Valladares,andC.J.Lortie.2009.Refiningthestress gradienthypothesisforcompetitionandfacilitationinplantcommunities.JournalOf Ecology 97 :199205.

Maestre,F.T.,andJ.Cortina.2004.Dopositiveinteractionsincreasewithabioticstress?Atest fromasemiaridsteppe.ProceedingsOfTheRoyalSocietyOfLondonSeriesB BiologicalSciences 271 :S331S333.

Michalet,R.,R.W.Brooker,L.A.Cavieres,Z.Kikvidze,C.J.Lortie,F.I.Pugnaire,A. ValienteBanuet,andR.M.Callaway.2006.Dobioticinteractionsshapebothsidesof thehumpedbackmodelofspeciesrichnessinplantcommunities?EcologyLetters 9:767773.

Milbrandt,E.C.,andM.N.Tinsley.2006.Theroleofsaltwort( Batis maritima L .)in regenerationofdegradedmangroveforests.Hydrobiologia 568 :369377.

Noe,G.B.,andJ.B.Zedler.2000.Differentialeffectsoffourabioticfactorsonthegermination ofsaltmarshannuals.AmericanJournalOfBotany 87 :16791692.

Onuf,C.P.1987.TheecologyofMuguLagoon,California:anestuarineprofile.Biol.Reo. 85(7.15),U.S.FishandWildlifeService.

Pennings,S.C.,andM.D.Bertness.1999.UsingLatitudinalVariationtoExamineEffectsof ClimateonCoastalSaltMarshPatternandProcess.CurrentTopicsinWetland Biogeochemistry 3:100111.

Pennings,S.C.,andR.M.Callaway.1992.SaltMarshPlantZonation:TheRelativeImportance ofCompetitionandPhysicalFactors.Ecology 73 :681690.

Pennings,S.C.,andR.M.Callaway.1996.Impactofaparasiticplantonthestructureand dynamicsofsaltmarshvegetation.Ecology 77 :14101419.

Pennings,S.C.,andR.M.Callaway.2000.Theadvantagesofclonalintegrationunderdifferent ecologicalconditions:Acommunitywidetest.Ecology 81 :709716.

70 Pennings,S.C.,M.B.Grant,andM.D.Bertness.2005.Plantzonationinlowlatitudesalt marshes:disentanglingtherolesofflooding,salinityandcompetition.JournalOf Ecology 93 :159167.

Pennings,S.C.,andC.L.Richards.1998.EffectsofWrackBurialinSaltStressedHabitats: BatisMaritimainaSouthwestAtlanticSaltMarsh.Ecography 21 :630638.

Pennings,S.C.,E.R.Selig,L.T.Houser,andM.D.Bertness.2003.Geographicvariationin positiveandnegativeinteractionsamongsaltmarshplants.Ecology 84 :15271538.

Shumway,S.W.1995.PhysiologicalIntegrationAmongClonalRametsDuringInvasionOf DisturbancePatchesInANewEnglandSaltMarsh.AnnalsOfBotany 76 :225233.

Stachowicz,J.J.2001.Mutualism,facilitation,andthestructureofecologicalcommunities. Bioscience 51 :235246.

Tielborger,K.,andR.Kadmon.2000.Temporalenvironmentalvariationtipsthebalance betweenfacilitationandinterferenceindesertplants.Ecology 81 :15441553.

Vince,S.W.,andA.A.Snow.1984.PlantZonationInAnAlaskanSaltMarsh.1.Distribution, AbundanceAndEnvironmentalFactors.JournalOfEcology 72 :651667.

Wetzel,P.R.,W.M.Kitchens,J.M.Brush,andM.L.Dusek.2004.Useofareciprocal transplantstudytomeasuretherateofplantcommunitychangeinatidalmarshalonga salinitygradient.Wetlands 24 :879890.

Whitcraft,C.R.,andL.A.Levin.2007.Regulationofbenthicalgalandanimalcommunitiesby saltmarshplants:Impactofshading.Ecology 88 :904917.

Zedler,J.B.1982.TheecologyofsouthernCaliforniacoastalsaltmarshes:acommunityprofile. FWS/OBS81/54,UnitedStatesFishandWildlifeService.

