Moths and Mountains: Diversity, Altitude and Latitude

Total Page:16

File Type:pdf, Size:1020Kb

Moths and Mountains: Diversity, Altitude and Latitude Moths and Mountains: Diversity, Altitude and Latitude Author Ashton, Louise Published 2013 Thesis Type Thesis (PhD Doctorate) School Griffith School of Environment DOI https://doi.org/10.25904/1912/1622 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/365540 Griffith Research Online https://research-repository.griffith.edu.au Moths and Mountains: Diversity, Altitude and Latitude Louise Ashton BSc (Hons) Griffith School of Environment Science, Environment, Engineering and Technology Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy February 2013 Synopsis Louise A. Ashton Moths and mountains: diversity, altitude and latitude Moth assemblages have been widely used to examine patterns of beta-diversity in forest ecosystems. This thesis aims to expand and test the generality of results obtained as part of the IBISCA-Queensland Project (Investigating Biodiversity of Soil and Canopy Arthropods-Qld) which examined patterns of diversity in a large sub-set of night-flying moths along an altitudinal gradient in subtropical rainforest. The permanent IBISCA-Qld transect, located in Lamington National Park (NP), in south-east Queensland, Australia, spans altitudes from 300 to 1100 meters above sea level (m a.s.l.) within continuous rainforest. Along this transect, moth assemblages showed strong altitudinal stratification. A number of species were restricted to the Nothofagus moorei dominated cloud forest around 1100m a.s.l., and may be the most threatened by climatic change. The IBISCA-Qld Project produced a set of moth species that could be included within a predictor set of taxa that may be useful for future monitoring of the impact of global warming on forest biodiversity. The IBISCA-Qld study was predicated on the idea that a range of adjacent climates along a single altitudinal gradient can be taken as a surrogate for larger scale climatic changes which occur along latitudinal gradients. This thesis expands on the IBISCA-Qld Project by establishing a latitudinal network of analogous altitudinal transects, in Australia and south-west China (tropical, subtropical and sub-alpine temperate forests), allowing inter-continental comparisons on the generality of altitudinal patterns of diversity. ii The aims of this PhD research are to: (1) Assess the richness and assemblage structure of moths along a series of altitudinal gradients within rainforest, along the east coast of Australia and south-west China, (2) examine the differences in assemblage turnover at different taxonomic resolutions across altitude and latitude, (3) identify which species are most important in driving altitudinal and latitudinal changes in assemblage structure and which may be useful as indicator species for climate change monitoring, (4) investigate the degree to which moth fauna are vertically stratified, across altitude and latitude. Lepidoptera were sampled along altitudinal gradients at, Mt Lewis NP (tropical) and Border Ranges NP (sub- tropical) in Australia, and in Mengla (tropical), Ailao Shan (sub-tropical) and Lijiang (temperate) sites in Yunnan Provence, China. In total, 118 035 individual moths were collected and identified as part of this research. Here, I present the results in a series of papers, each focusing on different aspects of the diversity and distribution of this key group of insect herbivores. iii STATEMENT OF ORIGINALITY I certify that this thesis is my original work and has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. __________________________________________ Louise Ashton iv Table of contents Synopsis .................................................................................................................... ii List of figures .......................................................................................................... vii List of tables .............................................................................................................. x List of appendices ................................................................................................... xii Colour plates .......................................................................................................... xii Acknowledgments ................................................................................................... xv Preface ................................................................................................................... xvii Chapter 1 Introduction ............................................................................................... 1 Aims of research .............................................................................................. 5 Structure of thesis ........................................................................................... 6 References ....................................................................................................... 8 Chapter 2 Introduction ............................................................................................ 10 References ..................................................................................................... 37 Chapter 3 Altitudinal patterns of moth diversity in tropical and subtropical Australia ........................................................................................................ 56 Abstract ......................................................................................................... 57 Introduction .................................................................................................. 58 Methods ......................................................................................................... 62 Results ........................................................................................................... 77 Discussion ..................................................................................................... 93 References .................................................................................................... 103 Chapter 3 Appendix ...................................................................................... 114 Chapter 4 Rainforest moths and altitude: family to family differences in subtropical rainforests ................................................................................. 122 Abstract ........................................................................................................ 123 Introduction ................................................................................................. 124 Methods ........................................................................................................ 126 Results .......................................................................................................... 134 Discussion .................................................................................................... 144 References .................................................................................................... 151 Chapter 4 Appendix ...................................................................................... 157 v Chapter 5 Vertical stratification of rainforest moths across altitudes, latitudes and continents .......................................................................... 162 Abstract ........................................................................................................ 163 Introduction ................................................................................................ 164 Methods ....................................................................................................... 168 Results .......................................................................................................... 173 Discussion .................................................................................................... 182 References ................................................................................................... 189 Chapter 5 Appendix ...................................................................................... 197 Chapter 6 Climate change monitoring in a beta diversity ‘hot spot’: a predictor set of altitudinally restricted moth species in tropical, sub- tropical and sub-alpine ecosystem in south-west China ......................... 209 Abstract ........................................................................................................210 Introduction ................................................................................................. 211 Methods ........................................................................................................ 215 Results ..........................................................................................................223 Discussion .................................................................................................... 231 References .................................................................................................... 235 Chapter 6 Appendix ..................................................................................... 241 Chapter 7 Synthesis ............................................................................................
