A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia THE OLIGOCENE Paul F. Huddleston DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY I BULLETIN 105 Cover photo: Seventy feet of Bridgeboro Limestone exposed at the the type locality in the southern-most pit of the Bridgeboro Lime and Stone Company, 6.5 miles west-southwest of the community of Bridgeboro, south of Georgia 112, Mitchell County. A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia THE OLIGOCENE Paul F. Huddlestun ·Georgia Department of Natural Resources Joe D. Tanner, Commissioner Environmental Protection Division Harold F. Reheis, Director Georgia Geologic Survey William H. McLemore, State Geologist Atlanta 1993 BULLETIN 105 TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS ............................................................................................................................................... v ABSTRACT ........................................................................................................................................................................ 1 ACKN"OWLEIJGMENTS ................................................................................................................................................. 1 INTRODUCTION .............................................................................................................................. :.............................. 2 Methods ........................................... ,.................................................................................................................... 2 Oligocene Correlation Problems ....................................................................................................................... 12 LITHOSTRATIGRAPHY ................................................................................................................................................... 15 Eastern Gulf of Mexico Stratigraphic Association ......................................................................................... 15 Vicksburg Group .................................................................................................................................... 15 Marianna Limestone .............................................................................................................. 16 Glendon Limestone ............................................................................................................... 20 Shellstone Creek beds ............................................................................................................................. 21 Undifferentiated residuum .................................................................................................................. 25 Gulf Trough Stratigraphic Association ............................................................................................................ 28 C>chlockonee Formation ....................................................................................................................... 28 Pridgen Limestone Member ................................................................................................. 35 Wolf Pit Dolostone ........................................................................... ~ ..................................................... 41 Okapilco Limestone .............................................................................................................................. 44 Bridgeboro Limestone .......................................................................................................................... 46 Florala Limestone Member ................................................................................................... 55 Florida Bank Stratigraphic Association ........................................................................................................... 61 Ellaville Limestone ................................................................................................................................ 61 Suwannacoochee Dolostone .............................................. ~ ................................................................. 67 Suwannee Limestone ............................................................................................................................ 70 · Atlantic Continental Shelf Stratigraphic Association ............................................................................................................................................. 77 Lazaretto Creek Formation ................................................................................................... 77 Cooper Formation ......................... :........................................................................................ 82 Stratigraphic Association of Uncertain Affinities ............................................................................................................................. 86 Undifferentiated calcareous sand and sandy limestone ...................................................................................................... 86 DISCUSSION ..................................................................................................................................................................... 88 Primary Structural Elements ............................................................................................................................ 88 Florida Platform ........................................................................ ~ ........................................................... 88 South Georgia rift .................................................................................................................................. 88 Piedmont Slope ...................................................................................................................................... 91 Peninsular Arch ..................................................................................................................................... 91 Constructional features of sedimentary origin ............................................... :.............................................. 94 Georgia Channel System ...................................................................................................................... 94 Southeast Georgia Embayment ........................................................................................................... 98 Beaufort Arch .................................. ,...................................................................................................... 98 C>cala Arch ............................................................................................................................................ 100 Hypothetical Structure ..................................................................................................................................... 100 Chattahoochee Arch ........................................................................................................................... 100 Barwick Arch ....................................................................................................................................... 101 iii TABLE OF CONTENTS (CONT.) Page Faults .................................................................................................................................................................. 102 Paleogeographic Elements ........................................................................................................................................... 103 Florida Bank ....................................................................................................................................................... 103 Suwannee Strait ............................................................................................................................................... 106 Atlantic Continental Shelf .............................................................................................................................. 110 Suwannee Current .......................................................................................................................................................... 110 Oligocene Faunal Provinces ........................................................................................................ , ................................. 112 Eocene/Oligocene Boundary ........................................................................................................................................ 116 Correlation of Oligocene Stratigraphic Units, Sequence Stratigraphy, and Paleogeography Across Georgia and Northern Florida .......................................................................................................... 116 Introduction ........................................................................................................................................ 116 Depositional History ......................................................................................................................... 119 Bumpnose-Red Bluff-Forest Hill depositional sequence .......................................................................................... 120 Post-Bumpnose-Red Bluff hiatus ..................................................................................... 122 Ellaville-Glendon-Marianna-
Recommended publications
  • Stratigraphy, Paleontology and Correlation of Lower Cretaceous Exposures in Southeastern New Mexico Barry S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Stratigraphy, paleontology and correlation of lower Cretaceous exposures in southeastern New Mexico Barry S. Kues and Spencer G. Lucas, 1993, pp. 245-260 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • WS-32, Hydrogeologic Investigation of the Floridan Aquifer System at The
    SOUTH FLORIDA WATER MANAGEMENT DISTRICT Hydrogeologic Investigation of the Floridan Aquifer System at the S-65C Site (Well OKF-105) Okeechobee County, Florida Technical Publication WS-32 R. Simon A. Sunderland, P.G., Brian Collins, and Steve Anderson, P.G. South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406 July 2011 AAcckknnoowwlleeddggeemmeennttss The authors would like to thank the Everglades Restoration Planning Department of the South Florida Water Management District (SFWMD) for providing the project funding for Phase II and Phase III of this project. We would also like to thank Sue Farland and Frances Johnson in the Water Quality Analysis Division of the SFWMD’s Environmental Resource Assessment Department for organizing and providing water quality sampling kits. Thanks and appreciation to Craig Wilson, Mike Curley, and Houston Tripp in the SFWMD’s Everglades Construction Department for their expertise and help with construction contract issues during this project. The SFWMD’s Okeechobee Field Station deserves recognition for their support of the project and for cooperating with our contractors during this project. Hydrogeologic Investigation of the Floridan Aquifer System at the S-65C Site (Well OKF-105) | i ii | Acknowledgements EExxeeccuuttiivvee SSuummmmaarryy The South Florida Water Management District (SFWMD) oversaw the construction and testing of a Floridan aquifer exploratory well (OKF-105) in Okeechobee County, Florida. The well is located on the west side of the Kissimmee River, adjacent to structure S-65C, approximately 20 miles northwest of the City of Okeechobee. Construction and testing of OKF-105 took place in three phases over three years.
