The Decline of Fisheries Resources in New England

Total Page:16

File Type:pdf, Size:1020Kb

The Decline of Fisheries Resources in New England The Decline of Fisheries Resources in New England Evaluating the Impact of Overfishing, Contamination, and Habitat Degradation Edited by Robert Buchsbaum Massachusetts Audubon Society Judith Pederson Massachusetts Institute of Technology William E. Robinson University of Massachusetts, Boston MIT Sea Grant College Program Massachusetts Institute of Technology Cambridge, Massachusetts Published by the MIT Sea Grant College Program 292 Main Street, E38-300 Cambridge, Massachusetts 02139 http://web.mit.edu/seagrant Acknowledgment: Sponsor, Massachusetts Bays National Estuary Program Publication of this volume is supported by the National Oceanic and Atmospheric Association contract no.: NA86RGO074. Copyright ©2005 by the Massachusetts Institute of Technology. All rights reserved. This publication may not be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise without written permission of the holder. In order to photocopy any work from this publication legally, you need to obtain permission from the Massachusetts Institute of Technology for the copyright clearance of this publication. Design and production by Gayle Sherman Cover photo credits: front cover, background, rocky coast: Judith Pederson alewifes: Robert Buchsbaum lobster: Robert Steneck harvested scallops, fishing net, and back cover, fishing boats: Madeleine Hall-Arber The Decline of Fisheries Resources in New England: Evaluating the Impact of Overfishing, Contamination, and Habitat Degradation Edited by Robert Buchsbaum, Judith Pederson, and William E. Robinson MIT Sea Grant College Program Publication No. 05-5 We dedicate this book to our colleague, John Moring, who was a tireless advocate for the health of our fisheries in the marine environment. Acknowledgments We appreciate the encouragement and the financial support provided by the Massachusetts Bays Program (MBP), part of the National Estuary Program of the United States Environmental Protection Agency. This work was sponsored by a MBP grant, and the original concept came from their Technical Advisory Committee. In particular, we thank Jan P. Smith, Director of the MBP, for helping us to develop the vision for this project and for supporting us as the project unfolded. We also sincerely thank the many reviewers who volunteered their time and energy to critique each of the chapters of the book at various stages and for their valuable suggestions and advice. These include Peter Auster, Mark Chandler, Michael Dadswell, Ellie Dorsey, Michael Fogarty, David Franz, Madeleine Hall-Arber, Gareth Harding, Boyd Kynard, Sandra Macfarlane, Jack Pearce, Jack Schwartz, Jan Smith, Peter Wells, Christine Werme, Robert Whitlatch, and several anonymous reviewers. We especially thank our authors for each of their contributions, and, in addition, for their patience as we moved the process of publishing this book along. Finally, the publication of this work at MIT Sea Grant would not have been possible without the dedication and persistence of Gayle Sherman, who transformed all the raw manuscripts into a professional publication. Contents Preface iv I. Contamination, Habitat Degradation, Overfishing - An “Either-Or” Debate? 1 William E. Robinson and Judith Pederson II. The New England Groundfish Resource: A History of Population Change in Relation to Harvesting 11 Steven A. Murawski III Recent Trends in Anadromous Fishes 25 John Moring IV. Pollutant Effects upon Cod, Haddock, Pollock, and Flounder of the Inshore Fisheries of Massachusetts and Cape Cod Bays 43 Frederick P. Thurberg and Edith Gould V. The Effect of Habitat Loss and Degradation on Fisheries 67 Linda A. Deegan and Robert Buchsbaum VI. Effects of Natural Mortality and Harvesting on Inshore Bivalve Population Trends 97 Diane J. Brousseau VII. Biological Effects of Contaminants on Marine Shellfish and Implications for Monitoring Population Impacts 119 Judith E. McDowell VIII. Are We Overfishing the American Lobster? Some Biological Perspectives 131 Robert S. Steneck IX. The Role of Overfishing, Pollution, and Habitat Degradation on Marine Fish and Shellfish Populations of New England: Summary and Conclusions 149 Robert Buchsbaum X. Management Implications: Looking Ahead 163 Judith Pederson and William E. Robinson iv approach to managing fisheries and addresses Preface