Development of Genetic Tools for Thermotoga Spp

Total Page:16

File Type:pdf, Size:1020Kb

Development of Genetic Tools for Thermotoga Spp DEVELOPMENT OF GENETIC TOOLS FOR THERMOTOGA SPP. Dongmei Han A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2013 Committee: Dr. Zhaohui Xu, Advisor Dr. Lisa C. Chavers Graduate Faculty Representative Dr. George S. Bullerjahn Dr. Raymond A. Larsen Dr. Scott O. Rogers © 2013 Dongmei Han All Rights Reserved iii ABSTRACT Zhaohui Xu, Advisor Thermotoga spp. may serve as model systems for understanding life sustainability under hyperthermophilic conditions. They are also attractive candidates for producing biohydrogen in industry. However, a lack of genetic tools has hampered the investigation and application of these organisms. We improved the cultivation method of Thermotoga spp. for preparing and handling Thermotoga solid cultures under aerobic conditions. An embedded method achieved a plating efficiency of ~ 50%, and a soft SVO medium was introduced to bridge isolating single Thermotoga colonies from solid medium to liquid medium. The morphological change of T. neapolitana during the growth process was observed through scanning electron microscopy and transmission electron microscopy. At the early exponential phase, around OD600 0.1 – 0.2, the area of adhered region between toga and cell membrane was the largest, and it was suspected to be the optimal time for DNA uptake in transformation. The capacity of natural transformation was found in T. sp. RQ7, but not in T. maritima. A Thermotoga-E. coli shuttle vector pDH10 was constructed using pRQ7, a cryptic mini-plasmid isolated from T. sp. RQ7. Plasmid pDH10 was introduced to T. sp. RQ7 by liposome-mediated transformation, electroporation, and natural transformation, and to T. maritima through liposome- mediated transformation and electroporation. Transformants were isolated, and the transformed kanamycin resistance gene (kan) was detected from the plasmid DNA extract of the recombinant strains by PCR followed by restriction digestions. The transformed DNA was stably maintained in both Thermotoga and E. coli even without iv the selection pressure. A uracil auxotrophic strain RQ7-15, with a 115 bp deletion near the 3' end of pyrE gene on T. sp. RQ7 chromosome, was isolated and used as the recipient cell for using pyrE as the selection marker. The pyrE gene from Caldicellulosiruptor saccharolyticus was expressed in RQ7-15, driven by either promoter PslpA from Thermus thermophilus or promoter PRQ7.pyr, which is the promoter of the pyrimidine synthesis operon of T. sp. RQ7. This work advanced the development of genetic tools for the study of Thermotoga. v Dedicated to my parents, Zhixiang Han and Enqiu Gao. vi ACKNOWLEDGMENTS I owe my deepest gratitude to my advisor, Dr. Zhaohui Xu. Without your support, guidance, encouragement, and patience, this work could not be accomplished successfully. I was honored to be your Ph.D. student and sincerely appreciate everything you have done for me. I would also like to thank my committee members, Dr. Scott Rogers, Dr. George Bullerjahn, Dr. Ray Larsen, and Dr. Lisa Chavers, for their advice and help on my project. I would like to thank Dr. Carol Heckman and Dr. Marilyn Cayer for your guidance and assistance with Electron Microscopes. I would like to thank Dr. Paul Morris for lending me the equipment in his lab generously. I would also like to thank the members of the Xu lab: Dr. Uksha Snini, Patel Jigar, Jingjing Cao, Rutika Puranik, Hui Xu, and Stephen Morris. Many thanks to your help, suggestion, and support during the past five years. It was a great time to work together with all of you. I am grateful to Linda Treeger, Susan Schooner, Chris Hess, Sheila Kratzer, Steve Queen, and Dee Dee Wentland for all your help and patience. Finally, I would like to thank my family for all your love and support. vii TABLE OF CONTENTS GENERAL INTRODUCTION ...................................................................................... 1 The evolutionary significance of Thermotoga ........................................................ 2 The potentials of Thermotoga in producing biomass-based fuels .......................... 4 The development of genetic tools for the study of hyperthermophiles .................. 7 Chapter I. Improvement of the cultivation method of Thermotoga spp. ..................... 11 Introduction .......................................................................................................... 11 Materials and Methods ......................................................................................... 13 Strains and growth condition ......................................................................... 13 Sensitivity of Thermotoga to oxygen ............................................................ 16 Results and Discussion ......................................................................................... 