    [Show full text]
  • The Nature of Northern Australia
    THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF).
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • Structure of the Yegua-Jackson Aquifer of the Texas Gulf Coastal Plain Report
    Structure of the Yegua-Jackson Aquifer of the Texas Gulf Coastal Plain Report ## by Legend Paul R. Knox, P.G. State Line Shelf Edge Yegua-Jackson outcrop Van A. Kelley, P.G. County Boundaries Well Locations Astrid Vreugdenhil Sediment Input Axis (Size Relative to Sed. Vol.) Facies Neil Deeds, P.E. Deltaic/Delta Front/Strandplain Wave-Dominated Delta Steven Seni, Ph.D., P.G. Delta Margin < 100' Fluvial Floodplain Slope 020406010 Miles Shelf-Edge Delta Shelf/Slope Sand > 100' Texas Water Development Board P.O. Box 13231, Capitol Station Austin, Texas 7871-3231 September 2007 TWDB Report ##: Structure of the Yegua-Jackson Aquifer of the Texas Gulf Coastal Plain Texas Water Development Board Report ## Structure of the Yegua-Jackson Aquifer of the Texas Gulf Coastal Plain by Van A. Kelley, P.G. Astrid Vreugdenhil Neil Deeds, P.E. INTERA Incorporated Paul R. Knox, P.G. Baer Engineering and Environmental Consulting, Incorporated Steven Seni, Ph.D., P.G. Consulting Geologist September 2007 This page is intentionally blank. ii This page is intentionally blank. iv TWDB Report ##: Structure of the Yegua-Jackson Aquifer of the Texas Gulf Coastal Plain Table of Contents Executive Summary......................................................................................................................E-i 1. Introduction......................................................................................................................... 1-1 2. Study Area and Geologic Setting.......................................................................................
    [Show full text]
  • Subsurface Geology of Cenozoic Deposits, Gulf Coastal Plain, South-Central United States
    REGIONAL STRATIGRAPHY AND _^ SUBSURFACE GEOLOGY OF CENOZOIC DEPOSITS, GULF COASTAL PLAIN, SOUTH-CENTRAL UNITED STATES V U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1416-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm.
    [Show full text]
  • Sequence Stratigraphy of the Arcadia Formation, Southeast
    SEQUENCE STRATIGRAPHY OF THE ARCADIA FORMATION, SOUTHEAST FLORIDA: AN INTEGRATED APPROACH by Caroline M. Wright A Thesis Submitted to the Faculty of the Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2014 ACKNOWLEDGEMENTS I would like to thank my committee and the professionals at the USGS for their support and patience. Dr. Kevin Cunningham‟s expertise on Oligocene/Miocene ichnotaxa and carbonate microfacies analysis was invaluable. Ron Reese‟s guidance and help on lithologic, geophysical, and sequence analysis was instrumental and much appreciated. A special thanks to the entire staff at the USGS Florida Water Science Center for their support and help in obtaining the material and equipment for the study. Dr. Root and Dr. Comas were helpful in reviewing the manuscript and providing useful geophysical and hydrogeologic advice. To my family, friends, and all those who encouraged me to continue, thank you. Finally, I would like to thank my major professor Dr. Anton Oleinik for his unwavering support, guidance and patience as well his helpful expertise on sedimentology and stratigraphy; the completion of this study would not have been possible without his continued dedication. iii ABSTRACT Author: Caroline M. Wright Title: Sequence Stratigraphy of the Arcadia Formation, Southeast Florida: An Integrated Approach Institution: Florida Atlantic University Thesis Advisor: Dr. Anton Oleinik Degree: Master of Science Year: 2014 The Arcadia Formation is a mixed carbonate-siliciclastic rock unit that existed as a shallow carbonate ramp to platform environment during the Late Oligocene to Early Miocene Epoch.
