Microbiology of Oilfield Gy Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Microbiology of Oilfield Gy Ecosystems Microbiology of oilfield ecosystems Bernard Ollivier IRD Marseille, France Oil well gggeological section Gaz Oil Water Characteristics of oil reservoirs • « Closed » ecosystems • Depth (up to 4000 m; up to several hundreth bars) • Temperature in situ : 30 to 180 °C • Water Salinities : 0 up to saturation (34% salt) ¾Importance of anaerobic microorganisms in oilfield waters 1 μm The best samplings are ¾Cores, but precautions need to be taken when drillinggpg or sampling ¾Oil waters should be collected from oilwell heads where nothing has been already injected. Kindl y provid e d by M. Mago t Studying the anaerobes Anaerobiosis : Methods -Medium pppreparation using a N2 flux. -Hunggqate’s technique -The anaerobic glove box Physico-chemical limitations to the development of microflora in oil reservoirs in situ oil biodegradation in situ oil biodegradation has never been observed in oil reservoirs where temperature is over 82°C Microbial populations in oil reservoirs 250 200 150 100 50 0 0 20 40 60 80 100 120 Tempp()erature (C) Figure kindly provided by M. Magot in situ oil biodegradation Thermophilic to hyperthermophilic Bacteria or Archaea ??? have participated to oil biodegradation Combination of high temperature and high salinity are drastic for microbial life underneath Electron acceptors available in oil field ecosystems 4 H2 + CO2 ---> CH4 + 2 H2O Methanobacterium Methanococcus CO2 + 4 H2 + 2 CO2 ---> Acetate + H + 2 H2O Acetanaerobium 4H4 H2 +H+ H2SO4 --->H> H2S+4HS + 4 H2O DlfiDesulfacinum Desulfotomaculum 2 SO4 - VFA + x H2SO4 --> y H2S + z H2O Desulfotomaculum Archaeoglobus Electron acceptors available in oil field ecosystems ?? 2- - 4H2 + S2O3 --> 2H2S + H2O + 2OH Thermotoga Desulfotomaculum Archaeoglobus 2- S2O3 Oxydation of organic matter Thermoanaerobacter coupldled to red ucti on of fhi thiosulf ate Thermo toga Electron acceptors available in oil field ecosystems ?? - Shllfhewanella putrefaciens Fe3+ - Deferribacter thermophilus - Thermotoga spp. - Archaeoglobus fulgidus - GillttidGarciella ntratireducens - Petrobacter succinatimandens - NO3 - Denitrivibrio acetophilus - Geobacillus spp; Microbi al di versit y of anaerobes in oilfield environments Corrosion in pppipelines Photographs kindly provided by M. Magot The sulfate-reducing bacteria Desulfovibrio gracilis Desulfovibrio capillatus 10% Desulfovibrio longus Desulfovibrio bastinii Desulfovibrio vietnamensis Desulfovibrio gabonensis DlfblbhbdfiDesulfobulbus rhabdoformis Desulfobacterium cetonicum Desulfobacter vibrioformis Thermodesulforhabdus norvegicus Desulfacinum subterraneum Desulfacinum infernum Desulfotomaculum nigrificans Desulfotomaculum halophilum Desulfotomaculum thermocisternum. Desulfotomaculum kuznetsovii Thermodesulfobacterium commune Thermodesulfobacterium thermophilum Archaeoglobus profundus Archaeoglobus fulgidus Archaeoglobus lithotrophicus Methanohalophilus mahii Methanohalophilus euhalobius 5% Methanomethylovorans hollandica Methanococcoides methylutans Methanolobus tindarius The Methanoarchaea Methanosarcina mazei MthMethanosarc ina b ark eri Methanosarcina siciliae Methanohalobium evestigatum Methanomicrococcus blatticolus Methanosaeta concilii Methanocorpusculum parvum Methanocalculus halotolerans Methanospirillum hungatei Methanofollis tationis MthMethanocu lleus b ourgensi s Methanogenium cariaci Methanoplanus limicola Methanomicrobium mobile Methanolacinia ppyaynteri Methanoplanus petrolearius Methanococcus vannielii Methanothermococcus thermolithotrophicus Methanotorris igneus MthMethanoca ldococcus j annaschii Methanothermus fervidus Methanothermobacter thermautotrophicus Methanosphaera stadtmanae Methanobrevibacter