Studies on Novel Oxalate Oxidase Produced by an Endophytic Bacterium Ochrobactrum Intermedium Cl6

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Novel Oxalate Oxidase Produced by an Endophytic Bacterium Ochrobactrum Intermedium Cl6 STUDIES ON NOVEL OXALATE OXIDASE PRODUCED BY AN ENDOPHYTIC BACTERIUM OCHROBACTRUM INTERMEDIUM CL6 Thesis Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By KUNAL KUMAR DEPARTMENT OF CHEMICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA SURATHKAL, MANGALORE – 575 025 APRIL, 2017 D E C L A R A T I O N I hereby declare that the Research Thesis entitled “Studies on novel Oxalate Oxidase produced by an endophytic bacterium Ochrobactrum intermedium CL6”which is being submitted to the National Institute of Technology Karnataka, Surathkal in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in the Department of Chemical Engineering, is a bonafide report of the research work carried out by me. The material contained in this Research Thesis has not been submitted to any University or Institution for the award of any degree. Place: NITK, Surathkal Name: KUNAL KUMAR Date: Register Number: 121160CH12F01 Department of Chemical Engineering CERTIFICATE This is to certify that the Research Thesis entitled “Studies on novel Oxalate Oxidase produced by an endophytic bacterium Ochrobactrum intermedium CL6” submitted by Mr. Kunal Kumar (Register Number: 121160CH12F01) as the record of the research work carried out by him, is accepted as the Research Thesis submission in partial fulfillment of the requirements for the award of degree of Doctor of Philosophy. Research Guide Dr. Prasanna B.D Assistant Professor Dept. of Chemical Engineering NITK, Surathkal Chairman -DRPC ACKNOWLEDGEMENT Pursuing the path of this doctoral study has been a very insightful phase in the journey of my life. This wonderful experience would not have been complete without the contribution and support of several people, whom I shall remain indebted to. At the outset, I would like to express my sincerest gratitude to my research guide Dr. Prasanna B.D for his perpetual guidance, friendly support and constructive criticism, which were essential in the fulfillment of this task. His perceptive thoughts have inspired me to develop as a whole on the professional and personal life front. His understanding and personal guidance have provided a good basis for the present research. The hard question raised by him has encouraged me to widen my research from various perspectives. He has been a great source of inspiration to me. I am greatly thankful to the RPAC committee members Dr. I. Regupathi for invaluable advice and feedback which enabled me to speed up my research work and Dr. B. Ramachandra Bhat for his insightful comments and advice at different stages of my research, which were inspiring and they helped me work in a coherent fashion. My humble gratitude to the Director, NITK, present and former Head of the Department of Chemical Engineering, NITK, Surathkal Dr. Raj Mohan B, Dr. M.B Saidutta and Dr. Vidya Shetty K for providing me the necessary facilities and support during my research work. I take this opportunity to thank all teaching staff, Department of Chemical Engineering, NITK, Surathkal, for their valuable suggestions and support throughout this work. I take this opportunity to express my sincere thanks to Mr. Sadashiva, for gladly helping in the handling of laboratory equipments and chemicals, Mrs. Shashikala for all the official documentation, Mrs. Thrithila Shetty for her patience and support in giving consumables required for the research work, Mrs. Prema, Mrs. Sunitha, Mrs. Leela, Late Mr. Keshava Shettigar, Mr. Ananda Devadiga, Mr. Mahadeva, Mr. Harish Shetty, Mr. Suresh and Mr. Ramesh and all other non-teaching staff members of Department of Chemical Engineering for their kind helpful suggestions and timely maintenance of the laboratory equipments. I sincerely thank to NITK for providing me financial support in the form of fellowship. I am grateful to all my former and current research colleagues and student colleagues for providing a stimulating and fun-filled environment during my period of stay in NITK, and all those who have helped me during my dissertation work and have been involved directly or indirectly in this