Recommended publications
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • A New Macrolepidopteran Moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican Amber
    ZooKeys 965: 73–84 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.965.54461 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber Weiting Zhang1,2, Chungkun Shih3,4, YuHong Shih5, Dong Ren3 1 Hebei GEO University, 136 Huaiandonglu, Shijiazhuang 050031, China 2 State Key Laboratory of Pal- aeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China 3 College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, 105 Xisan- huanbeilu, Haidian District, Beijing 100048, China 4 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA 5 Laboratorio Dominicano De Ambar Y Gemas, Santo Domingo, Dominican Republic Corresponding author: Weiting Zhang ([email protected]) Academic editor: Gunnar Brehm | Received 19 May 2020 | Accepted 12 August 2020 | Published 3 September 2020 http://zoobank.org/05E273DB-B590-42D1-8234-864A787BE6A0 Citation: Zhang W, Shih C, Shih YH, Ren D (2020) A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber. ZooKeys 965: 73–84. https://doi.org/10.3897/zookeys.965.54461 Abstract A new genus and species of fossil moth, Miogeometrida chunjenshihi Zhang, Shih & Shih, gen. et sp. nov., assigned to Geometridae, is described from Miocene Dominican amber dating from 15–20 Mya. The new genus is characterized by the forewing without a fovea, R1 not anastomosing with Sc, no areole formed by veins R1 and Rs, R1 and Rs1 completely coincident, M2 arising midway between M1 and M3, anal veins 1A and 2A fused for their entire lengths; and the hind wing with Rs running close to Sc + R1 and M2 absent.
    [Show full text]
  • The Native Vegetation of the Nattai and Bargo Reserves
    The Native Vegetation of the Nattai and Bargo Reserves Project funded under the Central Directorate Parks and Wildlife Division Biodiversity Data Priorities Program Conservation Assessment and Data Unit Conservation Programs and Planning Branch, Metropolitan Environmental Protection and Regulation Division Department of Environment and Conservation ACKNOWLEDGMENTS CADU (Central) Manager Special thanks to: Julie Ravallion Nattai NP Area staff for providing general assistance as well as their knowledge of the CADU (Central) Bioregional Data Group area, especially: Raf Pedroza and Adrian Coordinator Johnstone. Daniel Connolly Citation CADU (Central) Flora Project Officer DEC (2004) The Native Vegetation of the Nattai Nathan Kearnes and Bargo Reserves. Unpublished Report. Department of Environment and Conservation, CADU (Central) GIS, Data Management and Hurstville. Database Coordinator This report was funded by the Central Peter Ewin Directorate Parks and Wildlife Division, Biodiversity Survey Priorities Program. Logistics and Survey Planning All photographs are held by DEC. To obtain a Nathan Kearnes copy please contact the Bioregional Data Group Coordinator, DEC Hurstville Field Surveyors David Thomas Cover Photos Teresa James Nathan Kearnes Feature Photo (Daniel Connolly) Daniel Connolly White-striped Freetail-bat (Michael Todd), Rock Peter Ewin Plate-Heath Mallee (DEC) Black Crevice-skink (David O’Connor) Aerial Photo Interpretation Tall Moist Blue Gum Forest (DEC) Ian Roberts (Nattai and Bargo, this report; Rainforest (DEC) Woronora, 2003; Western Sydney, 1999) Short-beaked Echidna (D. O’Connor) Bob Wilson (Warragamba, 2003) Grey Gum (Daniel Connolly) Pintech (Pty Ltd) Red-crowned Toadlet (Dave Hunter) Data Analysis ISBN 07313 6851 7 Nathan Kearnes Daniel Connolly Report Writing and Map Production Nathan Kearnes Daniel Connolly EXECUTIVE SUMMARY This report describes the distribution and composition of the native vegetation within and immediately surrounding Nattai National Park, Nattai State Conservation Area and Bargo State Conservation Area.
