Physical Properties Data for Rock Salt QC100 .U556 V167;1981 C.2 NBS-PUB-C 1981

Total Page:16

File Type:pdf, Size:1020Kb

Physical Properties Data for Rock Salt QC100 .U556 V167;1981 C.2 NBS-PUB-C 1981 NATL INST OF STANDARDS & TECH R.I.C. NBS ,11100 161b7a PUBLICATIONS All 100989678 /Physical properties data for rock salt QC100 .U556 V167;1981 C.2 NBS-PUB-C 1981 NBS MONOGRAPH 167 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards NSRDS *f»fr nun^^ Physical Properties Data for Rock Salt NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities^ — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser- vices to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineermg^ — Mechanical Engineering and Process Technology^ — Building Technology — Fire Research — Consumer Product Technology — Field Methods. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers: Programming Science and Technology — Computer Systems Engineering. 'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. ^Some divisions within the center are located at Boulder, CO 80303. National Bureau of Slanjaids BIdg. Library, E-Ol Admin. Physical Properties Data for Rocit Salt MAR X 6 1981 L. H. Gevantman, Editor no. National Bureau of Standards Washington, D.C. 20234 J. Lorenz, J. L. Haas, Jr., M. A. Clynne, R. W. Potter, II, and C. M. Schafer National Center for the Thermodynamic Data of Minerals U.S. Department of the Interior, Geological Survey Reston, Virginia 22092 J. L. Haas, Jr., Director R. P. T. Tomkins New Jersey Institute of Technology Newark, New Jersey 07102 in association with Molten Salts Data Center Rensselaer Polytechnic Institute Troy, New York 12181 G. J. Janz, Director A. Shakoor, H. R. Hume, J. M. Yang, H. H. Li, and R. A. Matula Center for Information and Numerical Data Analysis and Synthesis Purdue University West Lafayette, Indiana 47906 Y. S. Touloukian, Director U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Luther H. Hodges, Jr., Deputy Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation S. NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director Issued January 1981 Library of Congress Cataloging in Publication Data Main entry under title: Physical properties data for rock salt. (National Bureau of Standards monograpli; 167) Supt. of Docs, no.: C 13.44:167 1. Rock-salt—Handbooks, manuals, etc. 2. Radioactive waste disposal in the ground—Handbooks, manuals, etc. I. Gevantman, L. H. II. Series: United States. National Bureau of Standards Monograph: 167 QC100.U556 no. 167 [TN900] 602M8s [620.r98] 80-607096 National Bureau of Standards Monograph 167 Nat. Bur. Stand. (U.S.), Mono. 167, 288 pages (Jan. 1981) CODEN: NBSMA6 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1981 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price $12. (Buckram) (Add 25 percent for other than U.S. mailing) Preface The Office of Standard Reference Data of the National Bureau of Standards is responsible for a broad-based program to provide reliable physical and chemical reference data to the U.S. technical community. Under this program a number of data evaluation centers both at NBS and at universities and other private institutions are supported and coordinated; these activities are collectively known as the National Standard Reference Data System (NSRDS). Important areas of the physical sciences are covered systematically by NSRDS data centers, and data bases with broad utility are prepared and disseminated. These centers can also take on special compilations of data addressing specific applications such as those frequently required by other Federal Agencies in carrying out their mission responsibilities. The existence of an ongoing program permits the collection of data for these special compilations to be carried out in an efficient and timely manner. This Monograph on Properties of Rock Salt was prepared by the Office of Standard Reference Data in response to needs of the Department of Energy for reliable data in connection with nuclear waste disposal. The resources and experience of several NSRDS data centers were enlisted to produce a compilation of the various relevant properties of rock salt. We hope