16 Sensitivity of Thermotoga to oxygen ............................................................ 16 Improved methods for handling Thermotoga cultures in an aerobic environment ................................................................................................... 18 Isolation of single colonies from plates ......................................................... 19 Conclusion ............................................................................................................ 21 Chapter II. The morphological change of Thermotoga during the growth process ..... 24 Introduction .......................................................................................................... 24 Materials and Methods ......................................................................................... 25 Growth curve of Thermotoga ........................................................................ 25 Scanning electron microscopy (SEM) ........................................................... 26 viii Transmission Electron Microscopy (TEM) ................................................... 26 Results and Discussion ......................................................................................... 27 Growth curve of T. neapolitana. ................................................................... 27 The morphological change of Thermotoga cells revealed by Scanning Electron Microscopy ..................................................................................... 28 Transmission Electron Microscopy revealed the inside structure change of Thermotoga cells ........................................................................................... 30 Conclusion ............................................................................................................ 32 Chapter III. Construction and transformation of a Thermotoga-E. coli shuttle vector pDH10 .......................................................................................................................... 34 Introduction .......................................................................................................... 34 Materials and Methods ......................................................................................... 38 Strains and growth condition ......................................................................... 38 Nucleic acid extraction .................................................................................. 39 Sensitivity of Thermotoga to different antibiotics ........................................ 41 Construction of vectors ................................................................................. 42 Transformation and selection methods of Thermotoga ................................. 44 Selection and verification of Thermotoga transformants .............................. 46 Stability assays of the transformed DNA in Thermotoga and E. coli ........... 47 Results and Discussion ......................................................................................... 48 Sensitivity of Thermotoga strains to different antibiotics ............................. 48 Thermotoga is naturally transformable ......................................................... 52 ix Transformation of Thermotoga ..................................................................... 54 Verification of Thermotoga transformants .................................................... 55 Transformed pDH10 was stably maintained in Thermotoga ........................ 57 Incorporation of pRQ7 increased the stability of pUC19 derivatives in E. coli ....................................................................................................................... 58 Conclusion ............................................................................................................ 60 Chapter IV. Isolation of uracil auxotrophs of T. sp. RQ7 and a new thermostable selective marker for Thermotoga ................................................................................. 63 Introduction .......................................................................................................... 63 Materials and Methods ......................................................................................... 64 Strains and growth conditions ....................................................................... 64 DNA analysis ................................................................................................. 65 Construction of vectors ................................................................................. 66 The inhibition
Recommended publications
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Online Supplementary Figures of Chapter 3
