1 Introduction 2 Donald Knuth, Une Référence Dans Le

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction 2 Donald Knuth, Une Référence Dans Le Jérémie ROUX HLSE403 L2 CMI Informatique Dancing with Donald Étude bibliographique 1 Introduction L’objectif de cette étude bibliographique est d’étudier des problèmes algorithmiques en particulier celui des Liens Valsants (traduit de Dancing Links) théorisés par Donald Knuth. "What a dance do they do Lordy, I am tellin’ you !" [6] (Harry Barris) 2 Donald Knuth, une référence dans le milieu de l’informatique Donald Ervin Knuth [7] est un informaticien et mathématicien américain, ancien professeur d’informatique à l’université Stanford [20]. Il a notamment participé à la genèse de l’algorithmique et a fait de nombreuses publications dans plusieurs branches de l’informatique théorique. Il est naturellement considéré par la plupart des informaticiens comme une référence (vivante qui plus est) et l’un des pionniers de l’informatique. Comment ne pas parler de Donald E. Knuth sans évoquer son fameux ouvrage "The Art Of Computer Programming" (TAOCP) [14][18] connu de la majorité des informaticiens ? Toujours en cours de rédaction, ces 7 volumes décrivent et expliquent différents pans de la programmation informatique. Cet ouvrage est d’autant plus une révolution à sa sortie et encore aujourd’hui, que pour éditer et mettre en page son texte Donald E. Knuth décide de créer le TEX [12][19][15]. Par exemple, le document que vous êtes en train de lire est mis en forme avec le système de composition de documents LATEX [4] qui est une extension du TEX. Le LATEX est utilisé dans les milieux académiques et scientifiques afin de produire des documents techniques, notamment grâce à son rendu de formules et autres symboles. Toujours utilisé aujourd’hui (la dernière version date de janvier 2014) et depuis sa création en 1977, cela a permis de créer une normalisation de la rédaction de ces documents. Donald E. Knuth a effectué de nombreuses publications qui se trouvent parfois regroupées dans des recueils dont certains sont traduits en Français, comme "Algorithmes" [21] (traduit par Patrick Cégielski). On trouve dans ce recueil un article qui évoque les Liens Valsants [16] que nous étudierons en particulier au cours de ce stage. Cela va nous servir de base à leur compréhension. Nous disposons donc de l’article original et de sa traduction en Français. 3 Les Liens Valsants, un problème combinatoire Les Liens Valsants [16] (ou Dancing Links en anglais) sont une technique évoquée par Donald E. Knuth pour améliorer son algorithme X. L’algorithme X [11] est un algorithme récursif de parcours en profondeur. Il permet d’optimiser le temps de calcul du problème de couverture exacte de matrice (EMC) [3]. Cela a été développé d’abord par S. Cook [9] (en 1971) puis par R. Karp [17][13] (en 1972) connu notamment pour ses recherches en théorie de la complexité. Si on représente ce problème sous la forme d’une matrice contenant des 0 et des 1, l’objectif est de déterminer un sous-ensemble de lignes tel que le chiffre 1 n’apparaisse dans chaque colonne qu’une et une seule fois. Les Liens Valsants (voir Figure 1) permettent à D. E. Knuth d’améliorer son algorithme X. Lorsque le parcours d’une arborescence aboutit à un résultat non-optimal (dont on sait que parcourir la suite de l’arbre à partir de ce noeud ne peut pas être efficace), l’algorithme remonte l’arbre pour trouver une solution au problème. C’est ce que l’on appelle le backtracking 1 [1]. 