AN INITIAL OVERVIEW of the EXTENT and STRUCTURE of RECENT STAR FORMATION WITHIN the SERPENS MOLECULAR CLOUD USING GAIA DATA RELEASE 2 Gregory J
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts. -
The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used. -
NGC 1333 Plunkett Et
Outflows in protostellar clusters: a multi-wavelength, multi-scale view Adele L. Plunkett1, H. G. Arce1, S. A. Corder2, M. M. Dunham1, D. Mardones3 1-Yale University; 2-ALMA; 3-Universidad de Chile Interferometer and Single Dish Overview Combination FCRAO-only v=-2 to 6 km/s FCRAO-only v=10 to 17 km/s K km s While protostellar outflows are generally understood as necessary components of isolated star formation, further observations are -1 needed to constrain parameters of outflows particularly within protostellar clusters. In protostellar clusters where most stars form, outflows impact the cluster environment by injecting momentum and energy into the cloud, dispersing the surrounding gas and feeding turbulent motions. Here we present several studies of very dense, active regions within low- to intermediate-mass Why: protostellar clusters. Our observations include interferometer (i.e. CARMA) and single dish (e.g. FCRAO, IRAM 30m, APEX) To recover flux over a range of spatial scales in the region observations, probing scales over several orders of magnitude. How: Based on these observations, we calculate the masses and kinematics of outflows in these regions, and provide constraints for Jy beam km s Joint deconvolution method (Stanimirovic 2002), CARMA-only v=-2 to 6 km/s CARMA-only v=10 to 17 km/s models of clustered star formation. These results are presented for NGC 1333 by Plunkett et al. (2013, ApJ accepted), and -1 comparisons among star-forming regions at different evolutionary stages are forthcoming. using the analysis package MIRIAD. -1 1212COCO Example: We mapped NGC 1333 using CARMA with a resolution of ~5’’ (or 0.006 pc, 1000 AU) in order to Our study focuses on Class 0 & I outflow-driving protostars found in clusters, and we seek to detect outflows and associate them with their driving sources. -
Arxiv:2005.05466V1 [Astro-Ph.GA] 11 May 2020 Surface Density
Draft version May 13, 2020 Typeset using LATEX preprint style in AASTeX62 Star-Gas Surface Density Correlations in Twelve Nearby Molecular Clouds I: Data Collection and Star-Sampled Analysis Riwaj Pokhrel,1, 2 Robert A. Gutermuth,2 Sarah K. Betti,2 Stella S. R. Offner,3 Philip C. Myers,4 S. Thomas Megeath,1 Alyssa D. Sokol,2 Babar Ali,5 Lori Allen,6 Tom S. Allen,7, 8 Michael M. Dunham,9 William J. Fischer,10 Thomas Henning,11 Mark Heyer,2 Joseph L. Hora,4 Judith L. Pipher,12 John J. Tobin,13 and Scott J. Wolk4 1Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA 2Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA 3Department of Astronomy, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA 4Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5Space Sciences Institute, 4750 Walnut Street, Suite 205, Boulder, CO, USA 6National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ, 85719, USA 7Portland State University, 1825 SW Broadway Portland, OR 97207, USA 8Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA 9Department of Physics, State University of New York at Fredonia, 280 Central Ave, Fredonia, NY 14063, USA 10Space Telescope Science Institute, Baltimore, MD 21218, USA 11Max-Planck-Institute for Astronomy, K¨onigstuhl17, D-69117 Heidelberg, Germany 12Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA 13National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA (Received ...; Revised ...; Accepted May 13, 2020) Submitted to ApJ ABSTRACT We explore the relation between the stellar mass surface density and the mass surface density of molecular hydrogen gas in twelve nearby molecular clouds that are located at <1.5 kpc distance. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Sydney Observatory Night Sky Map September 2012 a Map for Each Month of the Year, to Help You Learn About the Night Sky