that the Monograph will be a useful source of reference data and serve as a model for other compilations of data required by Government agencies and private institutions. David R. Lide, Jr., Chief Office of Standard Reference Data iii Acknowledgement I wish to acknowledge the sponsorship and financial support of the Office of Nuclear Waste Isolation and to thank Dr. G. Raines for his sound advice and support. I also appreciate the individual efforts of Drs. W. C. McClain and J. E. Russell, formerly of that office, for their encouragement and support during the execution of this project. I also wish to thank the individual authors for their technical contributions and Drs. Y. S. Touloukian, G. J. Janz, and J. L. Haas, Jr., for their aid and cooperation in making available the facilities of their individual data centers to the authors. The efforts of Dr. D. Isherwood and her colleagues who served as technical reviewers are gratefully acknowledged. Finally, I deeply appreciate the assistance of Mrs. M. E. Schlager, of the Office of Standard Reference Data, who helped me with all of the many tasks leading to the publication of this Monograph. L. H. Gevantman IV Contents Page Preface iii D. R. Lide, Jr., Office of Standard Reference Data, National Bureau of Standards, Washington, DC 20234 Acknowledgement iv Introduction 1 L. H. Gevantman, Office of Standard Reference Data, National Bureau of Standards, Washington, DC 20234 Chapter 1. Geology, Mineralogy, and Some Geophysical and Geochemical Properties of Salt Deposits ... 3 J. L. Haas, Jr., J. Lorenz, M. A. Clynne, R. W. Potter, II, and C. M. Schafer. United States Department of the Interior Geological Survey, Reston, VA 22092 General Introduction 4 Bedded Deposits 4 Salt Domes 11 Mineralogy and Petrology 14 Fluid Inclusions 22 Porosity and Permeability 29 Pore Fluids 32 References 40 Symbols and Units 43 Conversion Factors 43 Chapter 2. Physical and Chemical Properties of Components in Salt Deposits 45 R. P. T. Tomkins. New Jersey Institute of Technology, Newark, NJ 07102 Introduction 46 Experimental Techniques : 46 Physical Properties: Halite 49 Physical Properties of Major Impurities in Halite 51 Anhydrite 51 Gypsum 56 Calcite 57 Polyhalite 60 Clays 60 Chemical Properties Among Components in Salt Deposits 66 References 100 Symbols and Units 101 Conversion Factors 101 Chapter 3. Mechanical Properties 103 A. Shakoor and H. R. Hume. Center for Information and Numerical
Recommended publications
  • Picromerite K2mg(SO4)2 • 6H2O C 2001-2005 Mineral Data Publishing, Version 1
    Picromerite K2Mg(SO4)2 • 6H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Equant crystals, to 5 cm, showing {001}, {010}, {100}, {110}, {011}, {201}, {111}, several other forms; incrusting other salts; massive. Physical Properties: Cleavage: On {201}, perfect (synthetic). Hardness = 2.5 D(meas.) = 2.028 (synthetic). D(calc.) = 2.031 Soluble in H2O, taste bitter. Optical Properties: Transparent. Color: Colorless or white; pale red, pale yellow, gray due to impurities; colorless in transmitted light. Luster: Vitreous. Optical Class: Biaxial (+). Orientation: Y = b; X ∧ a =–1◦. Dispersion: r> v,weak. α = 1.461 β = 1.463 γ = 1.476 2V(meas.) = 47◦540 Cell Data: Space Group: P 21/a (synthetic). a = 9.066 b = 12.254 c = 6.128 β = 104◦470 Z=2 X-ray Powder Pattern: Synthetic. 3.71 (100), 4.06 (95), 4.16 (85), 3.06 (70), 2.964 (60), 3.16 (40), 2.813 (40) Chemistry: (1) (2) SO3 39.74 39.76 MgO 10.40 10.01 K2O 23.28 23.39 Cl 0.28 H2O 26.87 26.84 −O=Cl2 [0.06] Total [100.51] 100.00 • (1) Leopoldshall, Germany. (2) K2Mg(SO4)2 6H2O. Mineral Group: Picromerite group. Occurrence: Principally occurs in oceanic bedded salt deposits; a volcanic sublimate in fumaroles; in a sulfate-rich hydrothermal ore deposit. Association: Halite, anhydrite, kainite, epsomite (oceanic salt deposits); hohmannite, metavoltine, metasideronatrite (Chuquicamata, Chile). Distribution: From Vesuvius, Campania, Italy. In Germany, in Saxony-Anhalt, from the Leopoldshall-Stassfurt district, and at Aschersleben; large crystals from the Ellers mine, Neuhof, near Fulda, Hessen; in the Adolfsgl¨uck mine, Schwarmstedt, Lower Saxony.