ruminantium Methanobacterium subterraneum Methanobacterium ivanovii Methanobacterium bryantii The fermentative thermophilic bacteria 5% Fervidobacterium islandicum DSM 5733T 100 Fervidobacterium gondwanense ACM 5017T 100 Fervidobacterium nodosum ATCC 35602T Thermopppallium natronophilum DSM 9460T 95 100 Marinitoga piezophila DSM 14283T Marinitoga camini DSM 13578T 100 100 Geotoga subterranea ATCC 51225T T 100 Geotoggpa petraea ATCC 51226 Petrotoga mobilis DSM 10674T 100 Petrotoga mexicanus DSM 14811T 97 Petrotoga sibirica DSM 13575T Petrotoga olearia DSM 13574T 100 Petrotoga miotherma DSM 10691T 100 Thermotoga lettingae DSM 14385T 100 Thermotoga elfii DSM 9442T Thermophilic Thermotoga subterranea DSM 9912T Thermotoga thermarum DSM 5069T Thermotoga hypogea DSM 11164T Thermotoga naphthophila DSM 13996T 100 Thermotoga petrophila DSM 13995T Hyperthermophilic 96 Thermot oga neapolit ana DSM 4359T Thermotoga maritima DSM 3109T Thermosipho geolei DSM 13256T 100 Thermosipho melanesiensis CIP 104789T Thermosipho japonicus DSM 13481T 100 Thermosipho africanus DSM 5309T Aquifex pyrophilus DSM 6858T Petrotoga mexicana • Isolated from a Mexican oil field. • Motile rod with toga, Gram negative, Thermophilic and halophilic. • Anaerobe fermenting sugars into acetate, lactate, L-alanine, H2 et CO2. • Thiosu lfate-reducer. opt. Temp.: 55°C (30-65°C), opt. pH : 666,6 (5(58,8-65)6,5) opt. NaCl : 3 % (1-20 %). Thermotoga hypogea • Isolated from an African oil field, (Cameroon) •The most thermophilic microorganism, domain Bacteria • Optimum Temperature : 70 - 75°C • Range Temperature: 56 - 92°C • Anaerobe reducing thiosulfate Thermotoga elfii O. D. 580 nm 0.6 + Thiosu lfat e 040.4 - Thiosu lfat e 0.2 1 μm 0 20 40 60 Hours Isolation of Thermotoga elfii from oil reservoirs Figure kindly provided by M. Magot Isolation of Archaeoglobus fulgidus. from oil reservoirs The fermentative halophilic bacteria Halanaerobium praevalens Halanaerobium alcaliphilum Halanaerobium sacch. subsp. senegalense Halanaerobium sacch. subsp. saccharolyticum Halanaerobium kushneri Halanaerobium acetethylicum Halanaerobiaceae Halanaerobium congolense 10% Halanaerobium lacurosei Halanaerobium fermentans Halanaerobium salsuginis Halothermothrix orenii Halocella cellulosilytica Sporohalobacter lortetii Acetohalobium arabaticum Se len ihal anaerob act er sh riftii Orenia salinaria Orenia marismortui Orenia sivashensis Halobacteroidaceae Natroniella acetigena Halobacteroides halobius Halobacteroides elegans Halanaerobacter lacunarum Halanaerobacter chitinivorans Halanaerobacter salinarius Natronincola histidinovorans HlHalanaero bium congo lense • Isolated from an oilfield water in Congo • Heterotrophic thiosulfate-reducing microbe •Opppt. temp. : 42°C (>20-<45°C), • Opt. pH : 7,0 (6,3-8,5), • Op t. Na Cl : 10% (4-24%) A question of major concern in petroleum microbiology ? Conclusion and questions ? ¾ Reports in scientific literature indicate that there is a wide range of microorganisms (mainly anaerobes) inhabiting oil reservoirs. Temperature and salinity are limiting physico-chemical factors for their development ¾ Methanoarchaea have been significant intervenors in oil degradation in shallow deep subsurface petroleum reservoirs, what about the deep hot ones ? ¾ Which anaerobes (mesophilic to hyperthermophilic) might have been possibly involved in hydrocarbon oxidation (synthrophs or sulfate-reducing bacteria, etc..)? ¾ What about the biogeochemical role to be played by common microbial populations inhabiting oil reservoirs (Unknown metabolism? Utilization of hydrogen or volatile fatty acids by members of the order Thermotogales or by sulfate-reducing bacteria using minerals (sulfate, iron ?) or methanoarchaea as terminal electron acceptors)? Thanks for your attention.