management needs into the future. Each of the authors was asked to review the First Preface (2001) latest scientific information on either overfishing, pollution, habitat degradation, or the relationship This book emerged from one of several issue among all three variables, on fish, lobsters, or papers sponsored by the Technical Advisory shellfish, particularly as it relates to the Committee of the Massachusetts Bays Program, Massachusetts Bays region. Authors were encour- one of the National Estuary Programs funded by aged to think broadly and to give some sense of the the Environmental Protection Agency. When we relative impacts on fisheries of the factors they started this project, the crisis in New England examined in detail compared to those attributable groundfish populations was not nearly as much in to other causes. They were also asked to identify the public consciousness as it is now. There was a data gaps and to suggest needed research. fair amount of conjecture within the fishing industry, Management implications were then addressed in due in part to uncertainty that exists in stock the final chapter. assessment, concern about pollution and habitat impacts, and anecdotal descriptions of improved Robert Buchsbaum fish catch that seemed at odds with agency predic- Judith Pederson tions as to the root cause of the problem. We William E. Robinson thought it useful to put together a volume that January 2001 examined the scientific evidence for effects of three major factors overfishing, pollution, and habitat degradation on northeast finfish, lobsters, and shellfish populations. This approach omits the socio-economic drivers which influence fisheries management decisions and the industry’s perception of the ecosystem. We acknowledge the importance Second Preface (2004) of these factors in the broader scope of the issue, however without a sound scientific knowledge, Since we first assembled the draft contributions achieving sustainability in fisheries will falter. of our authors into this volume and penned the above Preface in early 2001, high profile lawsuits During the intervening years since we began have changed implementation of fisheries manage- the project, the public became increasingly aware ment. Significant changes in fisheries stocks and of the seriousness of the crisis through numerous fisheries management have influenced our overall newspaper articles, scientific publications, public approach to using and managing our marine envi- forums, and political activities. The closure of large ronment. Some trends in fish population recovery parts of Georges Bank to groundfishing, and the appear favorable, whereas others are not quite so recent passage by the New England Fishery optimistic. Management Council of measures to further reduce fishing mortality focused much attention on the While not universal, a number of improve- effect that overfishing may have on marine ecosys- ments have been documented in various fishery tems and the fishing communities that depend on stocks. Probably the most notable change is in the those ecosystems. The cause of fish population northeast groundfishery, where several species pop- declines, the rate and extent of recovery, and ulations have increased as a result of the drastic approach to management are still debated. The use- measures implemented to reduce fishing pressure fulness of examining the declines in certain species (e.g. closure areas, severe restrictions in the number of commercially important fish, lobsters, and shell- of days a fisherman can fish). The National fish by taking multiple factors into consideration is Oceanic and Atmospheric Administration’s compelling because it represents a holistic (NOAA’s) annual reports to Congress on the v “Status of the Fisheries of the U.S.” have indicated to save the endangered Atlantic salmon in eight an overall improvement in groundfish stocks, as Maine rivers. But the loss of habitat, uncertainty in evidenced by the stock assessment data collected in the primary cause of mortality, and small wild pop- 2000, 2001, 2002, and 2003. When we started this ulations may limit a successful comeback to a work, over 70% of New England groundfish were thriving fishery. classified by the National Marine Fisheries Service (NMFS) as overfished (NOAA, 1995). Status of the The story with lobsters is mixed. Lobster popu- Fisheries Resources off the Northeastern United lations