    [Show full text]
  • Soil Survey of Pinellas County, Florida
    United States In cooperation with Department of the University of Florida, Agriculture Institute of Food and Soil Survey of Agricultural Sciences, Natural Agricultural Experiment Pinellas County, Resources Stations, and Soil and Conservation Water Science Service Department; the Florida Florida Department of Agricultural and Consumer Services; and the Pinellas County Board of Commissioners i How To Use This Soil Survey Detailed Soil Maps The detailed soil maps can be useful in planning the use and management of small areas. To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet. Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described. The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs. ii This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey. Major fieldwork for this soil survey was completed in 2002. Soil names and descriptions were approved in 2003. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2003.
    [Show full text]
  • The Nature of Northern Australia
    THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF).
    [Show full text]
  • Taxonomic Implications of the Residual Colour Patterns of Ampullinid Gastropods and Their Contribution to the Discrimination from Naticids
    Taxonomic implications of the residual colour patterns of ampullinid gastropods and their contribution to the discrimination from naticids BRUNO CAZE, DIDIER MERLE, MATHIEU LE MEUR, JEAN−MICHEL PACAUD, DANIEL LEDON, and JEAN−PAUL SAINT MARTIN Caze, B., Merle, D., Le Meur, M., Pacaud, J.−M., Ledon, D., and Saint Martin, J.−P. 2011. Taxonomic implications of the residual colour patterns of ampullinid gastropods and their contribution to the discrimination from naticids. Acta Palaeontologica Polonica 56 (2): 329–347. The diversity of residual colour patterns is revealed for the first time in the European fossil Ampullinidae. The colour pat− terns were studied under Ultraviolet (UV) light in approximately 3100 specimens belonging to 83 species, 12 genera (Ampullina, Globularia, Crommium, Amaurellina, Pachycrommium, Amauropsina, Ampullonatica, Eocernina, Ampul− linopsis, Vanikoropsis, Pictavia, and Ampullospira) and three subgenera (Globularia, Deshayesia, and Cernina within the genus Globularia). Forty−six Cainozoic species revealed residual colour patterns and 29 of them, belonging to six genera (Ampullina, Globularia, Crommium, Amaurellina, Pachycrommium, Amauropsina), are described herein as ex− amples representing the entire diversity of the encountered colour patterns. These patterns are most diverse during the Middle Eocene coincident with the period of highest taxonomic diversity of the Ampullinidae. Four basic classes, re− garded as containing possible homologous colour patterns in terms of pigments incorporation modalities, are proposed. Class I, a fluorescent wide diffuse area or spiral stripes, occurs in most of the species, while the three others are more pecu− liar. Class II, fluorescent axial zigzagging stripes, Class III, fluorescent axial to slightly opisthocline stripes or segments, and Class IV, fluorescent patches forming axial segments by coalescence, allow an easy distinction between the genera Globularia, Pachycrommium, and three peculiar species of Ampullina.
    [Show full text]
  • Southeastern Geological Society Guidebook No. 51
    Southeastern Geological Society Guidebook No. 51 Fall Meeting and Field Trip November 20, 2010 Alum Bluff Looking north along Alum Bluff (photo by H. Means) Southeastern Geological Society Officers for 2009 – 2010: Dave DeWitt, President (Southwest Florida Water Management District) Andy Lawn, Vice President (HSW Engineering) Harley Means, Secretary-Treasurer (Florida Geological Survey) Todd Kincaid, Past President (H2H Associates) Field Trip Leader: Harley Means, P.G. For information regarding the Southeastern Geological Society please visit our website at: www.segs.org or mail a request for information to: SEGS, P.O. Box 1636, Tallahassee, FL 32302. The SEGS is affiliated with the American Association of Petroleum Geologists and the Gulf Coast Association of Geological Societies. 2 Table of Contents Location map of Alum Bluff…………………………………………….. 4 Introduction……………………………………………………………… 5 Chipola Formation……………………………………………………….. 8 Undifferentiated Alum Bluff Group……………………………………... 14 Jackson Bluff Formation………………………………………………….. 15 Citronelle Formation………………………………………………………. 18 References……………………………………………………………….... 19 3 Location map of Alum Bluff. 4 Introduction Alum Bluff is a classic geological exposure located along the east bank of the Apalachicola River approximately 1.8 miles north of the town of Bristol in Liberty County, Florida. Alum Bluff is the tallest natural exposure in Florida with elevations near the base of the bluff at about 50 feet above MSL and elevations at the top of the bluff near 175 feet above MSL. During low stages of the Apalachicola River approximately 125 feet of vertical exposure can be observed. Numerous authors have described the geology and paleontology of this famous locality. Two previous SEGS field trips have focused on this area (SEGS Guidebook 25 and 42).
    [Show full text]