    [Show full text]
  • On the Taxonomy of the Genera Sesapa and Nipponasura (Lepidoptera, Erebidae, Arctiinae)
    Vestnik zoologii, 51(5): 369–374, 2017 DOI 10.1515/vzoo-2017-0044 UDC 595.78:57.06 ON THE TAXONOMY OF THE GENERA SESAPA AND NIPPONASURA (LEPIDOPTERA, EREBIDAE, ARCTIINAE) A. V. Volynkin Altai State University, Lenina st., 61, Barnaul, RF-656049 Russia Tomsk State University, Institute of Biology, Ecology, Soil Science, Agriculture and Forestry, Lenina Avenue, 36, Tomsk, RF-634050 Russia E-mail: [email protected] On the Taxonomy of the Genera Sesapa and Nipponasura (Lepidoptera, Erebidae, Arctiinae). Volynkin, A. V. — Statuses of the lithosiinae genera Sesapa Walker, 1854 and Nipponasura Inoue, 1965 are revised, Sesapa is treated as a valid distinct genus and Nipponasura is downgraded here as a subgenus of Sesapa. Male and female genitalia of Sesapa and male vesica of Nipponasura are described and illustrated for the fi rst time. A new combination is established: Sesapa (Sesapa) sanguinea (Moore, 1877), comb. n. Sesapa (Nipponasura) inouei Volynkin, nom. n. is introduced as replacement name for Nipponasura sanguinea Inoue, 1965. Key words: Lithosiini, Nudariina, Asia, Japan, China, revised status, replacement name, new combination. Introduction Th e Asura / Miltochrista generic complex is one of the largest and taxonomically most diffi cult Lithosiini groups including several hundreds of species distributed in Afrotropical, Oriental, Palaearctic and Australian Regions. Systematics of the Oriental and partly Palaearctic members of the generic complex was reviewed by Holloway (2001), and those of the Afrotropical members by Durante (2008; 2009; 2012). Th e genus Sesapa was erected by Walker (1854) for a single species Sesapa inscripta Walker, 1854. Hamp- son (1900) synonymized it with Miltochrista, and at present several other taxa originally described as Sesapa by diff erent authors (Butler, 1877; Moore, 1877) are placed to the genera Miltochrista and Barsine (Holloway, 2001; Kirti, Singh, 2015).
    [Show full text]
  • TML Propagation Protocols
    PROPAGATION PROTOCOLS This document is intended as a guide for Tamborine Mountain Landcare members who wish to assist our regeneration projects by growing some of the plants needed. It is a work in progress so if you have anything to add to the protocols – for example a different but successful way of propagating and growing a particular plant – then please give it to Julie Lake so she can add it to the document. The idea is that our shared knowledge and experience can become a valuable part of TML's intellectual property as well as a useful source of knowledge for members. As there are many hundreds of plants native to Tamborine Mountain, the protocols list will take a long time to complete, with growing information for each plant added alphabetically as time permits. While the list is being compiled by those members with competence in this field, any TML member with a query about propagating a particular plant can post it on the website for other me mb e r s to answer. To date, only protocols for trees and shrubs have been compiled. Vines and ferns will be added later. Fruiting times given are usual for the species but many rainforest plants flower and fruit opportunistically, according to weather and other conditions unknown to us, thus fruit can be produced at any time of year. Finally, if anyone would like a copy of the protocols, contact Julie on [email protected] and she’ll send you one. ………………….. Growing from seed This is the best method for most plants destined for regeneration projects for it is usually fast, easy and ensures genetic diversity in the regenerated landscape.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • An Overview of Genera and Subgenera of the Asura / Miltochrista Generic Complex (Lepidoptera, Erebidae, Arctiinae)
    Ecologica Montenegrina 26: 14-92 (2019) This journal is available online at: www.biotaxa.org/em https://zoobank.org/urn:lsid:zoobank.org:pub:86F17262-17A8-40FF-88B9-2D4552A92F12 An overview of genera and subgenera of the Asura / Miltochrista generic complex (Lepidoptera, Erebidae, Arctiinae). Part 1. Barsine Walker, 1854 sensu lato, Asura Walker, 1854 and related genera, with descriptions of twenty new genera, ten new subgenera and a check list of taxa of the Asura / Miltochrista generic complex ANTON V. VOLYNKIN1,2*, SI-YAO HUANG3 & MARIA S. IVANOVA1 1 Altai State University, Lenina Avenue, 61, RF-656049, Barnaul, Russia 2 National Research Tomsk State University, Lenina Avenue, 36, RF-634050, Tomsk, Russia 3 Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China * Corresponding author. E-mail: [email protected] Received 30 October 2019 │ Accepted by V. Pešić: 2 December 2019 │ Published online 9 December 2019. Abstract Lithosiini genera of the Asura / Miltochrista generic complex related to Barsine Walker, 1854 sensu lato and Asura Walker, 1854 are overviewed. Barsine is considered to be a group having such an autapomorphic feature as a basal saccular process of valva only. Many species without this process are separated to the diverse and species-rich genus Ammatho stat. nov., which is subdivided here into eight subgenera including Idopterum Hampson, 1894 downgraded here to a subgenus level, and six new subgenera: Ammathella Volynkin, subgen. nov., Composine Volynkin, subgen. nov., Striatella Volynkin & Huang, subgen. nov., Conicornuta Volynkin, subgen. nov., Delineatia Volynkin & Huang, subgen. nov. and Rugosine Volynkin, subgen. nov. A number of groups of species considered previously by various authors as members of Barsine are erected here to 20 new genera and four subgenera: Ovipennis (Barsipennis) Volynkin, subgen.