have drastically fallen in southern New States for 1994. NOAA Tech. Memorandum England, with a concern that the same trend may NMFS-NE-108. National Marine Fisheries Service, be about to happen throughout the region. An arti- Woods Hole, MA. 140 pp.). The percentage now is cle in the December 2004 Commercial Fisheries about 30% (NMFS, 2001. Report to Congress. News reported that Maine’s lobster landings have Status of Fisheries of the United States. NMFS, remained “relatively high” (yet down from 2002), NOAA, Silver Spring, MD. 127 p.). An exception- although landings have fallen precipitously in other ally good cod spawn in the Gulf of Maine in 1998, states. A recent Cape Cod Times editorial (28 June combined with restricted
Recommended publications
  • Cynoglossus Westraliensis, a New Species of Tonguesole from Western Australia (Teleostei: Cynoglossidae)
    FishTaxa (2019) 4(2): 31-40 Journal homepage: www.fishtaxa.com © 2019 FISHTAXA. All rights reserved Cynoglossus westraliensis, a new species of tonguesole from Western Australia (Teleostei: Cynoglossidae) Ronald FRICKE* Im Ramstal 76, 97922 Lauda-Königshofen, Germany. Corresponding author: *E-mail: [email protected] Abstract The Western Australian deep-water tonguesole Cynoglossus westraliensis n. sp. is described from off North West Cape, Western Australia, based on two specimens collected at a depth of 250 metres. The new species is characterised within the Cynoglossus carpenteri species group by the snout relatively long, bluntly rounded; head length 21-25% of SL, snout length 9.3-11.6% of SL (43.4-46.5% of HL); eyes not contiguous; corner of mouth nearer to posterior edge of opercle than to tip of snout; ocular side with 3 lateral lines, midlateral-line scales 111-115, scale rows between midlateral and dorsolateral lines 20, blind side without lateral lines; ctenoid scales on ocular side, cycloid scales on blind side; dorsal-fin-rays 120-126; anal-fin rays 105-106; caudal-fin rays 8; gill chamber and peritoneum black. A key to the species of the Cynoglossus carpenteri species-group is presented. Keywords: Tonguesole, Cynoglossidae, Western Australia, New species, Identification key, Distribution. Zoobank: urn:lsid:zoobank.org:pub:C72DC2E5-9875-4DA0-9313-7967FB81C5C9 urn:lsid:zoobank.org:act:97081CA2-8CBA-4D70-8732-8BEA54017555 Introduction Tonguesoles of the family Cynoglossidae are small to medium sized benthic fishes, which are common in marine waters from tidal pools to the continental shelf and upper slope to a maximum depth of 1,500 m (Munroe 2001).
    [Show full text]
  • Taxonomical Identification and Diversity of Flat Fishes from Mudasalodai Fish Landing Centre (Trawl by Catch), South East Coast of India
    ISSN: 2642-9020 Review Article Journal of Marine Science Research and Oceanography Taxonomical Identification and Diversity of Flat Fishes from Mudasalodai Fish Landing Centre (Trawl by Catch), South East Coast of India Gunalan B* and E Lavanya *Corresponding author B Gunalan, PG & Research Department of Zoology, Thiru Kollanjiyapar PG & Research Department of Zoology, Thiru Kollanjiyapar Government Arts College, Viruthachalam. Cuddalore-Dt, Tamilnadu, India Government Arts College, Viruthachalam Submitted: 31 Jan 2020 Accepted: 05 Feb 2020; Published: 07 Mar 2020 Abstract Bycatch and discards are common and pernicious problems faced by all fisheries globally. It is recognized as unavoidable in any kind of fishing but the quantity varies according to the gear operated. In tropical countries like India, bycatch issue is more complex due to the multi-species and multi-gear nature of the fisheries. Among the different fishing gears, trawling accounts for a higher rate of bycatch, due to comparatively low selectivity of the gear. A study was conducted during June 2018 - Dec 2019 in the Mudasalodai fish landing centre, southeast coast of India. During the study period six sp. of flat fishes collected and identified taxonomically. Keywords: Flat fish, tongue fish, sole fish, bycatch, fish landing, waters of Parangipettai. The study was conducted for a period of diversity, taxonomy one and half year (June 2018 - Dec 2019), no sampling was done in the month of May, due to the fishing holiday in the coast of Introduction Tamil Nadu. The collected flat fishes were kept in ice boxes and Fish forms an important source of food and is man’s important transferred to the laboratory and washed in tap water.
