Cultivar-Specific Seedling Vigor and Expression of a Putative Oxalate Oxidase Germin-Like Protein in Sugar Beet (Beta Vulgaris L.)

Total Page:16

File Type:pdf, Size:1020Kb

Cultivar-Specific Seedling Vigor and Expression of a Putative Oxalate Oxidase Germin-Like Protein in Sugar Beet (Beta Vulgaris L.) Theor Appl Genet (2003) 107:54–61 DOI 10.1007/s00122-003-1229-9 Benildo G. de los Reyes · J. Mitchell McGrath Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta vulgaris L.) Received: 12 November 2002 / Accepted: 16 December 2002 / Published online: 21 March 2003 Springer-Verlag 2003 Abstract For genetic screening and breeding purposes, Introduction an in vitro germination system that reflects relative field emergence potential was used to screen for germination- Field emergence of sugar beet (Beta vulgaris) is an annual enhancing and stress-induced genes from germinating concern for growers, and improving emergence potential seedlings from two varieties of sugar beet. Three full- has not been amenable to selection due to developmental length germin-like protein (GLP) gene classes were and environmental influences on seed quality. On aver- recovered from stress-germinated seedlings of a superior age, 60% of the planted seed contributes to the maximum emerging variety. GLP gene expression, oxalate oxidase stand count in Michigan (Anonymous 1997), with a range protein activity, the H2O2 content of stressed seedlings, of emergence from 0 to 90% depending on environmental but not catalase activity, were induced by stress germi- and disease pressure during stand establishment. Field nation conditions (e.g. excess water, NaCl, mannitol, or emergence and stand establishment are largely deter- oxalate) in a good emerging hybrid and were not induced mined by seedling vigor, which has been defined as the in a poor emerging variety. Only one of the three germin- ability of physiologically viable seed to germinate and like protein genes (BvGer165) was differentially regulat- flourish in diverse environments (Kneebone 1976). For ed, and was induced only in the good emerger. Hydrogen sugar beet, the first 8 weeks of growth are most critical peroxide promoted germination and partially compensat- (Durr and Boiffin 1995). Improving emergence potential ed solute-depressed germination percentages. Unlike is problematic because both the seed germination envi- other solute recovery by hydrogen peroxide regimes, ronment the and seed production environment profoundly recovery in oxalic acid plus H2O2 was cultivar-indepen- influence seedling performance (Johnson and Burt 1990). dent. A block in oxalate metabolism is postulated to Germination is the first phase of emergence, resulting contribute to lower germination under stress in the lower from a culmination of events such as imbibition of water emerging variety. Selection for stress-induced germin that initiates metabolic activity and leads to subsequent expression, or for down-stream targets, presents the first cell enlargement and division (Thomas 1993; Copeland direct target to enable breeding for improved field and McDonald 1995). emergence of sugar beet. A novel stress test appeared promising for assigning relative field emergence potential, demonstrating that Keywords Germination · Abiotic stress · Hydrogen germination of commercial quality sugar beet seed (e.g. peroxide · Seedling vigor · Molecular phenotyping >92% germ) can be discriminated in vitro to reveal higher and lower vigor seedlots. Germination in water showed the same relative ranking of varieties as their emergence Communicated by H.F. Linskens in the field, and germination in hydrogen peroxide B. G. de los Reyes · J. M. McGrath ()) solution promoted germination to the extent observed USDA-ARS, Sugar Beet and Bean Research Unit, with traditional germination methods used in commercial 494 PSSB, Michigan State University, quality assessment (McGrath et al. 2000). In this report, East Lansing, MI 48824-1325, USA we have begun the search for possible reasons of e-mail: [email protected] enhanced in vitro germination of sugar beet by hydrogen Tel.: (517)-432-2355 Fax: (517)-337-6782 peroxide, since the effect is dramatic, and has potential