Recommended publications
  • Regeneration of Unconventional Natural Gas by Methanogens Co
    www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP.
    [Show full text]
  • Evaluation of 16S Rrna Primer Sets for Characterisation of Microbiota in Paediatric Patients with Autism Spectrum Disorder L
    www.nature.com/scientificreports OPEN Evaluation of 16S rRNA primer sets for characterisation of microbiota in paediatric patients with autism spectrum disorder L. Palkova1,2, A. Tomova3, G. Repiska3, K. Babinska3, B. Bokor4, I. Mikula5, G. Minarik2, D. Ostatnikova3 & K. Soltys4,6* Abstract intestinal microbiota is becoming a signifcant marker that refects diferences between health and disease status also in terms of gut-brain axis communication. Studies show that children with autism spectrum disorder (ASD) often have a mix of gut microbes that is distinct from the neurotypical children. Various assays are being used for microbiota investigation and were considered to be universal. However, newer studies showed that protocol for preparing DNA sequencing libraries is a key factor infuencing results of microbiota investigation. The choice of DNA amplifcation primers seems to be the crucial for the outcome of analysis. In our study, we have tested 3 primer sets to investigate diferences in outcome of sequencing analysis of microbiota in children with ASD. We found out that primers detected diferent portion of bacteria in samples especially at phylum level; signifcantly higher abundance of Bacteroides and lower Firmicutes were detected using 515f/806r compared to 27f/1492r and 27f*/1495f primers. So, the question is whether a gold standard of Firmicutes/Bacteroidetes ratio is a valuable and reliable universal marker, since two primer sets towards 16S rRNA can provide opposite information. Moreover, signifcantly higher relative abundance of Proteobacteria was detected using 27f/1492r. The beta diversity of sample groups difered remarkably and so the number of observed bacterial genera. An advent of massively parallel sequencing (MPS) technologies has revolutionized an investigating of human microbiota1.
    [Show full text]
  • Anaerobic Digestion of the Microalga Spirulina at Extreme Alkaline Conditions: Biogas Production, Metagenome, and Metatranscriptome
    ORIGINAL RESEARCH published: 22 June 2015 doi: 10.3389/fmicb.2015.00597 Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome Vímac Nolla-Ardèvol 1*, Marc Strous 1, 2, 3 and Halina E. Tegetmeyer 1, 3, 4 1 Institute for Genome Research and Systems Biology, Center for Biotechnology, University of Bielefeld, Bielefeld, Germany, 2 Department of Geoscience, University of Calgary, Calgary, AB, Canada, 3 Microbial Fitness Group, Max Planck Institute for Marine Microbiology, Bremen, Germany, 4 HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany A haloalkaline anaerobic microbial community obtained from soda lake sediments was Edited by: Mark Alexander Lever, used to inoculate anaerobic reactors for the production of methane rich biogas. The ETH Zürich, Switzerland microalga Spirulina was successfully digested by the haloalkaline microbial consortium + Reviewed by: at alkaline conditions (pH 10, 2.0 M Na ). Continuous biogas production was observed Aharon Oren, and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted The Hebrew University of Jerusalem, Israel as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S Ronald Oremland, in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g United States Geological Survey, USA Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational *Correspondence: Vímac Nolla-Ardèvol, parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis Institute for Genome Research and of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 Systems Biology, Center for aquatic group” while the hydrogenotrophic pathway was the main producer of methane Biotechnology, University of Bielefeld, Office G2-152, Universitätstraße 27, in a methanogenic community dominated by Methanocalculus.