    [Show full text]
  • Potash Case Study
    Mining, Minerals and Sustainable Development February 2002 No. 65 Potash Case Study Information supplied by the International Fertilizer Industry Association This report was commissioned by the MMSD project of IIED. It remains the sole Copyright © 2002 IIED and WBCSD. All rights reserved responsibility of the author(s) and does not necessarily reflect the views of the Mining, Minerals and MMSD project, Assurance Group or Sponsors Group, or those of IIED or WBCSD. Sustainable Development is a project of the International Institute for Environment and Development (IIED). The project was made possible by the support of the World Business Council for Sustainable Development (WBCSD). IIED is a company limited by guarantee and incorporated in England. Reg No. 2188452. VAT Reg. No. GB 440 4948 50. Registered Charity No. 800066 1 Introduction 2 2 Global Resources and Potash Production 3 3 The use of potassium in fertilizer 4 3.1 Potassium Fertilizer Consumption 4 3.2 Potassium fertilization issues 6 Appendix A 8 1 Introduction Potash and Potassium Potassium (K) is essential for plant and animal life wherein it has many vital nutritional roles. In plants, potassium and nitrogen are the two elements required in greatest amounts, while in animals and humans potassium is the third most abundant element, after calcium and phosphorus. Without sufficient plant and animal intake of potassium, life as we know it would cease. Human and other animals atop the food chain depend upon plants for much of their nutritional needs. Many soils lack sufficient quantities of available potassium for satisfactory yield and quality of crops. For this reason available soil potassium levels are commonly supplemented by potash fertilization to improve the potassium nutrition of plants, particularly for sustaining production of high yielding crop species and varieties in modern agricultural systems.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Halite Nacl C 2001-2005 Mineral Data Publishing, Version 1
    Halite NaCl c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m32/m. Crystals cubic, to 1 m, or octahedral; elongated along [100] or [111], skeletal with hopper-shaped faces. Rarely capillary or stalactitic; granular, compact, massive. Physical Properties: Cleavage: {001}, perfect. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 2–2.5 D(meas.) = 2.168 D(calc.) = 2.165 Soluble in H2O, saline taste; rarely fluoresces red under SW UV. Optical Properties: Transparent. Color: Colorless or white when pure; gray, yellow, orange, pink, red, blue, purple; colorless to faintly tinted in thin section. Streak: White. Luster: Vitreous. Optical Class: Isotropic; weakly anisotropic due to stress. Dispersion: Moderately strong. n = 1.5443 Cell Data: Space Group: Fm3m. a = 5.6404(1) Z = 4 X-ray Powder Pattern: Synthetic. 2.821 (100), 1.994 (55), 1.628 (15), 3.258 (13), 1.261 (11), 1.1515 (7), 1.410 (6) Chemistry: (1) (2) Na 39.00 39.34 K 0.12 Mg 0.03 Ca 0.08 Cl 60.27 60.66 SO4 0.27 Total 99.77 100.00 (1) Cardona, Barcelona, Spain. (2) NaCl. Occurrence: Typically in sedimentary rocks of evaporite association, may form immense beds; also as volcanic sublimates, efflorescences, cave deposits. Crystals are common in multiphase fluid inclusions; may be included in other minerals as a product of intermediate-grade metamorphism. Association: Sylvite, polyhalite, kieserite, carnallite, gypsum, anhydrite, dolomite. Distribution: Of worldwide occurrence. Well-studied deposits include: in Austria, around Hallstadt, Salzburg, and Hall, near Innsbruck, Tirol. From Bex, Vaud, Switzerland. In Germany, from Stassfurt-Leopoldshall, 34 km south of Magdeburg, Saxony-Anhalt.