1. Retour sur trace 1 Jérémie ROUX HLSE403 L2 CMI Informatique Dancing with Donald Étude bibliographique Figure 1 – Les Liens Valsants écrits de la main de D. E. Knuth D. E. Knuth décrit dans [16] les Liens Valsants Mon but est d’étudier une technique extrêmement simple méritant d’être mieux connue. Supposons que x pointe sur un élément d’une liste doublement chaînée ; disons que L[x] et R[x] pointent sur le prédécesseur et le successeur de cet élément. Les opérations L[R[x]] L[x] et R[L[x]] R[x] suppriment donc x de la liste ; tout programmeur sait cela. Mais, par contre, peu de programmeurs ont pris conscience que L[R[x]] x et R[L[x]] x replaceront x dans cette liste. 4 Programmes et jeux basés sur l’algorithme X Pour terminer, nous allons nous intéresser à plusieurs jeux et programmes basés sur l’algorithme X de Knuth. Le puissance 4 (ou Connect Four en anglais) [2] est un jeu de stratégie combinatoire abstrait, commercialisé pour la première fois en 1974 par la Milton Bradley Company (MB). Le but du jeu est d’aligner une suite de 4 pions de même couleur (diagonale, vertical ou horizontal) soumis à la gravité sur une grille 6x7 pions. Victor Allis (informaticien néerlandais) a travaillé sur une Intelligence Artificielle (IA) qui optimise la résolution du Puissance 4 [5]. L’arbre de recherche de Monte-Carlo [8] (ou Monte-Carlo Tree Search en anglais ou MCTS) est un algorithme de recherche basé sur la prise de décisions et le parcours d’une arborescence. Il est basé sur le backtracking. Il est beaucoup utilisé dans des jeux comme Go (jeu de plateau originaire de Chine) ou Othello (également appelé Reversi). Ces deux jeux de stratégie opposent des pierres noires et blanches qui représentent 2 joueurs. Ces joueurs adverses posent des pierres de leur couleur mais ne peuvent plus les déplacer par la suite et le but est d’avoir le plus de pierres à la fin de la partie. Dans le premier cas (Go), il s’agit d’enfermer l’adversaire en dressant une muraille autour de ses pierres, dans le deuxième cas (Othello), il suffit de disposer deux pions aux extrémités d’un alignement de pions adverses contigus afin d’en prendre le contrôle. 5 Conclusion De nombreux problèmes combinatoires sont régulièrement optimisés par les chercheurs. Ceux-ci publient des articles dans lesquels ils détaillent comment réduire la complexité d’algorithmes. On peut citer un exemple récent dans lequel il est démontré que l’on peut réduire la complexité de l’algorithme de Karatsuba (de multiplication de deux nombres entiers) : θ(n2) à sa découverte il y a 4000 ans, θ(n1:58) dans une optimisation datant des années 1960 et θ(n:log(n)) le 18 mars 2019 [10]. Pour aboutir à ces optimisations, les scientifiques changent l’approche du problème ainsi que les méthodes et les structures de données employées. Durant ce stage, nous allons nous intéresser aux points décrits dans cette étude : l’algorithme X de Donald E. Knuth qui permet de trouver efficacement les solutions au problème de couverture exacte, l’arbre de recherche de Monte-Carlo (MCTS) qui est à la base des programmes de résolution du jeu de Go et des échecs ainsi que le puissance 4 de Victor Allis qui est un jeu dont la résolution est un problème combinatoire. 2 Jérémie ROUX HLSE403 L2 CMI Informatique Dancing with Donald Étude bibliographique Références [1] Backtracking Algorithms - GeeksForGeeks.org. https://www.geeksforgeeks.org/ backtracking-algorithms/. [2] John’s Connect Four Playground. https://tromp.github.io/c4/c4.html. [3] NP Complete, Exact Cover. http://www.mathreference.com/lan-cx-np,excov.html. [4] LaTeX : a document preparation system. https://www.latex-project.org/. [5] Victor Allis. A Knowledge-based Approach of Connect-Four. Department of Mathematics and Computer Science Vrije, Universiteit Amsterdam, The Netherlands, Masters Thesis, Oct 1988. [6] Harry Barris. Mississippi Mud. New York : Shapiro, Bernstein Co., 1927. [7] Donald Knuth biography : School of Mathematics and Statistics (University of St Andrews of Scotland). https ://www-cs-faculty.stanford.edu/ knuth/. [8] Guillaume M.J-B. Chaslot, H.M. Winands