    [Show full text]
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae
    resources Review Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae Nunzia Esercizio 1 , Mariamichela Lanzilli 1 , Marco Vastano 1 , Simone Landi 2 , Zhaohui Xu 3 , Carmela Gallo 1 , Genoveffa Nuzzo 1 , Emiliano Manzo 1 , Angelo Fontana 1,2 and Giuliana d’Ippolito 1,* 1 Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; [email protected] (N.E.); [email protected] (M.L.); [email protected] (M.V.); [email protected] (C.G.); [email protected] (G.N.); [email protected] (E.M.); [email protected] (A.F.) 2 Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; [email protected] 3 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA; [email protected] * Correspondence: [email protected] Abstract: The abundance of organic waste generated from agro-industrial processes throughout the world has become an environmental concern that requires immediate action in order to make the global economy sustainable and circular. Great attention has been paid to convert such nutrient- rich organic waste into useful materials for sustainable agricultural practices. Instead of being an environmental hazard, biodegradable organic waste represents a promising resource for the Citation: Esercizio, N.; Lanzilli, M.; production of high value-added products such as bioenergy, biofertilizers, and biopolymers. The Vastano, M.; Landi, S.; Xu, Z.; Gallo, ability of some hyperthermophilic bacteria, e.g., the genera Thermotoga and Pseudothermotoga, to C.; Nuzzo, G.; Manzo, E.; Fontana, A.; anaerobically ferment waste with the concomitant formation of bioproducts has generated great d’Ippolito, G.
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Complete Genome Sequence of the Hyperthermophilic Bacteria- Thermotoga Sp
    COMPLETE GENOME SEQUENCE OF THE HYPERTHERMOPHILIC BACTERIA- THERMOTOGA SP. STRAIN RQ7 Rutika Puranik A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2015 Committee: Zhaohui Xu, Advisor Scott Rogers George Bullerjahn © 2015 Rutika Puranik All Rights Reserved iii ABSTRACT Zhaohui Xu, Advisor The genus Thermotoga is one of the deep-rooted genus in the phylogenetic tree of life and has been studied for its thermostable enzymes and the property of hydrogen production at higher temperatures. The current study focuses on the complete genome sequencing of T. sp. strain RQ7 to understand and identify the conserved as well as variable properties between the strains and its genus with the approach of comparative genomics. A pipeline was developed to assemble the complete genome based on the next generation sequencing (NGS) data. The pipeline successfully combined computational approaches with wet lab experiments to deliver a completed genome of T. sp. strain RQ7 that has the genome size of 1,851,618 bp with a GC content of 47.1%. The genome is submitted to Genbank with accession CP07633. Comparative genomic analysis of this genome with three other strains of Thermotoga, helped identifying putative natural transformation and competence protein coding genes in addition to the absence of TneDI restriction- modification system in T. sp. strain RQ7. Genome analysis also assisted in recognizing the unique genes in T. sp. strain RQ7 and CRISPR/Cas system. This strain has 8 CRISPR loci and an array of Cas coding genes in the entire genome.
    [Show full text]
  • Counts Metabolic Yr10.Pdf
    Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering.