in breeding for enhanced emergence. B. G. de los Reyes We examined two commercially acceptable sugar beet University of Arkansas, 115 Plant Science Building, hybrids known to differ in relative field emergence. We Dept of Crop, Soil, and Environmental Sciences, show that the good emerging commercial hybrid specif- Fayetteville, AR 72701, USA 55 ically induced expression of a gene with high similarity to RNA gel-blot analyses known germin-like protein (GLP) genes, and that this Eight hundred nanograms of polyA+ mRNA were fractionated in gene is not induced in the lesser emerging commercial 1.2% formaldehyde-agarose gels, blotted on nylon membranes hybrid. Expression of this particular germin-like protein (HybondN, Amersham) and hybridized with 32P-dCTP-labeled appears to be a physiological marker for enhanced sugar BvGer171 overnight at 42 C in NorthernMax Prehyb/Hyb buffer beet germination and, by extension, field emergence. We (Ambion). Post-hybridization washes (twice, 15 min each) in 2 SSC, 0.1% SDS followed with 0.5 SSC, 0.1% SDS preceded propose that the specific GLP induced is an oxalate exposure to X-ray film (3 days). Filters were stripped and re- oxidase based on correlative evidence of increases in hybridized with an actin probe (as a control) following the same oxalate oxidase activity and internal hydrogen peroxide procedure. The actin clone was obtained from the sugar beet EST concentrations, and suggest that the oxalate oxidase collection (Genbank accession no. AWO63023). metabolic product, hydrogen peroxide, markedly increas- es expression of stress-related genes during aqueous Reverse transcription-PCR (RT-PCR) germination regimes and leads to enhanced seedling vigor. Total RNA (1 mg) from each of USH20 and ACH185 filter-paper and solution-germinated seedlings were reverse transcribed using RT-for-PCR (Clontech) as per manufacturer’s instructions. Specific primer pairs to each full-length recovered germin cDNA were Materials and methods designed, synthesized and used to amplify their cognate cDNAs from 1 mg of total RNA using dNTP mix (50 mM), 33P-dATP Seed germination (50 nM, 2 mCi) and Advantage KlenTaq polymerase mix (2 units) (Clontech). Gene specific primers were designed from accession The same seedlots of two commercial sugar beet (Beta vulgaris L. nos. AF10016 (BvGer165), AF10017 (BvGer171) and AF10018 ssp. vulgaris var. altissima Dll.) hybrids, USH20, a diploid (Coe (BvGer172) as shown: and Hogaboam 1971), and ACH185, a triploid (American Crystal, – BvGer165: Forward: 5'-TGTACCCGGAAACAATGTA; Re- Moorhead, Minn.), with commercially acceptable germination verse: 5'-TGTTGTCATCATACACT percentages (>92%) were used throughout these experiments. – BvGer171: Forward: 5'-GTTTCCCTTAGCTTGCAAAGTA; Standard germination assays were performed on moist pleated Reverse: 5'-CATTTGCACAAACTTCCAAAG germination paper (TeKrony and Hardin 1966; Bornscheuer et al. – BvGer172: Forward: 5'-GTTTCCCTTAGCTTGCAAAAATA; 1993). Germination in solution was performed as described Reverse: 5'-TATCATTCAATACTGCAAAGGA. (McGrath et al. 2000). Briefly, four replicates of 25 seeds each PCR cycling was 1 min at 95 C, 22 cycles of 30 s at 94 C, were immersed in 15 ml of solution, and germination counts were 1 min at 50 C, 1 min at 72 C; and final extension for 10 min at done 96 h post-immersion, with an intermediate count and change 72 C. Fragments of 515 bp, 831 bp and 850 bp, amplified with of solution at 48 h. A seed was scored as germinated when the gene specific primers to BvGer165, BvGer171 and BvGer172, radical protruded from the seed ball. All values reported are respectively, were verified by sequencing. Actin at (675-bp germination percentages after the total 96-h incubation. Germina- fragment amplified with primers Forward = 5'-TGTGAGCAA- tion treatments in solution included 150 mM of NaCl, 200 mM of CTGGGATGA and Reverse = 5'-GGTAACATCGTGCTCAGT) mannitol, 18 MOhm of water, 88 mM of H2O2, 120 mM of oxalic was used as a control for RT-PCR to verify amplification and acid pH 4.0 and some combinations of these. Field emergence was loading equivalency. Amplification products were separated in 6% assessed using six replicates of 100 seeds/10 m