    [Show full text]
  • Butterflies and Moths of Gwinnett County, Georgia, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • Project Update: June 2013 the Monte Iberia Plateau at The
    Project Update: June 2013 The Monte Iberia plateau at the Alejandro de Humboldt National Park (AHNP) was visited in April and June of 2013. A total of 152 butterflies and moths grouped in 22 families were recorded. In total, 31 species of butterflies belonging to five families were observed, all but two new records to area (see list below). Six species and 12 subspecies are Cuban endemics, including five endemics restricted to the Nipe-Sagua- Baracoa. In total, 108 species of moths belonging to 17 families were registered, including 25 endemic species of which five inhabit exclusively the NSB Mountains (see list below). In total, 52 butterflies and endemic moth species were photographed to be included in a guide of butterflies and endemic moths inhabiting Monte Iberia. Vegetation types sampled were the evergreen forests, rainforest, and charrascals (scrub on serpentine soil) at both north and southern slopes of Monte Iberia plateau Sixteen butterfly species were observed in transects. Park authorities were contacted in preparation on a workshop to capacitate park staff. Butterfly and moth species recorded at different vegetation types of Monte Iberia plateau in April and June of 2013. Symbols and abbreviations: ***- Nipe-Sagua-Baracoa endemic, **- Cuban endemic species, *- Cuban endemic subspecies, F- species photographed, vegetation types: DV- disturbed vegetation, EF- evergreen forest, RF- rainforest, CH- charrascal. "BUTTERFLIES" PAPILIONIDAE Papilioninae Heraclides pelaus atkinsi *F/EF/RF Heraclides thoas oviedo *F/CH Parides g. gundlachianus **F/EF/RF/CH HESPERIIDAE Hesperiinae Asbolis capucinus F/RF/CH Choranthus radians F/EF/CH Cymaenes tripunctus EF Perichares p. philetes F/CH Pyrginae Burca cubensis ***F/RF/CH Ephyriades arcas philemon F/EF/RF Ephyriades b.
    [Show full text]
  • Moths of North Carolina - Early Draft 1
    Erebidae Spilosoma virginica Virginian Tiger Moth 20 n=9 • • • • • • • High Mt. • • • • N 10 •• • •• • • u • • • • • • • m • • • • • • b • • 0 • e • • • • • r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 • 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 51 • • • Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec • o • 20 • • • f n=50 • = Sighting or Collection Low Mt. High counts of: • • in NC since 2001 F • = Not seen since 2001 l 10 37 - Washington - 1993-08-17 • i 20 - Washington - 1993-05-22 g Status Rank h 17 - Montgomery - 2011-06-29 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 20 20 t n=51 n=156 e Pd CP s 10 10 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Erebidae SUBFAMILY: Arctiinae TRIBE: Arctiini TAXONOMIC_COMMENTS: One of eight species in this genus that occur north of Mexico and one of four species found in North Carolina FIELD GUIDE DESCRIPTIONS: Covell (1984); Beadle and Leckie (2012) ONLINE PHOTOS: MPG, Bugguide, BAMONA TECHNICAL DESCRIPTION, ADULTS: Forbes (1960) TECHNICAL DESCRIPTION, IMMATURE STAGES: Forbes (1960); Wagner (2005) ID COMMENTS: Has nearly all white wings, with usually just a few small black dots on the forewing (often just a dot at the lower angle of the cell) and just one or two spots on the hindwing (Forbes, 1960).
    [Show full text]