    Online Supplementary Figures of Chapter 3 Fabio Gori Figures 1-30 contain pie charts showing the population characterization re- sulting from the taxonomic assignment computed by the methods. On the simulated datasets the true population distribution is also shown. 1 MTR Bacillales (47.11%) Thermoanaerobacterales (0.76%) Clostridiales (33.58%) Lactobacillales (7.99%) Others (10.55%) LCA Bacillales (48.38%) Thermoanaerobacterales (0.57%) Clostridiales (32.14%) Lactobacillales (10.07%) Others (8.84%) True Distribution 333 386 Prochlorales (5.84%) 535 Bacillales (34.61%) Halanaerobiales (4.37%) Thermoanaerobacterales (10.29%) Clostridiales (28.75%) Lactobacillales (9.38%) 1974 Herpetosiphonales (6.77%) 1640 249 587 Figure 1: Population distributions (rank Order) of M1, coverage 0.1x, by MTR and LCA, and the true population distribution. 2 MTR Bacillus (47.34%) Clostridium (14.61%) Lactobacillus (8.71%) Anaerocellum (11.41%) Alkaliphilus (5.14%) Others (12.79%) LCA Bacillus (51.41%) Clostridium (8.08%) Lactobacillus (9.23%) Anaerocellum (15.79%) Alkaliphilus (5.17%) Others (10.31%) True Distribution 386 552 Herpetosiphon (6.77%) 333 Prochlorococcus (5.84%) 587 Bacillus (34.61%) Clostridium (19.07%) Lactobacillus (9.38%) 249 Halothermothrix (4.37%) Caldicellulosiruptor (10.29%) Alkaliphilus (9.68%) 535 1974 1088 Figure 2: Population distributions (rank Genus) of M1, coverage 0.1x, by MTR and LCA, and the true population distribution. 3 MTR Prochlorales (0.07%) Bacillales (47.97%) Thermoanaerobacterales (0.66%) Clostridiales (32.18%) Lactobacillales (7.76%) Others (11.35%) LCA Prochlorales (0.10%) Bacillales (49.02%) Thermoanaerobacterales (0.59%) Clostridiales (30.62%) Lactobacillales (9.50%) Others (10.16%) True Distribution 3293 3950 Prochlorales (5.65%) 5263 Bacillales (36.68%) Halanaerobiales (3.98%) Thermoanaerobacterales (10.56%) Clostridiales (27.34%) Lactobacillales (9.03%) 21382 Herpetosiphonales (6.78%) 15936 2320 6154 Figure 3: Population distributions (rank Order) of M1, coverage 1x, by MTR and LCA, and the true population distribution.
    [Show full text]
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Microbial Diversity of Non-Flooded High Temperature Petroleum Reservoir in South of Iran
    Archive of SID Biological Journal of Microorganism th 8 Year, Vol. 8, No. 32, Winter 2020 Received: November 18, 2018/ Accepted: May 21, 2019. Page: 15-231- 8 Microbial Diversity of Non-flooded High Temperature Petroleum Reservoir in South of Iran Mohsen Pournia Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Nima Bahador * Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Meisam Tabatabaei Biofuel Research Team (BRTeam), Karaj, Iran, [email protected] Reza Azarbayjani Molecular bank, Iranian Biological Resource Center, ACECR, Karaj, Iran, [email protected] Ghassem Hosseni Salekdeh Department of Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, [email protected] Abstract Introduction: Although bacteria and archaea are able to grow and adapted to the petrol reservoirs during several years, there are no results from microbial diversity of oilfields with high temperature in Iran. Hence, the present study tried to identify microbial community in non-water flooding Zeilaei (ZZ) oil reservoir. Materials and methods: In this study, for the first time, non-water flooded high temperature Zeilaei oilfield was analyzed for its microbial community based on next generation sequencing of 16S rRNA genes. Results: The results obtained from this study indicated that the most abundant bacterial community belonged to phylum of Firmicutes (Bacilli ) and Thermotoga, while other phyla (Proteobacteria , Actinobacteria and Synergistetes ) were much less abundant. Bacillus subtilis , B. licheniformis , Petrotoga mobilis , P. miotherma, Fervidobacterium pennivorans , and Thermotoga subterranea were observed with high frequency. In addition, the most abundant archaea were Methanothermobacter thermautotrophicus . Discussion and conclusion: Although there are many reports on the microbial community of oil filed reservoirs, this is the first report of large quantities of Bacillus spp.
    [Show full text]
  • Aglycone Specificity of Thermotoga Neapolitana B-Glucosidase 1A
    Khan et al. BMC Biochemistry 2011, 12:11 http://www.biomedcentral.com/1471-2091/12/11 RESEARCHARTICLE Open Access Aglycone specificity of Thermotoga neapolitana b-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis Samiullah Khan1, Tania Pozzo1, Márton Megyeri1,2, Sofia Lindahl3, Anders Sundin3, Charlotta Turner3, Eva Nordberg Karlsson1* Abstract Background: The thermostable b-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-b-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. Results: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on b-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt), was kept in the mutated variants and significant decrease (ΔTof5 - 10°C) was only observed for the triple mutants.