Sydney Observatory night sky map September 2012 A map for each month of the year, to help you learn about the night sky www.sydneyobservatory.com This star chart shows the stars and constellations visible in the night sky for Sydney, Melbourne, Brisbane, Canberra, Hobart, Adelaide and Perth for September 2012 at about 7:30 pm (local standard time). For Darwin and similar locations the chart will still apply, but some stars will be lost off the southern edge while extra stars will be visible to the north. Stars down to a brightness or magnitude limit of 4.5 are shown. To use this chart, rotate it so that the direction you are facing (north, south, east or west) is shown at the bottom. The centre of the chart represents the point directly above your head, called the zenith, and the outer circular edge represents the horizon. h t r No Star brightness Moon phase Last quarter: 08th Zero or brighter New Moon: 16th 1st magnitude LACERTA nd Deneb First quarter: 23rd 2 CYGNUS Full Moon: 30th rd N 3 E LYRA th Vega W 4 LYRA N CORONA BOREALIS HERCULES BOOTES VULPECULA SAGITTA PEGASUS DELPHINUS Arcturus Altair EQUULEUS SERPENS AQUILA OPHIUCHUS SCUTUM PISCES Moon on 23rd SERPENS Zubeneschamali AQUARIUS CAPRICORNUS E SAGITTARIUS LIBRA a Saturn Centre of the Galaxy Antares Zubenelgenubi t s Antares VIRGO s t SAGITTARIUS P SCORPIUS P e PISCESMICROSCOPIUM AUSTRINUS SCORPIUS Mars Spica W PISCIS AUSTRINUS CORONA AUSTRALIS Fomalhaut Centre of the Galaxy TELESCOPIUM LUPUS ARA GRUSGRUS INDUS NORMA CORVUS INDUS CETUS SCULPTOR PAVO CIRCINUS CENTAURUS TRIANGULUM -
Binocular Universe: Surfing Serpens August 2010 Phil Harrington
Binocular Universe: Surfing Serpens August 2010 Phil Harrington erpens the Serpent has the unique distinction of being the sky’s only constellation that is sliced in half by a second star group, the constellation Ophiuchus, the Serpent Bearer. To the west of Ophiuchus is Serpens Caput, the Serpent's head. This sparse S area is highlighted by the fine globular cluster M5, which was discussed in the June 2010 edition of this column, as well as several variable stars that are within binocular range. East of Ophiuchus is Serpens Cauda, the Serpent’s tail. But even with the plane of the Milky Way passing through, Serpens Cauda still contains no bright stars and surprisingly few deep-sky objects. But what it lacks in quantity, Serpens Cauda more than makes up for in quality. Above: Summer star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm Let’s begin with open cluster IC 4756, a faint, but large mob of stars that’s perfect for binoculars. Unfortunately, its position is quite far from any handy reference stars, so finding it can be a challenge. Your best bet is to trace a line between Altair, in Aquila the Eagle, and second-magnitude Cebalrai [Beta (β) Ophiuchi]. IC 4756 lies just south of the halfway point between the two. There might not be many bright stars nearby, but the cluster's field overflows with faint stardust. Eighty suns scattered across an apparent diameter nearly twice that of the Full Moon form a faint mist against the backdrop of the summer Milky Way. -
Design Radiator Catalogue
January 2019 Offers Beauty And Functionality Design Stay Classy Radiator Be Extraordinary Catalogue MORE THAN A RADIATOR AESTHETICALLY STRONG DIFFERENT IN STYLE 2 warmhaus.co.uk Contents Chrome Radiators p. 5 White & Anthracite Radiators p. 29 Multi Column Radiators p. 55 Myth Atmosphere Moonlight - Arcadia - Andromeda - Artemis - Atlantis - Aquila - Celine - Camelot - Carina - Luna - Nysa - Draco - Mika - Dinas - Circinus - Selena - Lyonesse - Columba - Shiva - Meropis - Crux - Chandra - Brittia - Hercules - Hawaiki - Mensa Traditional Radiators p. 65 - Oasis - Orion Heritage - Phoenix Stainless Steel Radiators p. 19 - Pyxis - Aztec Impulse - Vela - Inca - Tucana - Roma - Storm - Aquarius - Maya - Hurricane - Aries - Lydia - Thunder - Lyra - Kush - Swirl - Dorado - Tuwana - Flash - Gemini - Aksum - Whirlwind - Leo - Hittite - Tornado - Hydra - Pisces - Pictor - Scorpius - Taurus - Virgo - Cepheus warmhaus.co.uk 3 CHROME RADIATORS 4 warmhaus.co.uk Myth Warmhaus Myth Series offers you the opportunity to live with legends of the past. warmhaus.co.uk 5 CHROME RADIATORS 6 warmhaus.co.uk MYTH ARCADIA Product Code C5 Profile: Square Bar: Square PRODUCT HEIGHT WIDTH C/C W/C PRODUCT BTU/DT60 WATT CODE (mm) (mm) (mm) (mm) Arcadia C5 600 300 260 55~70 675 198 Arcadia C5 600 400 360 55~70 829 243 Arcadia C5 600 500 460 55~70 982 288 Arcadia C5 600 600 560 55~70 1136 333 Arcadia C5 800 300 260 55~70 939 275 Arcadia C5 800 400 360 55~70 1162 341 Arcadia C5 800 500 460 55~70 1383 406 Arcadia C5 800 600 560 55~70 1607 471 Arcadia C5 1000 300 260 55~70 -
The Argo Navis Constellation