Mark, H. Jaap Van Den Herik, Jos W.H.M. Uiterwijk, and Bruno Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation, Nov 2008. [9] Stephen Cook. The complexity of theorem proving procedures. Proc. 3rd Annual ACM Symposium on Theory of Computing (STOC), 1971. [10] David Harvey et Joris Van Der Hoeven. Integer multiplication in time θ(n:log(n)). <hal-02070778>, Mars 2019. [11] Algorithm X in 30 lines ! https://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html. [12] What is TeX ? : The TeX FAQ. https://texfaq.org/FAQ-whatTeX. [13] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller ; J. W. Thatcher ; J.D. Bohlinger. Complexity of Computer Computations. New York, 1972. [14] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley. Vol. 1 : Fundamental Algorithms (troisième édition 1997), Vol. 2 : Seminumerical Algorithms (troisième édition 1997), Vol. 3 : Sorting and Searching (seconde édition, 1998), Vol. 4A : Enumeration and Backtracking (2011), Vol. 4B, 4C et 4D en rédaction. [15] Donald E. Knuth. Tex : The program. Reading, Massachusetts : Addison-Wesley, 1986. [16] Donald E. Knuth. Dancing links. Jim Davies, Bill Roscoe, Jim Woodcock, Millennial Perspectives in Computer Science : Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, coll. « Cornerstones of Computing », novembre 2000. [17] Richard Karp : A.M. Turing Award Laureate. https://amturing.acm.org/award_winners/karp_ 3256708.cfm. [18] The Art of Computer Programming (TAOCP) by Donald E. Knuth. https://www-cs-faculty.stanford. edu/~knuth/taocp.html. [19] History of TeX : TeX Users Group. https://www.tug.org/whatis.html. [20] Don Knuth’s Home Page : Stanford Computer Science. https://www-cs-faculty.stanford.edu/~knuth/. [21] Donald Knuth (version française). Algorithmes. CSLI Publications et Société Mathématique de France, 2011. 3.
Recommended publications
  • Donald Knuth Fletcher Jones Professor of Computer Science, Emeritus Curriculum Vitae Available Online
    Donald Knuth Fletcher Jones Professor of Computer Science, Emeritus Curriculum Vitae available Online Bio BIO Donald Ervin Knuth is an American computer scientist, mathematician, and Professor Emeritus at Stanford University. He is the author of the multi-volume work The Art of Computer Programming and has been called the "father" of the analysis of algorithms. He contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it. In the process he also popularized the asymptotic notation. In addition to fundamental contributions in several branches of theoretical computer science, Knuth is the creator of the TeX computer typesetting system, the related METAFONT font definition language and rendering system, and the Computer Modern family of typefaces. As a writer and scholar,[4] Knuth created the WEB and CWEB computer programming systems designed to encourage and facilitate literate programming, and designed the MIX/MMIX instruction set architectures. As a member of the academic and scientific community, Knuth is strongly opposed to the policy of granting software patents. He has expressed his disagreement directly to the patent offices of the United States and Europe. (via Wikipedia) ACADEMIC APPOINTMENTS • Professor Emeritus, Computer Science HONORS AND AWARDS • Grace Murray Hopper Award, ACM (1971) • Member, American Academy of Arts and Sciences (1973) • Turing Award, ACM (1974) • Lester R Ford Award, Mathematical Association of America (1975) • Member, National Academy of Sciences (1975) 5 OF 44 PROFESSIONAL EDUCATION • PhD, California Institute of Technology , Mathematics (1963) PATENTS • Donald Knuth, Stephen N Schiller. "United States Patent 5,305,118 Methods of controlling dot size in digital half toning with multi-cell threshold arrays", Adobe Systems, Apr 19, 1994 • Donald Knuth, LeRoy R Guck, Lawrence G Hanson.