plot in each of 3 non-denaturing polyacrylamide, dried, and autoradiographed over- years at the Saginaw Valley Bean and Beet Research Farm night. The specificity of each primer pair was confirmed by the lack (Saginaw, Mich.). of cross-amplification with non-target BvGer plasmid clones, and by re-sequencing the products amplified from experimental sam- ples. Differential display RNA was isolated from 1,000 to 1,500 4-day old seedlings Oxalate oxidase assay (Logeman et al. 1996). First-strand cDNAs were synthesized from 1 mg of total RNA (pre-treated with DNAse I) with oligo-dT primer Crude extracts of oxalate oxidase were prepared from 4-day old (1 mM) and MMLV reverse transcriptase (1,000 units) at 42 C for filter paper, and solution-germinated USH20 and ACH185 seed- 1 h. Differential display (DD-PCR) was performed on USH20 total lings, via the method of Pundir and Nath (1984) with slight RNA samples using the Delta Differential Display kit (Clontech) modifications. Germinated seedlings (15 g) were excised from the following the manufacturer’s instructions. Amplified products were ruptured pericarp and homogenized in 15 ml of distilled water at fractionated in 6% denaturing polyacrylamide gel (Sambrook et al. 4 C. The homogenate was squeezed through a double layer of 1989), dried, and autoradiographed for 24 h. Fragments with signal cheesecloth and centrifuged at 4 C, 15,000 g for 40 min. differences between control (filter paper germinated seedlings) and (NH4)2SO4 crystals were added to the supernatant to obtain 0– treatments were excised, re-amplified, cloned in pTAdv TA vector 30% and 30–65% saturation fractions, and crude protein extracts (Clontech) and sequenced. A germin-like DD-PCR fragment precipitated at 4 C overnight. The precipitate from 30 to 65% (amplified with the P4/P4 primer combination) was used to recover fractions was collected by centrifugation at 4 C 10,000 g for 14 full-length cDNA clones from a Lambda Zap cDNA library 40 min, and the pellet was re-dissolved in 0.05 M sodium succinate (Stratagene) constructed from USH20 4-day old solution-germi- pH 5.0 and stored at 4 C.
Recommended publications
  • Oxalic Acid Degradation by a Novel Fungal Oxalate Oxidase from Abortiporus Biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1
    Vol. 63, No 3/2016 595–600 http://dx.doi.org/10.18388/abp.2016_1282 Regular paper Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1 1Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland; 2Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland Oxalate oxidase was identified in mycelial extracts of a to formic acid and carbon dioxide (Mäkelä et al., 2002). basidiomycete Abortiporus biennis strain. Intracellular The degradation of oxalate via action of oxalate oxidase enzyme activity was detected only after prior lowering (EC 1.2.3.4), described in our study, is atypical for fun- of the pH value of the fungal cultures by using oxalic or gi and was found predominantly in higher plants. The hydrochloric acids. This enzyme was purified using size best characterised oxalate oxidase originates from cereal exclusion chromatography (Sephadex G-25) and ion-ex- plants (Dunwell, 2000). Currently, only three oxalate oxi- change chromatography (DEAE-Sepharose). This enzyme dases of basidiomycete fungi have been described - an exhibited optimum activity at pH 2 when incubated at enzyme from Tilletia contraversa (Vaisey et al., 1961), the 40°C, and the optimum temperature was established at best characterised so far enzyme from Ceriporiopsis subver- 60°C. Among the tested organic acids, this enzyme ex- mispora (Aguilar et al., 1999), and an enzyme produced by hibited specificity only towards oxalic acid. Molecular Abortiporus biennis (Grąz et al., 2009). The enzyme from mass was calculated as 58 kDa. The values of Km for oxa- C.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography. 8710037 Poikey, Leonard Andrew THE USE OF IMMOBILIZED OXALATE OXIDASE IN AN ANALYTICAL ASSAY FOR URINARY OXALATE AND IN AN EXTRACORPOREAL SHUNT TREATMENT FOR HYPEROXALURIA The Ohio State University Ph.D. 1987 University Microfilms I nternsition300 el N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy.