Zedler,J.B.1996.TidalWetlandRestoration:AscientificPerspectiveandSouthernCalifornia Focus.ReportNo.T038,CaliforniaSeaGrantCollegeSystem,SanDiego.

Zedler,J.B.,H.MorzariaLuna,andK.Ward.2003.Thechallengeofrestoringvegetaionon tidal,hypersalinesubstrates.PlantandSoil 253 :259273.

71 CONCLUSIONSOFTHEDISSERTATION

Ifoundthatpositivespeciesspeciesinteractionsoccurredinresponsetobothbiotic(herbivory) andabiotic(salinity)factors.Associationalresistancesandfacilitationscanprotectprimary spaceholdersofthecommunity(Stachowicz2001).Inakelpforest,acommonepifaunal invertebrate, Membranipora membranacea ,conferredassociationalresistancetoherbivoryby

mesograzers.Inasaltmarsh,Ifoundfacilitationtoamelioratesalinitystressbetweenplant

speciesduringsecondarysuccession.Bothoftheseconditionalpositiveinteractionsmay

contributetocommunitypersistenceinthepresenceofstress.

Thetwointeractionsdifferedinthestrengthoftheireffectsonlocalprimaryproducers.The

associationalresistancetomesograzerherbivoryreducedgrazingdamageongiantkelp.

However,withfastgrowthrates(Reedetal.2008),kelpcanprobablytoleratemoderate

herbivorypressurefrommesograzers.Therefore,eventhoughthepresenceoftheencrusting bryozoanreducedgrazingdamage,thebenefitconferredtokelpintermsofincreasedbiomassis probablyquitesmall.Incontrast,Iobservedalmostadoublingofmatrixspeciespercentcover

whenthefacilitator, Batis maritima ,waspresent.Thiseffectreflectedasubstantialincreasein plantbiomasswhereastheeffectinthekelpforestwasmuchmoremodest.Whether

associationalresistancetendstobeweakerrelativetofacilitationinphysicallystressfulhabitats

isunknown.Thistrend,ifitexists,woulddependon,inpart,whetherthenegativeconsequences

ofbioticstressorstendtobelessthanthatofphysicalstressors,andontheabilityofneighborsto

ameliorateeachtypeofstress.Thistopicwouldbeaninterestingareaoffutureresearch.

72 Theresultsofmystudiesalsosuggestedthatthetemporalconsistencyoftheinteractionsdiffer.

Kelpcanopiescontainanumberofgrazingspecies(Jones1971,Coyer1984,SalaandGraham

2002)whosefeedingbehaviorsareinfluenceddifferentlyby Membranipora membranacea

(BernsteinandJung1979,WahlandHay1995,Bryson,Ch.1).Thereforewhether

Membranipora promotesordetersgrazingislikelytochangeinspaceandtime.However, previousresearchinhigherlatitudesaltmarshesfoundthatearlysalttolerantcolonizerspromote

revegetationbymatrixspecies(Bertness1991,BertnessandShumway1993),similartothe

findingspresentedhere.Thetemporalpatternofrecoverydescribedasdisturbance,elevationof

soilsalinities,colonizationbytolerantspecies,ameliorationofsoilsalinity,followedby

facilitationofthematrix,wasconsistentlyobservedinthesestudies.Thiscommonalitybetween

systemsisdespiterecentempiricalevidencethatfacilitationislesscommoninhighsalinity

regimeswithsalttolerantspecies(Penningsetal.2003)whichoccurinsouthernCaliforniasalt

marshes(Zedler1982).Thoughseasonal(Callawayetal.1990)andinterannual(Zedler1983)

variationinsoilsalinitiesdoexistandmayinfluencetheeffectivenessofthisprocess,Ipredict

thatfacilitationduringsecondarysuccessionofthesaltmarshtobemuchmoreofageneral

occurrencethantheassociationalresistancetomesograzerherbivoryIdocumentedinakelp

canopy.