    [Show full text]
  • Cone-Forming Chloroflexi Mats As Analogs of Conical
    268 Appendix 2 CONE-FORMING CHLOROFLEXI MATS AS ANALOGS OF CONICAL STROMATOLITE FORMATION WITHOUT CYANOBACTERIA Lewis M. Ward, Woodward W. Fischer, Katsumi Matsuura, and Shawn E. McGlynn. In preparation. Abstract Modern microbial mats provide useful process analogs for understanding the mechanics behind the production of ancient stromatolites. However, studies to date have focused on mats composed predominantly of oxygenic Cyanobacteria (Oxyphotobacteria) and algae, which makes it difficult to assess a unique role of oxygenic photosynthesis in stromatolite morphogenesis, versus different mechanics such as phototaxis and filamentous growth. Here, we characterize Chloroflexi-rich hot spring microbial mats from Nakabusa Onsen, Nagano Prefecture, Japan. This spring supports cone-forming microbial mats in both upstream high-temperature, sulfidic regions dominated by filamentous anoxygenic phototrophic Chloroflexi, as well as downstream Cyanobacteria-dominated mats. These mats produce similar morphologies analogous to conical stromatolites despite metabolically and taxonomically divergent microbial communities as revealed by 16S and shotgun metagenomic sequencing and microscopy. These data illustrate that anoxygenic filamentous microorganisms appear to be capable of producing similar mat morphologies as those seen in Oxyphotobacteria-dominated systems and commonly associated with 269 conical Precambrian stromatolites, and that the processes leading to the development of these features is more closely related with characteristics such as hydrology and cell morphology and motility. Introduction Stromatolites are “attached, lithified sedimentary growth structures, accretionary away from a point or limited surface of initiation” (Grotzinger and Knoll 1999). Behind this description lies a wealth of sedimentary structures with a record dating back over 3.7 billion years that may be one of the earliest indicators of life on Earth (Awramik 1992, Nutman et al.
    [Show full text]
  • Thitiwut Vongkampang WEBB
    Exploring strategies to improve volumetric hydrogen productivities of Caldicellulosiruptor species Vongkampang, Thitiwut 2021 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Vongkampang, T. (2021). Exploring strategies to improve volumetric hydrogen productivities of Caldicellulosiruptor species. Department of Applied Microbiology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Exploring strategies to improve volumetric hydrogen productivities of Caldicellulosiruptor species THITIWUT VONGKAMPANG | APPLIED MICROBIOLOGY | LUND UNIVERSITY AN ECOLABEL 3041 0903 NORDIC SW ryck, Lund 2021 Printed by Media-T Mer de Glace is the largest glacier in France’s alpine, covering 30.4 sq.
    [Show full text]
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae
    resources Review Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae Nunzia Esercizio 1 , Mariamichela Lanzilli 1 , Marco Vastano 1 , Simone Landi 2 , Zhaohui Xu 3 , Carmela Gallo 1 , Genoveffa Nuzzo 1 , Emiliano Manzo 1 , Angelo Fontana 1,2 and Giuliana d’Ippolito 1,* 1 Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; [email protected] (N.E.); [email protected] (M.L.); [email protected] (M.V.); [email protected] (C.G.); [email protected] (G.N.); [email protected] (E.M.); [email protected] (A.F.) 2 Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; [email protected] 3 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA; [email protected] * Correspondence: [email protected] Abstract: The abundance of organic waste generated from agro-industrial processes throughout the world has become an environmental concern that requires immediate action in order to make the global economy sustainable and circular. Great attention has been paid to convert such nutrient- rich organic waste into useful materials for sustainable agricultural practices. Instead of being an environmental hazard, biodegradable organic waste represents a promising resource for the Citation: Esercizio, N.; Lanzilli, M.; production of high value-added products such as bioenergy, biofertilizers, and biopolymers. The Vastano, M.; Landi, S.; Xu, Z.; Gallo, ability of some hyperthermophilic bacteria, e.g., the genera Thermotoga and Pseudothermotoga, to C.; Nuzzo, G.; Manzo, E.; Fontana, A.; anaerobically ferment waste with the concomitant formation of bioproducts has generated great d’Ippolito, G.