THE ARGO NAVIS CONSTELLATION At the last meeting we talked about the constellation around the South Pole, and how in the olden days there used to be a large ship there that has since been subdivided into the current constellations. I could not then recall the names of the constellations, but remembered that we talked about this subject at one of the early meetings, and now found it in September 2011. In line with my often stated definition of Astronomy, and how it seems to include virtually all the other Philosophy subjects: History, Science, Physics, Biology, Language, Cosmology and Mythology, lets go to mythology and re- tell the story behind the Argo Constellation. Argo Navis (or simply Argo) used to be a very large constellation in the southern sky. It represented the ship The Argo Navis ship with the Argonauts on board used by the Argonauts in Greek mythology who, in the years before the Trojan War, accompanied Jason to Colchis (modern day Georgia) in his quest to find the Golden Fleece. The ship was named after its builder, Argus. Argo is the only one of the 48 constellations listed by the 2nd century astronomer Ptolemy that is no longer officially recognised as a constellation. In 1752, the French astronomer Nicolas Louis de Lacaille subdivided it into Carina (the keel, or the hull, of the ship), Puppis (the poop deck), and Vela (the sails). The constellation Pyxis (the mariner's compass) occupies an area which in antiquity was considered part of Argo's mast (called Malus). The story goes that, when Jason was 20 years old, an oracle ordered him to head to the Iolcan court (modern city of Volos) where king Pelias was presiding over a sacrifice to Poseidon with several neighbouring kings in attendance. -
Arxiv:2004.14050V1 [Astro-Ph.SR] 29 Apr 2020
Draft version April 30, 2020 Typeset using LATEX twocolumn style in AASTeX63 A detailed analysis on the cloud structure and dynamics in Aquila Rift Tomomi Shimoikura,1 Kazuhito Dobashi,2 Yoshiko Hatano,2 and Fumitaka Nakamura3, 4 1Otsuma Women's University ` Chiyoda-ku,Tokyo, 102-8357, Japan 2Tokyo Gakugei University Koganei, 184-8501, Tokyo 3National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan 4Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), Osawa, Mitaka, Tokyo 181-8588, Japan (Accepted April 23, 2020) Submitted to APJ ABSTRACT We present maps in several molecular emission lines of a 1 square-degree region covering the W40 and Serpens South molecular clouds belonging to the Aquila Rift complex. The observations were made with the 45 m telescope at the Nobeyama Radio Observatory. We found that the 12CO and 13CO emission lines consist of several velocity components with different spatial distributions. The component that forms the main cloud of W40 and Serpens South, which we call the \main component", −1 −1 has a velocity of VLSR ' 7 km s . There is another significant component at VLSR ' 40 km s , which we call the \40 km s−1 component". The latter component is mainly distributed around two young clusters: W40 and Serpens South. Moreover, the two components look spatially anti-correlated. Such spatial configuration suggests that the star formation in W40 and Serpens South was induced by the collision of the two components. We also discuss a possibility that the 40 km s−1 component consists of gas swept up by superbubbles created by SNRs and stellar winds from the Scorpius-Centaurus Association. -
Proto-Planetary Nebula Observing Guide
Proto-Planetary Nebula Observing Guide www.reinervogel.net RA Dec CRL 618 Westbrook Nebula 04h 42m 53.6s +36° 06' 53" PK 166-6 1 HD 44179 Red Rectangle 06h 19m 58.2s -10° 38' 14" V777 Mon OH 231.8+4.2 Rotten Egg N. 07h 42m 16.8s -14° 42' 52" Calabash N. IRAS 09371+1212 Frosty Leo 09h 39m 53.6s +11° 58' 54" CW Leonis Peanut Nebula 09h 47m 57.4s +13° 16' 44" Carbon Star with dust shell M 2-9 Butterfly Nebula 17h 05m 38.1s -10° 08' 33" PK 10+18 2 IRAS 17150-3224 Cotton Candy Nebula 17h 18m 20.0s -32° 27' 20" Hen 3-1475 Garden-sprinkler Nebula 17h 45m 14. 2s -17° 56' 47" IRAS 17423-1755 IRAS 17441-2411 Silkworm Nebula 17h 47m 13.5s -24° 12' 51" IRAS 18059-3211 Gomez' Hamburger 18h 09m 13.3s -32° 10' 48" MWC 922 Red Square Nebula 18h 21m 15s -13° 01' 27" IRAS 19024+0044 19h 05m 02.1s +00° 48' 50.9" M 1-92 Footprint Nebula 19h 36m 18.9s +29° 32' 50" Minkowski's Footprint IRAS 20068+4051 20h 08m 38.5s +41° 00' 37" CRL 2688 Egg Nebula 21h 02m 18.8s +36° 41' 38" PK 80-6 1 IRAS 22036+5306 22h 05m 30.3s +53° 21' 32.8" IRAS 23166+1655 23h 19m 12.6s +17° 11' 33.1" Southern Objects ESO 172-7 Boomerang Nebula 12h 44m 45.4s -54° 31' 11" Centaurus bipolar nebula PN G340.3-03.2 Water Lily Nebula 17h 03m 10.1s -47° 00' 27" PK 340-03 1 IRAS 17163-3907 Fried Egg Nebula 17h 19m 49.3s -39° 10' 37.9" Finder charts measure 20° (with 5° circle) and 5° (with 1° circle) and were made with Cartes du Ciel by Patrick Chevalley (http://www.ap-i.net/skychart) Images are DSS Images (blue plates, POSS II or SERCJ) and measure 30’ by 30’ (http://archive.stsci.edu/cgi- bin/dss_plate_finder) and STScI Images (Hubble Space Telescope) Downloaded from www.reinervogel.net version 12/2012 DSS images copyright notice: The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S.