    [Show full text]
  • Solving Sudoku with Dancing Links
    Solving Sudoku with Dancing Links Rob Beezer [email protected] Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington USA Stellenbosch University October 8, 2010 Available at http://buzzard.pugetsound.edu/talks.html Example: Combinatorial Enumeration Create all permutations of the set f0; 1; 2; 3g Simple example to demonstrate key ideas Creation, cardinality, existence? There are more efficient methods for this example Rob Beezer (U Puget Sound) Solving Sudoku with Dancing Links Stellenbosch U October 2010 2 / 37 Brute Force Backtracking BLACK = Forward BLUE = Solution RED = Backtrack root 0 1 2 0 1 3 3 0 2 1 0 2 3 3 0 3 1 0 3 1 0 2 0 0 1 2 2 0 1 3 0 2 1 3 0 2 3 0 3 1 3 0 3 3 1 0 2 1 0 0 0 1 2 0 1 0 2 1 0 2 0 3 1 0 3 1 0 2 0 0 1 2 3 0 0 2 0 0 3 0 1 0 2 2 0 1 0 1 2 0 2 0 2 2 0 3 0 3 2 root 1 0 2 0 1 0 0 1 0 2 0 0 2 0 3 0 0 3 2 0 1 1 0 2 3 0 1 0 1 3 0 2 0 2 3 0 3 0 3 2 1 0 1 0 2 . 0 1 1 0 1 3 0 0 2 1 0 2 3 0 0 3 1 0 3 2 1 1 0 0 .
    [Show full text]
  • Posterboard Presentation
    Dancing Links and Sudoku A Java Sudoku Solver By: Jonathan Chu Adviser: Mr. Feinberg Algorithm by: Dr. Donald Knuth Sudoku Sudoku is a logic puzzle. On a 9x9 grid with 3x3 regions, the digits 1-9 must be placed in each cell such that every row, column, and region contains only one instance of the digit. Placing the numbers is simply an exercise of logic and patience. Here is an example of a puzzle and its solution: Images from web Nikoli Sudoku is exactly a subset of a more general set of problems called Exact Cover, which is described on the left. Dr. Donald Knuth’s Dancing Links Algorithm solves an Exact Cover situation. The Exact Cover problem can be extended to a variety of applications that need to fill constraints. Sudoku is one such special case of the Exact Cover problem. I created a Java program that implements Dancing Links to solve Sudoku puzzles. Exact Cover Exact Cover describes problems in h A B C D E F G which a mtrix of 0’s and 1’s are given. Is there a set of rows that contain exactly one 1 in each column? The matrix below is an example given by Dr. Knuth in his paper. Rows 1, 4, and 5 are a solution set. 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 We can represent the matrix with toriodal doubly-linked lists as shown above.
    [Show full text]
  • Covering Systems
    Covering Systems by Paul Robert Emanuel Bachelor of Science (Hons.), Bachelor of Commerce Macquarie University 2006 FACULTY OF SCIENCE This thesis is presented for the degree of Doctor of Philosophy Department of Mathematics 2011 This thesis entitled: Covering Systems written by Paul Robert Emanuel has been approved for the Department of Mathematics Dr. Gerry Myerson Prof. Paul Smith Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Thesis directed by Senior Lecturer Dr. Gerry Myerson and Prof. Paul Smith. Statement of Candidate I certify that the work in this thesis entitled \Covering Systems" has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree to any other university or institution other than Macquarie University. I also certify that the thesis is an original piece of research and it has been written by me. Any help and assistance that I have received in my research work and the prepa- ration of the thesis itself have been appropriately acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Paul Emanuel (40091686) March 2011 Summary Covering systems were introduced by Paul Erd}os[8] in 1950. A covering system is a collection of congruences of the form x ≡ ai(mod mi) whose union is the integers. These can then be specialised to being incongruent (that is, having distinct moduli), or disjoint, in which each integer satisfies exactly one congruence.