    [Show full text]
  • Food and Feeding Habits of Malabar Sole Cynoglossus Macrostomus Norman
    J. mar. biol. Ass. India, 2000, 42 (1&2) : 124 - 134 Food and Feeding habits of Malabar sole Cynoglossus macrostomus Norman A. A. Jayaprakash Central Marine Fisheries Research Institute, Kochi - 682 014 Abstract The food and feeding habits of Malabar sole Cynoglossus macrostomus Norman occurring along the coastal seas off Kerala were studied both qualitatively and quantitatively during 1994-96. The samples for the study were collected from three widely located centres like Cochin, Ambalapuzha and Neendakara. The fish mainly adapted to a bottom habitat feeds on polychaetes and detritus, amphipods, copepods, small molluscs and foraminifera. Active feed- ing was found immediately after spawining during October - November and February March. There was not much difference in the forage items noticed at different centres. Since the detritus is an important food component followed by other macrobenthos the fish can safely be placed between trophic level I and 11. Introduction Cynoglossus lingua; Devadoss and Pillai Investigations on the food and feeding (1973), Devadoss et a1 (1977), Ramanathan habits of fishes have traditionally been and Natarajan (1980) and Ramanathan important in fishery biological studies since et a1 (1977) on other flatfish species. food is one of the key factors that pro- Among the flatfishes, only few species foundly influence the shoaling, behaviour, like the Malabar sole support a fishery of migration, condition and even the fishery. commercial importance. The species con- The Pleuronectids, comprising the flatfishes tributed nearly 95% of the total 25,000 t by virtue of their body form and bottom of flatfishes landed in Kerala. Apart from habitat have attracted the attention of the studies on the food and feeding habits many workers.
    [Show full text]
  • Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
    Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of
    [Show full text]
  • Witch Flounder, Glyptocephalus Cynoglossus, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-139 Essential Fish Habitat Source Document: Witch Flounder, Glyptocephalus cynoglossus, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts September 1999 Recent Issues 105. Review of American Lobster (Homarus americanus) Habitat Requirements and Responses to Contaminant Exposures. By Renee Mercaldo-Allen and Catherine A. Kuropat. July 1994. v + 52 p., 29 tables. NTIS Access. No. PB96-115555. 106. Selected Living Resources, Habitat Conditions, and Human Perturbations of the Gulf of Maine: Environmental and Ecological Considerations for Fishery Management. By Richard W. Langton, John B. Pearce, and Jon A. Gibson, eds. August 1994. iv + 70 p., 2 figs., 6 tables. NTIS Access. No. PB95-270906. 107. Invertebrate Neoplasia: Initiation and Promotion Mechanisms -- Proceedings of an International Workshop, 23 June 1992, Washington, D.C. By A. Rosenfield, F.G. Kern, and B.J. Keller, comps. & eds. September 1994. v + 31 p., 8 figs., 3 tables. NTIS Access. No. PB96-164801. 108. Status of Fishery Resources off the Northeastern United States for 1994. By Conservation and Utilization Division, Northeast Fisheries Science Center. January 1995. iv + 140 p., 71 figs., 75 tables. NTIS Access. No. PB95-263414. 109. Proceedings of the Symposium on the Potential for Development of Aquaculture in Massachusetts: 15-17 February 1995, Chatham/Edgartown/Dartmouth, Massachusetts. By Carlos A. Castro and Scott J. Soares, comps. & eds. January 1996. v + 26 p., 1 fig., 2 tables. NTIS Access. No. PB97-103782. 110. Length-Length and Length-Weight Relationships for 13 Shark Species from the Western North Atlantic.
    [Show full text]
  • Nova Scotia Inland Water Boundaries Item River, Stream Or Brook
    SCHEDULE II 1. (Subsection 2(1)) Nova Scotia inland water boundaries Item River, Stream or Brook Boundary or Reference Point Annapolis County 1. Annapolis River The highway bridge on Queen Street in Bridgetown. 2. Moose River The Highway 1 bridge. Antigonish County 3. Monastery Brook The Highway 104 bridge. 4. Pomquet River The CN Railway bridge. 5. Rights River The CN Railway bridge east of Antigonish. 6. South River The Highway 104 bridge. 7. Tracadie River The Highway 104 bridge. 8. West River The CN Railway bridge east of Antigonish. Cape Breton County 9. Catalone River The highway bridge at Catalone. 10. Fifes Brook (Aconi Brook) The highway bridge at Mill Pond. 11. Gerratt Brook (Gerards Brook) The highway bridge at Victoria Bridge. 12. Mira River The Highway 1 bridge. 13. Six Mile Brook (Lorraine The first bridge upstream from Big Lorraine Harbour. Brook) 14. Sydney River The Sysco Dam at Sydney River. Colchester County 15. Bass River The highway bridge at Bass River. 16. Chiganois River The Highway 2 bridge. 17. Debert River The confluence of the Folly and Debert Rivers. 18. Economy River The highway bridge at Economy. 19. Folly River The confluence of the Debert and Folly Rivers. 20. French River The Highway 6 bridge. 21. Great Village River The aboiteau at the dyke. 22. North River The confluence of the Salmon and North Rivers. 23. Portapique River The highway bridge at Portapique. 24. Salmon River The confluence of the North and Salmon Rivers. 25. Stewiacke River The highway bridge at Stewiacke. 26. Waughs River The Highway 6 bridge.