    [Show full text]
  • Oxygen-Reducing Enzymes in Coatings and Films for Active Packaging |
    Kristin Johansson | Oxygen-reducing enzymes in coatings and films for active packaging | | Oxygen-reducing enzymes in coatings and films for active packaging Kristin Johansson Oxygen-reducing enzymes in coatings and films for active packaging Oxygen-reducing enzymes This work focused on investigating the possibility to produce oxygen-scavenging packaging materials based on oxygen-reducing enzymes. The enzymes were incorporated into a dispersion coating formulation applied onto a food- in coatings and films for packaging board using conventional laboratory coating techniques. The oxygen- reducing enzymes investigated included a glucose oxidase, an oxalate oxidase active packaging and three laccases originating from different organisms. All of the enzymes were successfully incorporated into a coating layer and could be reactivated after drying. For at least two of the enzymes, re-activation after drying was possible not only Kristin Johansson by using liquid water but also by using water vapour. Re-activation of the glucose oxidase and a laccase required relative humidities of greater than 75% and greater than 92%, respectively. Catalytic reduction of oxygen gas by glucose oxidase was promoted by creating 2013:38 an open structure through addition of clay to the coating formulation at a level above the critical pigment volume concentration. For laccase-catalysed reduction of oxygen gas, it was possible to use lignin derivatives as substrates for the enzymatic reaction. At 7°C all three laccases retained more than 20% of the activity they
    [Show full text]
  • Direct Spectrophotometric Determination of Serum and Urinary Oxalate with Oxalate Oxidase1) by G. Kohlbecker
    Kohibecker and Bute: Direct spcctrophotometric determination of oxalate 1103 J. Gin. Chem. Clin. Biochem. Vol. 19,1981, pp. 1103-1106 Direct Spectrophotometric Determination of Serum and Urinary Oxalate with Oxalate Oxidase1) By G. Kohlbecker Institut f r Molekularbiologie und Biochemie, Freie Universit t Berlin and M. Butz Urologische Klinik und Poliklinik, Klinikum St eglitz, Freie Universit t Berlin (Received May 20, 1981) Summary: A new enzymatic method for direct photometric determination of oxalate in serum and urine is described, using oxalate oxidase. The resulting H202 is measured with a coupled enzyme system of catalase and aldehyde de- hydrogenase. Percentage recovery of added oxalate was 99 ± 4 in serum, and 98 ± 4 in urine (n = 10). Oxalate serum levels varied from 16.9 to 44.8 μηηοΙ/L Oxalate values can be determined within 20 minutes, without time consuming pretreatment of samples. The detection limit is 5 μπιοΐ/ΐ. Direkte spektrophotometrische Bestimmung von Serum- und Urin-Oxalat mit Oxalat-Oxidase Zusammenfassung: Es wird eine neue enzymatische Methode zur direkten photometrischen Bestimmung von Oxalat in Serum und Urin mittels Oxalatoxidase beschrieben. In einer gekoppelten Reaktion wird H202 enzymatisch durch Katalase und Aldehyddehydrogenase gemessen. Die Wiederfindung von zugesetztem Oxalat betrug 99 ± 4% in Serum und 98 ± 4% in Urin (n = 10). Die Oxalatkonzentrationen in Serum variierten von 16,9 bis 44,8 /imol/l. Oxalatwerte k nnen ohne zeitraubende Probenvorbehandlung innerhalb 20 Minuten ermittelt werden. Die Erfassungsgrenze liegt bei 5 μπιοΐ/ΐ. Introduction aldehyde dehydrogenase reaction for H2O2 determina- tion (12) is widely accepted in laboratory practice be- Reliable measurement of oxalate is required in the cause of its specifity.