    [Show full text]
  • Complete Genome Sequence of the Hyperthermophilic Bacteria- Thermotoga Sp
    COMPLETE GENOME SEQUENCE OF THE HYPERTHERMOPHILIC BACTERIA- THERMOTOGA SP. STRAIN RQ7 Rutika Puranik A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2015 Committee: Zhaohui Xu, Advisor Scott Rogers George Bullerjahn © 2015 Rutika Puranik All Rights Reserved iii ABSTRACT Zhaohui Xu, Advisor The genus Thermotoga is one of the deep-rooted genus in the phylogenetic tree of life and has been studied for its thermostable enzymes and the property of hydrogen production at higher temperatures. The current study focuses on the complete genome sequencing of T. sp. strain RQ7 to understand and identify the conserved as well as variable properties between the strains and its genus with the approach of comparative genomics. A pipeline was developed to assemble the complete genome based on the next generation sequencing (NGS) data. The pipeline successfully combined computational approaches with wet lab experiments to deliver a completed genome of T. sp. strain RQ7 that has the genome size of 1,851,618 bp with a GC content of 47.1%. The genome is submitted to Genbank with accession CP07633. Comparative genomic analysis of this genome with three other strains of Thermotoga, helped identifying putative natural transformation and competence protein coding genes in addition to the absence of TneDI restriction- modification system in T. sp. strain RQ7. Genome analysis also assisted in recognizing the unique genes in T. sp. strain RQ7 and CRISPR/Cas system. This strain has 8 CRISPR loci and an array of Cas coding genes in the entire genome.
    [Show full text]
  • Counts Metabolic Yr10.Pdf
    Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering.
    [Show full text]
  • Crude-Oil-Degrading Thermophilic Bacterium Isolated from an Oil Field
    175 Crude-oil-degrading thermophilic bacterium isolated from an oil field Ruixia Hao, Anhuai Lu, and Guanyu Wang Abstract: Thermophilic bacterium strain C2, which has the ability to transform crude oils, was isolated from the reser- voir of the Shengli oil field in East China. The Gram-negative, rod-shaped, nonmotile cells were grown at a high tem- perature, up to 83 °C, in the neutral to alkaline pH range. Depending on the culture conditions, the organism occurred as single rods or as filamentous aggregates. Strain C2 was grown chemoorganotrophically and produced metabolites, such as volatile fatty acids, 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl)ester, dibutyl phthalate, and di-n-octyl phthalate. It could metabolize different organic substrates (acetate, D-glucose, fructose, glycerol, maltose, pyruvate, starch, sucrose, xylose, hexadecane). The G+C content (68 mol%) and the 16S rRNA sequence of strain C2 indicated that the isolate belonged to the genus Thermus. The strain affected different crude oils and changed their physical and chemical prop- erties. The biochemical interactions between crude oils and strain C2 follow distinct trends characterized by a group of chemical markers (saturates, aromatics, resins, asphaltenes). Those trends show an increase in saturates and a decrease in aromatics, resins, and asphaltenes. The bioconversion of crude oils leads to an enrichment in lighter hydrocarbons and an overall redistribution of these hydrocarbons. Key words: thermophile, metabolite, crude oil, degradation, conversion. Résumé : La souche de bactéries thermophiles C2, qui a la capacité de transformer les pétroles bruts, a été isolée d’un réservoir du champs pétrolifère de Shengli dans la Chine orientale.
    [Show full text]