endeavor. I specially thank my dear friends Ms. Manjula, Ms. Vaisali, Ms. Charanya, Ms. Anusha, Ms. Swapnali, Ms. Anushree, Ms. Shwetashree, Ms. Aishwarya, Ms. Pooja, Mr. Basavraj, Mr. Shivananth, Mr. Pragadeesh, Mr. Harsha, Mr. Vishnu, Mr. Ramana Reddy, Mr. Vijay, Mr. Arun Augustin, Mr. Manoj, Dr. Supriyo Basak, Dr. Subha K who stood behind me during my tough times professionally and personally. I also thank all the members of Voice club of NITK for helping me to walk on the path of spiritual wisdom. Finally, I would like to thank God for giving me forbearance, perseverance and immense energy to accomplish this research work and pursue my dream. I wish to place on record my deepest gratitude to my beloved parents, Mr. Nirod Baran Paul and Mrs. Nandita Paul; my brother, Mr. Sourav Kumar Paul and my sister, Ms. Suhita Paul for their constant support, love and motivation in this journey of life. Kunal Kumar DEDICATED TO MY FAMILY ABSTRACT Oxalate Oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide with the reduction of molecular oxygen to hydrogen peroxide. Oxalate Oxidase (OxO) finds application in clinical assay for oxalate in blood and urine, apart from several potential industrial applications. This research work is about isolation of endophytic bacteria from the tubers of the plants Colocasia esculenta, Beta vulgaris, Ipomoea batatas and peel of Musa paradisiaca fruit for screening of OxO producing strain. A total of 49 endophytes were isolated and out of which, 4 were OxO producing strains. Based upon the OxO activity produced in nutrient medium, one strain CL6 isolated from tubers of C. esculenta was selected and identified as Ochrobactrum intermedium by 16 S rDNA sequencing. The effect of media components and process variables on the growth kinetics of the O. intermedium CL6 and on the production of the enzyme OxO showed that production is inducible and requires manganese ions in the medium, and very low fill-up volume is beneficial. Characterization of the partially purified OxO revealed many intriguing characteristics. The enzyme is thermostable and remains active for 6 h in the temperature range of 4-80°C. This enzyme is the only known OxO which did not show substrate inhibition up to a substrate concentration of 50 mM. The enzymatic activity was not adversely affected by most of the metal ions and biochemical agents (K+, Na+, Zn2+, Fe3+, Mn2+, Mg2+, Glucose, Urea, and Lactate). The enzyme appears to be a metalloprotein stimulated by Ca2+ and Fe2+. It’s Km and kcat for oxalate was found to be 0.45mM and 85 s-1 respectively. Chemical modification of OxO revealed that cysteine, carboxylates, histidine and tryptophan residues are part of the active site. A two-fold increase in Oxalate Oxidase activity was observed when histidine residues were modified with 15mM diethylpyrocarbonate. Application studies on the development of a novel enzymatic treatment method to reduce total oxalate content of the extracted starch from Taro flour resulted in 97% reduction and this treatment did not alter any of the desirable physico-chemical properties of the starch. Keywords: Oxalate Oxidase, Endophytes, Ochrobactrum intermedium, Thermostable, Taro, Starch i CONTENTS PAGE NO. ABSTRACT i CONTENTS ii LIST OF FIGURES x LIST OF TABLES xiii ABBREVIATIONS xv NOMENCLATURE xvi CHAPTER TITLE 1 INTRODUCTION 1 2 REVIEW OF LITERATURE 8 2.1 Oxalate rich plants 8 2.2 Role of oxalates in plants 10 2.3 Occurrence of Oxalate Oxidase in different organisms 11 2.4 Application of Oxalate Oxidase 14 2.5 Endophytes 14 2.6 Plant – Endophyte interactions 16 2.7 Purification of Enzymes 17 2.7.1 Protein Purification scheme 21 2.8 Characterization of enzymes 21 2.8.1 Influence of the pH on enzyme assays 21 2.8.2 Dependence of the enzyme activity on the 22 temperature 2.8.3 Metal ions in biological catalysis 22 2.8.4 Kinetic Properties 23 2.9 Purification of Oxalate Oxidase 24 ii 2.10 Kinetic and Biochemical Characterization of Oxalate 25 Oxidase 2.11 Chemical Modification of amino acid residues of 27 enzymes 2.12 Mechanism of Oxalate Oxidase catalysis 29 2.13 Starch and its industrial application 31 2.13.1 Starch from Taro 34 2.13.2 Anti-nutritional factors present in food crops 37 2.13.3 Strategies to reduce oxalate content in Taro 38 flour 3 ISOLATION AND SCREENING OF ENDOPHYTES 44 FOR OXALATE OXIDASE PRODUCTION AND MEDIA AND PROCESS OPTIMIZATION FOR ENHANCED YIELD BY ONE FACTOR APPROACH 3.1 Materials and Methods 44 3.1.1 Selection of plants 44 3.1.2 Isolation of endophytes 45 3.1.3 Screening of Oxalate Oxidase positive 45 endophytes 3.1.4 Maintenance and preservation methods 45 3.1.5 Physical and molecular characterization of 47 the positive strain. 