    [Show full text]
  • Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
    71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Salt Deposits in the UK
    CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive Halite karst geohazards (natural and man-made) in the United Kingdom ANTHONY H. COOPER British Geological Survey, Keyworth, Nottingham, NG12 5GG, Great Britain COPYRIGHT © BGS/NERC e-mail [email protected] +44 (-0)115 936 3393 +44 (-0)115 936 3475 COOPER, A.H. 2002. Halite karst geohazards (natural and man-made) in the United Kingdom. Environmental Geology, Vol. 42, 505-512. This work is based on a paper presented to the 8th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental impact of karst, Louisville, Kentucky, April 2001. In the United Kingdom Permian and Triassic halite (rock salt) deposits have been affected by natural and artificial dissolution producing karstic landforms and subsidence. Brine springs from the Triassic salt have been exploited since Roman times, or possibly earlier, indicating prolonged natural dissolution. Medieval salt extraction in England is indicated by the of place names ending in “wich” indicating brine spring exploitation at Northwich, Middlewich, Nantwich and Droitwich. Later, Victorian brine extraction in these areas accentuated salt karst development causing severe subsidence problems that remain a legacy. The salt was also mined, but the mines flooded and consequent brine extraction caused the workings to collapse, resulting in catastrophic surface subsidence. Legislation was enacted to pay for the damage and a levy is still charged for salt extraction. Some salt mines are still collapsing and the re-establishment of the post-brine extraction hydrogeological regimes means that salt springs may again flow causing further dissolution and potential collapse.
    [Show full text]
  • Iron.Rich Amesite from the Lake Asbestos Mine. Black
    Canodian Mineralogist Yol.22, pp. 43742 (1984) IRON.RICHAMESITE FROM THE LAKE ASBESTOS MINE. BLACKLAKE. OUEBEC MEHMET YEYZT TANER,* AND ROGER LAURENT DAporternentde Gdologie,Universitd Loval, Qudbec,Qudbec GIK 7P4 ABSTRACT o 90.02(1l)', P W.42(12)',1 89.96(8)'.A notreconnais- sance,c'est la premibrefois qu'on ddcritune am6site riche Iron-rich amesite is found in a metasomatically altered enfer. Elles'ct form€ependant l'altdration hydrothermale granite sheet20 to 40 cm thick emplacedin serpentinite of du granitedans la serpentinite,dans les m€mes conditions the Thetford Mi[es ophiolite complex at the Lake Asbestos debasses pression et temperaturequi ont prdsid6d la for- mine (z16o01'N,11"22' W) ntheQuebec Appalachians.The mation de la rodingite dansle granite et de I'amiante- amesiteis associatedsdth 4lodingife 6semblage(grossu- chrysotiledans la serpentinite. lar + calcite t diopside t clinozoisite) that has replaced the primary minerals of the granite. The Quebec amesite Mots-clds:am6site, rodingite, granite, complexeophio- occurs as subhedral grains 2@ to 6@ pm.in diameter that litique, Thetford Mines, Qu6bec. have a tabular habit. It is optically positive with a small 2V, a 1.612,1 1.630,(t -'o = 0.018).Its structuralfor- INTRoDUc"iloN mula, calculated from electron-microprobe data, is: (Mg1.1Fe6.eA1s.e)(Alo.esil.df Os(OH)r.2. X-ray powder- Amesite is a raxehydrated aluminosilicate of mag- diffraction yield data dvalues that are systematicallygreater nesium in which some ferrous iron usually is found than those of amesitefrom Chester, Massachusetts,prob- replacingmapesium. The extent of this replacement ably becauseof the partial replacement of Mg by Fe.
    [Show full text]
  • Salt Caverns &Their Use for Disposal of Oil Field Wastes
    An Introduction to Salt Caverns & Their Use for Disposal of Oil Field Wastes An Introduction to Salt Caverns & Their Use for Disposal of Oil Field Wastes Table of Contents What Are Salt Caverns? ........................................................................................... 2 Why Are Salt Caverns Important? ............................................................................ 2 Where Are Salt Deposits and Caverns Found? ......................................................... 3 How Are Caverns Formed?...................................................................................... 4 How Are Caverns Used? .......................................................................................... 5 What Types of Wastes Are Considered to Be Oil Field Wastes? ......................................................................... 6 What Are the Legal Requirements Governing Disposal of Oil Field Wastes into Salt Caverns? ....................................... 7 Are NOW or NORM Wastes Currently Being Disposed of into Caverns?.............................................................. 8 How Are Wastes Put into Caverns? .......................................................................... 9 What Types of Monitoring Are Appropriate for Disposal Caverns?........................................................................ 10 What Happens to the Cavern When It Is Full? ........................................................ 11 What Would Happen if Caverns Leak? ..................................................................