    [Show full text]
  • Visual Sudoku Solver
    Visual Sudoku Solver Nikolas Pilavakis MInf Project (Part 1) Report Master of Informatics School of Informatics University of Edinburgh 2020 3 Abstract In this report, the design, implementation and testing of a visual Sudoku solver app for android written in Kotlin is discussed. The produced app is capable of recog- nising a Sudoku puzzle using the phone’s camera and finding its solution(s) using a backtracking algorithm. To recognise the puzzle, multiple vision and machine learn- ing techniques were employed, using the OpenCV library. Techniques used include grayscaling, adaptive thresholding, Gaussian blur, contour edge detection and tem- plate matching. Digits are recognised using AutoML, giving promising results. The chosen methods are explained and compared to possible alternatives. Each component of the app is then evaluated separately, with a variety of methods. A very brief user evaluation was also conducted. Finally, the limitations of the implemented app are discussed and future improvements are proposed. 4 Acknowledgements I would like to express my sincere gratitude towards my supervisor, professor Nigel Topham for his continuous guidance and support throughout the academic year. I would also like to thank my family and friends for the constant motivation. Table of Contents 1 Introduction 7 2 Background 9 2.1 Sudoku Background . 9 2.2 Solving the Sudoku . 10 2.3 Sudoku recognition . 12 2.4 Image processing . 13 2.4.1 Grayscale . 13 2.4.2 Thresholding . 13 2.4.3 Gaussian blur . 14 3 Design 17 3.1 Design decisions . 17 3.1.1 Development environment . 17 3.1.2 Programming language . 17 3.1.3 Solving algorithm .
    [Show full text]
  • The Art of Computer Programming, Vol. 4A
    THE ART OF COMPUTER PROGRAMMING Missing pages from select printings of Knuth, The Art of Computer Programming, Volume 4A (ISBN-13: 9780201038040 / ISBN-10: 0201038048). Copyright © 2011 Pearson Education, Inc. All rights reserved. DONALD E. KNUTH Stanford University 6 77 ADDISON–WESLEY Missing pages from select printings of Knuth, The Art of Computer Programming, Volume 4A (ISBN-13: 9780201038040 / ISBN-10: 0201038048). Copyright © 2011 Pearson Education, Inc. All rights reserved. Volume 4A / Combinatorial Algorithms, Part 1 THE ART OF COMPUTER PROGRAMMING Boston · Columbus · Indianapolis · New York · San Francisco Amsterdam · Cape Town · Dubai · London · Madrid · Milan Munich · Paris · Montréal · Toronto · Mexico City · São Paulo Delhi · Sydney · Hong Kong · Seoul · Singapore · Taipei · Tokyo Missing pages from select printings of Knuth, The Art of Computer Programming, Volume 4A (ISBN-13: 9780201038040 / ISBN-10: 0201038048). Copyright © 2011 Pearson Education, Inc. All rights reserved. The poem on page 437 is quoted from The Golden Gate by Vikram Seth (New York: Random House, 1986), copyright ⃝c 1986 by Vikram Seth. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The publisher offers excellent discounts on this book when ordered in quantity forbulk purposes or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S.
    [Show full text]
  • ACM Bytecast Don Knuth - Episode 2 Transcript
    ACM Bytecast Don Knuth - Episode 2 Transcript Rashmi: This is ACM Bytecast. The podcast series from the Association for Computing Machinery, the ​ ​ world's largest educational and scientific computing society. We talk to researchers, practitioners, and innovators who are at the intersection of computing research and practice. They share their experiences, the lessons they've learned, and their own visions for the future of computing. I am your host, Rashmi Mohan. Rashmi: If you've been a student of computer science in the last 50 years, chances are you are very familiar and somewhat in awe of our next guest.An author, a teacher, computer scientist, and a mentor, Donald Connote wears many hats. Don, welcome to ACM Bytecast. ​ ​ Don: Hi. Rashmi: I'd like to lead with a simple question that I ask all my guests. If you could please introduce yourself and talk about what you currently do and also give us some insight into what drew you into this field of work. Don: Okay. So I guess the main thing about me is that I'm 82 years old, so I'm a bit older than a lot of the other people you'll be interviewing. But even so, I was pretty young when computers first came out. I saw my first computer in 1956 when I was 18 years old. So although people think I'm an old timer, really, there were lots of other people way older than me. Now, as far as my career is concerned, I always wanted to be a teacher. When I was in first grade, I wanted to be a first grade teacher.