Iproposethatthedifferenceinthetemporalconsistencybetweenthetwopositiveinteractions

reportedhereistheresultofdifferencesinthepredictabilityofthestresses.Algalherbivores

andthelevelofgrazingdamagetheyinflictvarygreatlyintimeandspace(Lubchencoand

Gaines1981)asdotheabundancesofepibionts(Wahl1989).However,vascularplants

regularlyperformlessoptimallyinsalineconditions(Zhu2001)andevensaltmarshplantsare

73 extremelysensitivetochangesinsoilsalinity(Zedler1996).Thus,plantslivinginsaline

conditions,evenwithintheirtolerancerange,maybenefitfromameliorationofsoilsfollowing

disturbance.Thus,Ispeculatethatneighborsthatreducesalinitystresswithminimal

competitiveeffectswillbebeneficialwhereasthebenefitsofaspeciesdependentdeterrent

neighborwillbetransitory.

OverallIfoundtwosetsofpositiveinteractionsintwocoastalcommunities,onebiotic andoneabiotic,buttheeffectsandconsistencyofeachinteractiondifferedbetweenthetwo systemsprobablyduetothepredictabilityofthestressors.

74

REFERENCES

Bernstein,B.B.,andN.Jung.1979.SelectivePressuresandCoevolutioninakelpcanopy communityinsouthernCalifornia.EcologicalMonographs 49 :335355.

Bertness,M.D.1991.InterspecificInteractionsamongHighMarshPerennialsinaNewEngland SaltMarsh.Ecology 72 :125137.

Bertness,M.D.,andS.W.Shumway.1993.Competitionandfacilitationinmarshplants.The AmericanNaturalist 142 :718724.

Callaway,R.M.,S.Jones,W.R.Ferren,andA.Parikh.1990.EcologyOfAMediterranean ClimateEstuarineWetlandAtCarpinteria,CaliforniaPlantDistributionsAndSoil SalinityInTheUpperMarsh.CanadianJournalOfBotanyRevueCanadienneDe Botanique 68 :11391146.

Coyer,J.A.1984.Theinvertebrateassemblageassociatedwiththegiantkelp,Macrocystis pyrifera,atSantaCatalinaIsland,California:Ageneraldescriptionwithemphasison amphipods,copepods,mysids,andshrimp.FisheriesBulletin 82 :5566.

Jones,L.G.1971.Studiesonselectedsmallherbivorousinvertebratesinhabiting Macrocystis canopiesandholdfastsinsouthernCaliforniakelpbeds.Pages343368 in W.J.North, editor.TheBiologyofGiantKelpBeds(Macrocystis)inCalifornia.NovaHedwigia, Lehre.

Lubchenco,J.,andS.D.Gaines.1981.Aunifiedapproachtomarineplantherbivore interactions.I.Populationsandcommunities.AnnualReviewsofEcology,Evolution, andSystematics 12 :405437.

Pennings,S.C.,E.R.Selig,L.T.Houser,andM.D.Bertness.2003.Geographicvariationin positiveandnegativeinteractionsamongsaltmarshplants.Ecology 84 :15271538.

Reed,D.C.,A.Rassweiler,andK.K.Arkema.2008.Biomassratherthangrowthrate determinesvariationinnetprimaryproductionbygiantkelp.Ecology 89 :24932505.

Sala,E.,andM.H.Graham.2002.Communitywidedistributionofpredatorpreyinteraction strengthinkelpforests.ProceedingsoftheNationalAcademyofSciences 99 :36783683.

75 Stachowicz,J.J.2001.Mutualism,facilitation,andthestructureofecologicalcommunities. Bioscience 51 :235246.

Wahl,M.1989.MarineEpibiosis.1.FoulingAndAntifoulingSomeBasicAspects.Marine EcologyProgressSeries 58 :175189.

Wahl,M.,andM.E.Hay.1995.Associationalresistanceandshareddoom:effectsofepibiosis onherbivory.Oecologia 102 :329340.

Zedler,J.B.1982.TheecologyofsouthernCaliforniacoastalsaltmarshes:acommunityprofile. FWS/OBS81/54,UnitedStatesFishandWildlifeService.

Zedler,J.B.1983.FreshwaterImpactsinNormallyHypersalineMarshes.Estuaries 6:346355.

Zedler,J.B.1996.TidalWetlandRestoration:AscientificPerspectiveandSouthernCalifornia Focus.ReportNo.T038,CaliforniaSeaGrantCollegeSystem,SanDiego.

Zhu,J.K.2001.Plantsalttolerance.TrendsInPlantScience 6:6671.

76