    [Show full text]
  • Deformation of Intrasalt Competent Layers in Different Modes of Salt Tectonics Mark G
    Solid Earth Discuss., https://doi.org/10.5194/se-2019-49 Manuscript under review for journal Solid Earth Discussion started: 25 March 2019 c Author(s) 2019. CC BY 4.0 License. Deformation of intrasalt competent layers in different modes of salt tectonics Mark G. Rowan1, Janos L. Urai2, J. Carl Fiduk3, Peter A. Kukla4 1Rowan Consulting, Inc., Boulder, CO 80302, USA 5 2Institute for Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, 52056 Aachen, Germany 3Fiduk Consulting LLC, Houston, TX 77063, USA 4Geological Institute, Energy and Mineral Resources, RWTH Aachen University, 52056 Aachen, Germany Correspondence to: Mark G. Rowan ([email protected]) 10 Abstract. Layered evaporite sequences (LES) comprise interbedded weak layers (halite and, commonly, bittern salts) and strong layers (anhydrite and usually non-evaporite rocks such as carbonates and siliciclastics). This results in a strong rheological stratification, with a range of effective viscosity up to a factor of 105. We focus here on the deformation of competent intrasalt beds in different modes of salt tectonics using a combination of conceptual, numerical and analog models, and seismic data. In bedding-paralell extension, boudinage of the strong layers forms ruptured stringers, within a 15 halite matrix, that become increasingly isolated with increasing strain. In bedding-parallel shortening, competent layers tend to maintain coherency while forming harmonic, disharmonic, and polyharmonic folds, with the rheological stratification leading to buckling and fold growth by bedding-parallel shear. In differential loading, extension and the resultant stringers dominate beneath suprasalt depocenters while folded competent beds characterize salt pillows. Finally, in tall passive diapirs, stringers generated by intrasalt extension are rotated to near vertical in tectonic melanges during upward flow of salt.
    [Show full text]
  • Mineralogical Chemistry
    View Article Online / Journal Homepage / Table of Contents for this issue 282 ABSTRACTS OF CHEMICAL PAPERS. Downloaded on 22 February 2013 Published on 01 January 1900 http://pubs.rsc.org | doi:10.1039/CA9007805282 Mineralogical Chemistry. Roumanian Petroleuws. By A LFONS 0. SALIGNY(Chem. Centy., 1900, 60 ; from Bul. Bozcmccnie, 8, 351 --365).-In the original paper, the physical and chemical properties of 12 kinds of Roumanian MINERALOGICAL CHEMISTRY View Article Online283 petroleum are described and tabulated. The flash points of the various fractions are given, and their suitability for use as burning oils is also discussed. These petroleums contain very variable amounts of volatile oils, and ethylisobutane and isopropane were found in the fractions boiling below 70”. E. w. w. Melonite from South Australia. By ALFREDJ. HIGGIN(Trans. Roy. Xoc. South Austdia, 1899, 23, 21 1-212).-This mineral, pre- viously only known from California, has now been found with quartz and calcite at Worturpa, South Australia. The thin lamells have a brilliant metallic lustre; the cleavage planes are silver-white to reddish- brown. H- 1.5 ; sp. gr., 7.6. Analyses I and IT: agree with the formula Ni,Te, (compare this vol., ii, 22). Te. Xi. Au. Insol. Total. I. 74.49 22.99 0.329 2.091 99.90 11. 71.500 21.274 0.018 7*319 100.11 Traces of bismuth and lead are present. On dissolving the mineral in nitric acid, the gold is left as bright spangles. L. J. S. Titaniferous Magnetites. By JAMESF. KENP(School of Mines Quart., 1899, 20, 323-356 ; 21, 56-65).-Titaniferous magnetites, with the exception of the occnrrences in sands, are almost invariably found associated with rocks of the gabbro type, and have originated by a process of segregation from the magma, The mineral, as a rule, contains vanadium, cbromium, nickel and cobalt, which together may amount to several per cent.
    [Show full text]