    [Show full text]
  • FOR REFERENCE USE ONL Y DO NOT Removt from LIBRARY
    Canada. F isbcries Service Maritimes Region. R csource Development Branch MANUSCRIPT REPORT I+ Environment Canada Environnement Canada RESOURCE DEVELOPMENT BRANCH .. " ' IÎÏI ~ Îl ~l Ïl\ij fü1imÎ l~I Îl \ i1 li~ ~Î~Ïil l I 'J 09093266 A Preliminary Investigation of the Striped Bass, Roccus saxatilis, Fishery Resource in the Annapolis River System, and the General Distribution of Striped Bass in Other Areas in Southwestern Nova Scotia by G. H. PENNEY FOR REFERENCE USE ONL Y DO NOT REMOvt FROM LIBRARY f h~trlts Stnlct 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 Hallfa1, N.S. 1l7d.- Restricted MANUSCRIPT REPORT No. 73- 4 A PRELIMINARY INVESTIGATION OF THE STRIPED BASS, Roccus saxatilis ~ FISHERY RESOURCE IN THE ANNAPOLIS RIVER SYSTEM, AND THE GENERAL DISTRIBUTION OF STRIPED BASS IN OTHER AREAS IN SOUTHWESTERN NOVA SCOTIA BY G.H. PENNEY Restricted A PRELIMINARY INVESTIGATION OF THE STRIPED BASS, Roccus s axatilis , FISHERY RESOURCE IN THE ANNAPOLIS RIVER SYSTEM, AND THE GENERAL DISTRIBUTION OF STRIPED BASS IN OTHER AREAS IN SOUTHWESTERN NOVA SCOTIA BY G.H. PENNEY DEPARTMENT OF THE ENVIRONMENT FISHERIES SERVICE RESOURCE DEVELOPMENT BRANCH HALIFAX, NOVA SCOTIA MARCH, 1973. CONTENTS PAGE INTRODUCTION . • . • . • . • . • . • 1 METHODS 8 RESULTS 10 (a) Angling Statistics (1951-1972)-Annapolis River system . ....................................... 10 (b) Length, Weight, Sex, and Age of Striped Bass sampled from the Annapolis River in 1972 .....• 12 (c) Residence Distribution of Anglers from which Samples were obtained ........................ 16 (d) Angling Pressure for Striped Bass during June, July, and August, 1972, at the Annapolis 18 Causeway ..............•....................... (e) General Distribution and Abundance of Striped Bass in Other Areas in Southwestern Nova 20 Scotia ....................................... DISCUSSION - RECOMMENDATIONS .......................
    [Show full text]
  • South Western Nova Scotia
    Netukulimk of Aquatic Natural Life “The N.C.N.S. Netukulimkewe’l Commission is the Natural Life Management Authority for the Large Community of Mi’kmaq /Aboriginal Peoples who continue to reside on Traditional Mi’Kmaq Territory in Nova Scotia undisplaced to Indian Act Reserves” P.O. Box 1320, Truro, N.S., B2N 5N2 Tel: 902-895-7050 Toll Free: 1-877-565-1752 2 Netukulimk of Aquatic Natural Life N.C.N.S. Netukulimkewe’l Commission Table of Contents: Page(s) The 1986 Proclamation by our late Mi’kmaq Grand Chief 4 The 1994 Commendation to all A.T.R.A. Netukli’tite’wk (Harvesters) 5 A Message From the N.C.N.S. Netukulimkewe’l Commission 6 Our Collective Rights Proclamation 7 A.T.R.A. Netukli’tite’wk (Harvester) Duties and Responsibilities 8-12 SCHEDULE I Responsible Netukulimkewe’l (Harvesting) Methods and Equipment 16 Dangers of Illegal Harvesting- Enjoy Safe Shellfish 17-19 Anglers Guide to Fishes Of Nova Scotia 20-21 SCHEDULE II Specific Species Exceptions 22 Mntmu’k, Saqskale’s, E’s and Nkata’laq (Oysters, Scallops, Clams and Mussels) 22 Maqtewe’kji’ka’w (Small Mouth Black Bass) 23 Elapaqnte’mat Ji’ka’w (Striped Bass) 24 Atoqwa’su (Trout), all types 25 Landlocked Plamu (Landlocked Salmon) 26 WenjiWape’k Mime’j (Atlantic Whitefish) 26 Lake Whitefish 26 Jakej (Lobster) 27 Other Species 33 Atlantic Plamu (Salmon) 34 Atlantic Plamu (Salmon) Netukulimk (Harvest) Zones, Seasons and Recommended Netukulimk (Harvest) Amounts: 55 SCHEDULE III Winter Lake Netukulimkewe’l (Harvesting) 56-62 Fishing and Water Safety 63 Protecting Our Community’s Aboriginal and Treaty Rights-Community 66-70 Dispositions and Appeals Regional Netukulimkewe’l Advisory Councils (R.N.A.C.’s) 74-75 Description of the 2018 N.C.N.S.