    [Show full text]
  • Relationship Between Oxalate, Oxalate Oxidase Activity, Oxalate Sensitivity, and White Mold Susceptibility in Phaseolus Coccineus
    Genetics and Resistance Relationship Between Oxalate, Oxalate Oxidase Activity, Oxalate Sensitivity, and White Mold Susceptibility in Phaseolus coccineus Timothy J. Chipps, Barbara Gilmore, James R. Myers, and Henrik U. Stotz Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis 97331. Current address of T. J. Chipps: Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland 97239. Current address of B. Gilmore: U.S. Department of Agriculture, National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97330. Accepted for publication 22 November 2004. ABSTRACT Chipps, T. J., Gilmore, B., Myers, J. R., and Stotz, H. U. 2005. Relation- Pole’. Sensitivity to oxalate ranked highest for Wolven Pole, lowest for PI ship between oxalate, oxalate oxidase activity, oxalate sensitivity, and white 255956, and intermediate for PI 535278. Oxalate concentrations were mold susceptibility in Phaseolus coccineus. Phytopathology 95:292-299. similar in infected stem tissues of the partially resistant lines and lower than Wolven Pole. Moreover, oxalate oxidase and superoxide dismutase Sclerotinia sclerotiorum is a necrotrophic pathogen that devastates the activities were absent in the more resistant lines but induced in Wolven yields of numerous crop species, including beans. The disease in common Pole. Collectively, these results suggest that genetic differences in bean and pea is referred to as white mold. We examined the relationship susceptibility to S. sclerotiorum among different P. coccineus lines are between oxalate, an established virulence factor of S. sclerotiorum, and partially dependent on oxalic acid. partial white mold resistance of scarlet runner bean (Phaseolus coc- cineus). P. coccineus genotypes PI 255956 (‘Mayan White Runner’) and Additional keywords: activity gels, oxalate-deficient mutant fungus, PI 535278 (Tars-046A) were more resistant than susceptible ‘Wolven Phaseolus vulgaris, straw test.
    [Show full text]
  • Banana Peel Oxalate Oxidase-Detection, Purification, Characterization and Physiological Role
    Innovare International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 7, Issue 1, 2015 Original Article BANANA PEEL OXALATE OXIDASE-DETECTION, PURIFICATION, CHARACTERIZATION AND PHYSIOLOGICAL ROLE SHADMA ANJUM ** , SHANTHY SUNDARAM *, G. K. RAI. ** *Centre for Biotechnology, University of Allahabad, Allahabad, ** Centre of Food Technology, University of Allahabad, Allahabad. Email: [email protected] Received: 13 Jul 2014 Revised and Accepted: 25 Aug 2014 ABSTRACT Objective: Enzymes like oxalate oxidase (EC 1.2.3.4) and superoxide dismutase (EC 1.15.1.1) from germin family are known to generate active oxygen species. In the mammalian system, excess accumulations of oxalate causes kidney stones. Oxalate oxidase, an H2O2-generating enzyme, used for detection of oxalate. The aim of the present work is to screen out the activity of enzymes from all three stages of banana (Musa paradisica L. Variety “Bhusawal”) peel and to isolate, purified and characterized oxalate oxidase from this. With that describe the physiological role of both oxalate oxidase and superoxide dismutase in the plant. Methods: Oxalate oxidase activity can be detected directly in SDS-PAGE gel. Purification was done by using ion-exchange chromatography and SDS- PAGE Gel. Results: Highest activity 5.99+0.021 unit /mg of oxalate oxidase were detected in leaky ripe stage of banana peel after purification. In crude extract of unripe banana peel activity of superoxide dismutase were found high (2.41unit/mg) compared to oxalate oxidase (0.269+ 0.020 unit/mg). Their occurence in different ripening stage of banana peel shows its role in plant defense mechanism. Conclusion: The purified enzyme of oxalate oxidase from banana peel is useful in the determination of oxalate content in common food, which is necessary for the prescription of the low oxalate diet for a patient with urinary and kidney stone where as superoxide dismutase work against ageing.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • Supplementary Table 9. Functional Annotation Clustering Results for the Union (GS3) of the Top Genes from the SNP-Level and Gene-Based Analyses (See ST4)