    [Show full text]
  • Performance and Scalability of Sudoku Solvers
    Performance and Scalability of Sudoku Solvers Prestanda och Skalbarhet för Sudoku Lösare VIKSTÉN, HENRIK NORRA STATIONSGATAN 99 STOCKHOLM 113 64 073 643 76 29 [email protected] MATTSSON, VIKTOR FURUSUNDSGATAN 10 STOCKHOLM 115 37 073 061 74 90 [email protected] Bachelor’s Thesis at NADA Supervisor: Mosavat, Vahid Examiner: Björkman, Mårten TRITA xxx yyyy-nn Abstract This paper aims to clarify the differences in algorithm de- sign with a goal of solving sudoku. A few algorithms were chosen suitable to the problem, yet different from one an- other. To take an everyday puzzle and utilize common com- puter science algorithms and learn more about them. Get relevant data to see how they perform in situations, how easily they can be modified and used in larger sudokus. Also how their performance scales when the puzzle grows larger. From the results Dancing links was the fastest and scaled best of the algorithms tested, while Brute-force and Simu- lated annealing struggled keeping consistent results. Referat Prestanda och Skalbarhet för Sudoku Lösare Detta dokument syftar till att klargöra skillnaderna i algo- ritmer med målet att lösa sudoku. Välja ett par olika algo- rithmer lämpliga för problemet, men som samtidigt skiljer sig från varandra. Att ta ett dagligt pussel och utnyttja van- ligt förekommande algoritmer inom datavetenskap och lära sig mer om dem. Få relevant data och se hur de presterar i olika situationer, hur lätt de kan modifieras och användas i större Sudokus. Även hur deras prestanda skalar när puss- let blir större. Dancing links var den snabbaste algoritmen och skalade bäst av de som testades.
    [Show full text]
  • Donald E. Knuth Papers SC0097
    http://oac.cdlib.org/findaid/ark:/13030/kt2k4035s1 Online items available Guide to the Donald E. Knuth Papers SC0097 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives August 2018 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Donald E. Knuth SC00973411 1 Papers SC0097 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Donald E. Knuth papers Creator: Knuth, Donald Ervin, 1938- source: Knuth, Donald Ervin, 1938- Identifier/Call Number: SC0097 Identifier/Call Number: 3411 Physical Description: 39.25 Linear Feet Physical Description: 4.3 gigabyte(s)email files Date (inclusive): 1962-2018 Abstract: Papers reflect his work in the study and teaching of computer programming, computer systems for publishing, and mathematics. Included are correspondence, notes, manuscripts, computer printouts, logbooks, proofs, and galleys pertaining to the computer systems TeX, METAFONT, and Computer Modern; and to his books THE ART OF COMPUTER PROGRAMMING, COMPUTERS & TYPESETTING, CONCRETE MATHEMATICS, THE STANFORD GRAPHBASE, DIGITAL TYPOGRAPHY, SELECTED PAPERS ON ANALYSIS OF ALGORITHMS, MMIXWARE : A RISC COMPUTER FOR THE THIRD MILLENNIUM, and THINGS A COMPUTER SCIENTIST RARELY TALKS ABOUT. Special Collections and University Archives materials are stored offsite and must be paged 36-48 hours in advance. For more information on paging collections, see the department's website: http://library.stanford.edu/depts/spc/spc.html. Immediate Source of Acquisition note Gift of Donald Knuth, 1972, 1980, 1983, 1989, 1996, 1998, 2001, 2014, 2015, 2019.