    [Show full text]
  • Identification of the Sole Resources of the Gambia
    Identification of the Sole Resources of The Gambia Gambia-Senegal Sustainable Fisheries Program (Ba Nafaa) December 2011 This publication is available electronically on the Coastal Resources Center’s website at http://www.crc.uri.edu. For more information contact: Coastal Resources Center, University of Rhode Island, Narragansett Bay Campus, South Ferry Road, Narragansett, Rhode Island 02882, USA. Tel: 401) 874-6224; Fax: 401) 789-4670; Email: [email protected] The BaNafaa project is implemented by the Coastal Resources Center of the University of Rhode Island and the World Wide Fund for Nature-West Africa Marine Ecoregion (WWF-WAMER) in partnership with the Department of Fisheries and the Ministry of Fisheries, Water Resources and National Assembly Matters. Citation: Coastal Resources Center, 2011. Identification of the Sole Resources of The Gambia. Coastal Resources Center, University of Rhode Island, pp.11 Disclaimer: This report was made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Cooperative Agreement # 624-A-00-09- 00033-00. Cover Photo: Coastal Resources Center/URI Fisheries Center Photo Credit: Coastal Resources Center/URI Fisheries Center 2 The Sole Resources Proper identification of the species is critical for resource management. There are four major families of flatfish with representative species found in the Gambian nearshore waters: Soleidae, Cynoglossidae, Psettododae and Paralichthyidae. The species below have been confirmed through literature review, and through discussions with local fishermen, processors and the Gambian Department of Fisheries.
    [Show full text]
  • A River Runs Through It: an Archaeological Survey of the Upper
    Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47882-0 Our file Notre reference ISBN: 978-0-494-47882-0 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these.
    [Show full text]
  • Contents of Volume 43 (2013)
    CONTENTS OF VOLUME 43 (2013) Issue 1 Tsikliras A.C., Stergiou K.I., Froese R. Editorial note on reproductive biology of fishes .......................................................................................................................................................... 1 Thulasitha W.S., Sivashanthini K. Reproductive characteristics of doublespotted queenfish, Scomberoides lysan (Actinopterygii: Perciformes: Carangidae), from Sri Lankan waters: Implications for fisheries management ................... 7 Rajkumar M., Rahman M.M., Reni Prabha A., Phukan B. Effect of cholymbi on growth, proximate composition, and digestive enzyme activity of fingerlings of long whiskered catfish, Mystus gulio (Actinopterygii: Siluriformes: Bagridae) ........................................................................... 15 Muchlisin Z.A., Thomy Z., Fadli N., Sarong M.A., Siti-Azizah M.N. DNA barcoding of freshwater fishes from Lake Laut Tawar, Aceh Province, Indonesia ............................................................. 21 Kırankaya Ş.G., Ekmekçi F.G. Life-history traits of the invasive population of Prussian carp, Carassius gibelio (Actinopterigi: Cypriniformes: Cyprinidae), from Gelingüllü Reservoir, Yozgat, Turkey .......................................................... 31 Pan T., Yan M., Chen S., Wang X. Effects of ten traditional Chinese herbs on immune response and disease resistance of Sciaenops ocellatus (Actinopterygii: Perciformes: Sciaenidae) ...................................................................................................................................................................
    [Show full text]
  • The Evolution of Extreme Longevity in Modern and Fossil Bivalves
    Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate.
    [Show full text]