    Supplementary Table 9. Functional Annotation Clustering Results for the union (GS3) of the top genes from the SNP-level and Gene-based analyses (see ST4) Column Header Key Annotation Cluster Name of cluster, sorted by descending Enrichment score Enrichment Score EASE enrichment score for functional annotation cluster Category Pathway Database Term Pathway name/Identifier Count Number of genes in the submitted list in the specified term % Percentage of identified genes in the submitted list associated with the specified term PValue Significance level associated with the EASE enrichment score for the term Genes List of genes present in the term List Total Number of genes from the submitted list present in the category Pop Hits Number of genes involved in the specified term (category-specific) Pop Total Number of genes in the human genome background (category-specific) Fold Enrichment Ratio of the proportion of count to list total and population hits to population total Bonferroni Bonferroni adjustment of p-value Benjamini Benjamini adjustment of p-value FDR False Discovery Rate of p-value (percent form) Annotation Cluster 1 Enrichment Score: 3.8978262119731335 Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR GOTERM_CC_DIRECT GO:0005886~plasma membrane 383 24.33290978 5.74E-05 SLC9A9, XRCC5, HRAS, CHMP3, ATP1B2, EFNA1, OSMR, SLC9A3, EFNA3, UTRN, SYT6, ZNRF2, APP, AT1425 4121 18224 1.18857065 0.038655922 0.038655922 0.086284383 UP_KEYWORDS Membrane 626 39.77128335 1.53E-04 SLC9A9, HRAS,
    [Show full text]
  • MECHANISM of the REACTION CATALYZED by the OXALATE DECARBOXYLASE from Bacillus Subtilis
    MECHANISM OF THE REACTION CATALYZED BY THE OXALATE DECARBOXYLASE FROM Bacillus subtilis By DRAŽENKA SVEDRUŽIĆ A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Draženka Svedružić This thesis is dedicated to my brother Željko, my parents and Chris. Ova je teza posvećena mome bratu Željku, mojim roditeljima i Krisu. ACKNOWLEDGMENTS This study was supported by grants from the National Institutes of Health (DK61666 and DK53556) and by the University of Florida Chemistry Department. Partial funding was also received from Dr. Ammon B. Peck. Thanks go to my doctoral dissertation committee: Dr. Steven A. Benner, Dr. Ammon B. Peck, Dr. Michael J. Scott, Dr. Jon D. Stewart, and especially my advisor, Dr. Nigel G. J. Richards, for making this research project a reality, but also for his constant support and guidance. Dr. Laurie A. Renhardt, Yang Liu and Dr. Wallace W. Cleland I thank for fruitful collaboration on heavy atom isotope effects research. Also, I thank Dr. Wallace W. Cleland for hospitality during my stay in Madison, Wisconsin. Thanks go to my EPR collaborators Dr. Lee Walker, Dr. Andrzej Ozarowski and Dr. Alexander Angerhofer. I am grateful to my coworkers and friends in the Richards research group, especially Dr. Christopher H. Chang for proofreading, countless discussions, valuable insights, guidance and support. Special thanks go to Stefan Jonsson for all his help, Sue Abbatiello for her mass spectrometry efforts and Lukas Koroniak for help with NMR experiments. Also thanks go to all members of Richards group, especially Mihai, Jemy and Cory, for providing a pleasant and supporting environment in and out of lab.
    [Show full text]
  • The Potential of Biotechnology for Ozark Chinquapin Conservation
    Photo by The Ozark Chinquapin Foundation American Chestnut (Castanea dentata) Allegheny Chinquapin (Castanea pumila) Ozark Chinquapin (Castanea ozarkensis) The Potential of Biotechnology for Ozark Chinquapin Conservation Hannah Pilkey; SUNY-College of Environmental Science & Forestry Blight Tolerant American Chestnut “Darling 58” Graph courtesy of Andy Newhouse, SUNY-ESF Research Objective Can the same methods used to produce a transgenic American chestnut, be used to develop a transgenic Ozark chinquapin tree? Regenerating Ozark Chinquapin Embryos Somatic embryo mass Shoots emerging from Micropropagation “OC001-14” somatic embryos of shoots Oxalate Oxidase (OxO) Gene From Wheat Ubiquitous enzyme, found in many plants Detoxifies the oxalic acid produced by the fungus NOT a pesticide, does not kill the fungus Changes the fungus’ lifestyle from a pathogen, to a saprotroph (like on Chinese chestnut & some oaks) Slide by Bill Powell Genetic Transformation • Agrobacterium (AGL1) -mediated transformation • p35s-OxO binary vector • “OC001-14” somatic embryos • 10-week period of selection in bioreactors OxO Detected in Ozark Chinquapin Embryos 100 bp 100 bp + AC + OC (Darling) wt AC wt OC Natural Blight-Resistance in Ozark Chinquapin Research by Leslie Bost https://ozarkchinquapinmembership.org/blight-screening/ Oxalic Acid Leaf Disc Assay Final Thoughts Does Ozark chinquapin have a gene similar to OxO? Other enzymatic pathways? • Oxalate-CoA ligase • Oxalyl-CoA decarboxylase • Formyl-CoA hydrolase • Formate dehydrogenase Genes can be put into the genome of Ozark chinquapin if it is needed in the future, but protocol should be optimized to increase number of transformants. Thank you! Dr. Scott Merkle Steve Bost and The Ozark Chinquapin Foundation The American Chestnut Foundation Questions? www.esf.edu/chestnut Contact: [email protected].