    [Show full text]
  • The Art of Computer Programming, Vol. 4 Fascicle 6
    Computer Science/Programming/Algorithms The Art of Computer Programming New DONALD E. KNUTH This multivolume work on the analysis of algorithms has long been recognized as the definitive K description of classical computer science. The four volumes published to date already comprise a NUTH unique and invaluable resource in programming theory and practice. Countless readers have spoken NEWLY AVAILABLE SECTION OF about the profound personal influence of Knuth’s writings. Scientists have marveled at the beauty and elegance of his analysis, while practicing programmers have successfully applied his “cookbook” THE CLASSIC WORK solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books. To continue the fourth and later volumes of the set, and to update parts of the existing volumes, Knuth has created a series of small books called fascicles, which are published at regular intervals. The Art of Computer Programming Each fascicle encompasses a section or more of wholly new or revised material. Ultimately, the content of these fascicles will be rolled up into the comprehensive, final versions of each volume, and the enormous undertaking that began in 1962 will be complete. Volume 4 Fascicle 6 The Art of This fascicle, brimming with lively examples, forms the middle third of what will eventually become hardcover Volume 4B. It introduces and surveys “Satisfiability,’’ one of the most fundamental problems in all of computer science: Given a Boolean function, can its variables be set to at least one pattern of 0s and 1s that will make the function true? Satisfiability is far from an abstract exercise in understanding formal systems.
    [Show full text]
  • The Art of Computer Programming, Volume 4A David Walden Donald E. Knuth, T
    230 TUGboat, Volume 32 (2011), No. 2 An appreciation: The Art of Computer ters have been covered in depth by other books Programming, Volume 4A and as the topics covered by some of the chapters expanded dramatically (perhaps partially as a re- David Walden sult of Knuth's example of rigorous, comprehen- Donald E. Knuth, The Art of Computer sive books describing computer algorithms). To- Programming, Volume 4A: Combinatorial day Knuth hopes to produce five volumes, of which Algorithms, Part 1. Addison-Wesley, Boston. the current volume 4 will have at least three parts Jan. 2011. 912 pp. Hardcover, US$74.99. (books): http://www-cs-faculty.stanford.edu/ ISBN 0-201-03804-8. ~uno/taocp.html A book of algorithms relating to computer pro- Part 1 (that is, book 1) of Volume 4 (the overall gramming and their analysis (and about problem volume is on combinatorial algorithms) covers an solving more generally) would not normally be re- Introduction, Zeros and Ones (with four subsections) viewed in this journal about typesetting and fonts. and Generating All Possibilities (with one subsec- tion containing seven subsubsections). Curiously, However, TEX, TUG, and TUGboat would not exist without the problem Knuth faced in 1976 with the the second and third subsections on Generating All the typesetting of the second edition of Volume 2 of Possibilities are not due until Volume 4B. Perhaps at 912 pages (and after publication of the groups The Art of Computer Programming (TAOCP); and of pages from the book over the past half dozen or thus TAOCP is a key part of the history of the TEX world.
    [Show full text]
  • Generic Distributed Exact Cover Solver
    Generic Distributed Exact Cover Solver Jan Magne Tjensvold December 18, 2007 Abstract This report details the implementation of a distributed computing system which can be used to solve exact cover problems. This work is based on Donald E. Knuth’s recursive Dancing Links algorithm which is designed to efficiently solve exact cover problems. A variation of this algorithm is developed which enables the problems to be distributed to a global network of computers using the BOINC framework. The parallel nature of this distributed computing platform allows more complex problems to be solved. Exact cover problems includes, but is not limited to problems like n-queens, Latin Square puzzles, Sudoku, polyomino tiling, set packing and set partitioning. The details of the modified Dancing Links algorithm and the implementation is explained in detail. A Petri net model is developed to examine the flow of data in the distributed system by running a number of simulations. Acknowledgements I wish to thank Hein Meling for his detailed and insightful comments on the report and his helpful ideas on the design and implementation of the software. i Contents 1 Introduction 1 1.1 Queens . 1 1.2 Related work . 3 1.3 Report organization . 3 2 Dancing Links 4 2.1 Exact cover . 4 2.1.1 Generalized exact cover . 5 2.2 Algorithm X . 7 2.3 Dancing Links . 9 2.3.1 Data structure . 10 2.3.2 Algorithm . 11 2.4 Parallel Dancing Links . 12 3 Implementation details 15 3.1 Architecture . 15 3.2 Transforms . 16 3.2.1 n-queens .
    [Show full text]