    [Show full text]
  • Crude-Oil-Degrading Thermophilic Bacterium Isolated from an Oil Field
    175 Crude-oil-degrading thermophilic bacterium isolated from an oil field Ruixia Hao, Anhuai Lu, and Guanyu Wang Abstract: Thermophilic bacterium strain C2, which has the ability to transform crude oils, was isolated from the reser- voir of the Shengli oil field in East China. The Gram-negative, rod-shaped, nonmotile cells were grown at a high tem- perature, up to 83 °C, in the neutral to alkaline pH range. Depending on the culture conditions, the organism occurred as single rods or as filamentous aggregates. Strain C2 was grown chemoorganotrophically and produced metabolites, such as volatile fatty acids, 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl)ester, dibutyl phthalate, and di-n-octyl phthalate. It could metabolize different organic substrates (acetate, D-glucose, fructose, glycerol, maltose, pyruvate, starch, sucrose, xylose, hexadecane). The G+C content (68 mol%) and the 16S rRNA sequence of strain C2 indicated that the isolate belonged to the genus Thermus. The strain affected different crude oils and changed their physical and chemical prop- erties. The biochemical interactions between crude oils and strain C2 follow distinct trends characterized by a group of chemical markers (saturates, aromatics, resins, asphaltenes). Those trends show an increase in saturates and a decrease in aromatics, resins, and asphaltenes. The bioconversion of crude oils leads to an enrichment in lighter hydrocarbons and an overall redistribution of these hydrocarbons. Key words: thermophile, metabolite, crude oil, degradation, conversion. Résumé : La souche de bactéries thermophiles C2, qui a la capacité de transformer les pétroles bruts, a été isolée d’un réservoir du champs pétrolifère de Shengli dans la Chine orientale.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Towards a Congruent Reclassification And
    Towards a congruent reclassification and nomenclature of the thermophilic species of the genus Pseudothermotoga within the order Thermotogales Hassiba Belahbib, Zarath Summers, Marie-Laure Fardeau, Manon Joseph, Christian Tamburini, Alain Dolla, Bernard Ollivier, Fabrice Armougom To cite this version: Hassiba Belahbib, Zarath Summers, Marie-Laure Fardeau, Manon Joseph, Christian Tamburini, et al.. Towards a congruent reclassification and nomenclature of the thermophilic species of thegenus Pseudothermotoga within the order Thermotogales. Systematic and Applied Microbiology, Elsevier, 2018, 41 (6), pp.555-563. 10.1016/J.SYAPM.2018.04.007. hal-01975970 HAL Id: hal-01975970 https://hal.archives-ouvertes.fr/hal-01975970 Submitted on 9 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards a congruent reclassification and nomenclature of the thermophilic species of the genus Pseudothermotoga within the order Thermotogales a b a a Hassiba Belahbib , Zarath M. Summers , Marie-Laure Fardeau , Manon Joseph , a c a a,∗ Christian Tamburini , Alain Dolla , Bernard Ollivier , Fabrice Armougom a Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France b ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ 08801, United States c Aix Marseille Univ, CNRS, LCB, Marseille, France a r t i c l e i n f o a b s t r a c t Article history: The phylum Thermotogae gathers thermophilic, hyperthermophic, mesophilic, and thermo-acidophilic Received 15 December 2017 anaerobic bacteria that are mostly originated from geothermally heated environments.
    [Show full text]
  • Responses to the Hydrostatic Pressure of Surface
    Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well Marie Roumagnac, Nathalie Pradel, Manon Bartoli, Marc Garel, Aaron Jones, Fabrice Armougom, Romain Fenouil, Christian Tamburini, Bernard Ollivier, Zarath Summers, et al. To cite this version: Marie Roumagnac, Nathalie Pradel, Manon Bartoli, Marc Garel, Aaron Jones, et al.. Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well. Frontiers in Microbiology, Frontiers Media, 2020, 11, 10.3389/fmicb.2020.588771. hal-03152104 HAL Id: hal-03152104 https://hal.archives-ouvertes.fr/hal-03152104 Submitted on 27 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 04 December 2020 doi: 10.3389/fmicb.2020.588771 Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well Edited by: 1 1 1 1 2 Nils-Kaare Birkeland, Marie Roumagnac , Nathalie Pradel , Manon Bartoli , Marc Garel , Aaron A.
    [Show full text]