    [Show full text]
  • Proteome-Wide Characterization of Sugarbeet Seed Vigor and Its Tissue Specific Expression
    Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression Julie Catusse*†, Jean-Marc Strub†‡, Claudette Job*, Alain Van Dorsselaer†, and Dominique Job*§ *Centre National de la Recherche Scientifique-Universite´Claude Bernard Lyon 1, Institut National des Sciences Applique´es–Bayer CropScience Joint Laboratory, Unite´Mixte de Recherche 5240, Bayer CropScience, 14-20 rue Pierre Baizet, F69263 Lyon Cedex 9, France; and ‡Laboratoire de Spectrome´trie de Masse Bio-Organique, De´partement des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, Unite´Mixte de Recherche 7178, Centre National de la Recherche Scientifique-Universite´Louis Pasteur, Ecole Europe´enne de Chimie, Mate´riaux et Polyme`res, 25 rue Becquerel, F67087 Strasbourg Cedex 2, France Edited by Roland Douce, Universite´de Grenoble, Grenoble, France, and approved April 11, 2008 (received for review January 19, 2008) Proteomic analysis of mature sugarbeet seeds led to the identifi- The use of metabolic inhibitors (␣-amanitin and cyclohexi- cation of 759 proteins and their specific tissue expression in root, mide) showed that transcription is not required for the comple- cotyledons, and perisperm. In particular, the proteome of the tion of germination in Arabidopsis, implying that the potential of perispermic storage tissue found in many seeds of the Caryophyl- germination is largely programmed during seed maturation on lales is described here. The data allowed us to reconstruct in detail the mother plant (4). Therefore, in this work, we have charac- the metabolism of the seeds toward recapitulating facets of seed terized sugarbeet seed¶ vigor by proteomics. This was challeng- development and provided insights into complex behaviors such as ing, however, because there are virtually no genomics data germination.
    [Show full text]
  • Oxalate Decarboxylase from Agrobacterium Tumefaciens C58 Is Translocated by a Twin Arginine Translocation System
    J. Microbiol. Biotechnol. (2008), 18(7), 1245–1251 Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System Shen, Yu-Hu1,2, Rui-Juan Liu2, and Hai-Qing Wang2* 1School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China 2Northwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xining, 810001, China Received: December 10, 2008 / Accepted: February 1, 2008 Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes are members of the bicupin subclass and are thus thought catalyzing the conversion of oxalate to formate and CO2. to contain two β-barrels, each comprising six β-strands The OXDCs found in fungi and bacteria belong to a [18]. functionally diverse protein superfamily known as the The best-characterized OXDCs are enzymes that have a cupins. Fungi-originated OXDCs are secretory enzymes. wood-rotting fungal origin, such as Flammulina velutipes However, most bacterial OXDCs are localized in the [17, 23], Postia placenta [24], Aspergillus niger [12, 26], cytosol, and may be involved in energy metabolism. In and the bacterium Bacillus subtilis [30, 31]. The fungal Agrobacterium tumefaciens C58, a locus for a putative OXDCs are secreted enzymes, and a secretion signal has oxalate decarboxylase is present. In the study reported been found in the Flammulina velutipes oxalate decarboxylase here, an enzyme was overexpressed in Escherichia coli that can mediate the secretion of heterologous proteins into and showed oxalate decarboxylase activity. Computational the medium and periplasmic space in Schizosaccharomyces analysis revealed the A. tumefaciens C58 OXDC contains pombe [3]. It is believed that oxalate synthesized by a signal peptide mediating translocation of the enzyme fungi contribute to lignin degradation, nutrient availability, into the periplasm that was supported by expression of pathogenesis, and competition.
    [Show full text]