3.1.6 Inoculum medium 47 3.1.7 Media design for production of Oxalate 47 Oxidase 3.1.8 Enzyme Assay procedure. 47 3.1.8.1 Principle 47 3.1.8.2 Reagents 48 3.1.8.3 Procedure 48 iii 3.1.9 Effect of nutritional parameters on 49 Oxalate Oxidase production 3.1.9.1 Effect of different carbon sources 49 3.1.9.2 Effect of different nitrogen sources 49 3.1.9.3 Effect of Mn2+ ions 50 3.1.10 One factor study of Non-nutritional 50 parameters 3.1.10.1 Temperature: 50 3.1.10.2 pH 50 3.1.10.3 Fill up volume 50 3.1.10.4 Agitation speed 50 3.1.10.5 Inoculum age 51 3.2 Results and Discussions 51 3.2.1 Isolation of endophytes 51 3.2.2 Physical and molecular characterization 55 3.2.3 Effect of nutritional parameters 62 3.2.3.1
Recommended publications
  • Oxalic Acid Degradation by a Novel Fungal Oxalate Oxidase from Abortiporus Biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1
    Vol. 63, No 3/2016 595–600 http://dx.doi.org/10.18388/abp.2016_1282 Regular paper Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1 1Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland; 2Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland Oxalate oxidase was identified in mycelial extracts of a to formic acid and carbon dioxide (Mäkelä et al., 2002). basidiomycete Abortiporus biennis strain. Intracellular The degradation of oxalate via action of oxalate oxidase enzyme activity was detected only after prior lowering (EC 1.2.3.4), described in our study, is atypical for fun- of the pH value of the fungal cultures by using oxalic or gi and was found predominantly in higher plants. The hydrochloric acids. This enzyme was purified using size best characterised oxalate oxidase originates from cereal exclusion chromatography (Sephadex G-25) and ion-ex- plants (Dunwell, 2000). Currently, only three oxalate oxi- change chromatography (DEAE-Sepharose). This enzyme dases of basidiomycete fungi have been described - an exhibited optimum activity at pH 2 when incubated at enzyme from Tilletia contraversa (Vaisey et al., 1961), the 40°C, and the optimum temperature was established at best characterised so far enzyme from Ceriporiopsis subver- 60°C. Among the tested organic acids, this enzyme ex- mispora (Aguilar et al., 1999), and an enzyme produced by hibited specificity only towards oxalic acid. Molecular Abortiporus biennis (Grąz et al., 2009). The enzyme from mass was calculated as 58 kDa. The values of Km for oxa- C.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography. 8710037 Poikey, Leonard Andrew THE USE OF IMMOBILIZED OXALATE OXIDASE IN AN ANALYTICAL ASSAY FOR URINARY OXALATE AND IN AN EXTRACORPOREAL SHUNT TREATMENT FOR HYPEROXALURIA The Ohio State University Ph.D. 1987 University Microfilms I nternsition300 el N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy.
    [Show full text]
  • Oxygen-Reducing Enzymes in Coatings and Films for Active Packaging |
    Kristin Johansson | Oxygen-reducing enzymes in coatings and films for active packaging | | Oxygen-reducing enzymes in coatings and films for active packaging Kristin Johansson Oxygen-reducing enzymes in coatings and films for active packaging Oxygen-reducing enzymes This work focused on investigating the possibility to produce oxygen-scavenging packaging materials based on oxygen-reducing enzymes. The enzymes were incorporated into a dispersion coating formulation applied onto a food- in coatings and films for packaging board using conventional laboratory coating techniques. The oxygen- reducing enzymes investigated included a glucose oxidase, an oxalate oxidase active packaging and three laccases originating from different organisms. All of the enzymes were successfully incorporated into a coating layer and could be reactivated after drying. For at least two of the enzymes, re-activation after drying was possible not only Kristin Johansson by using liquid water but also by using water vapour. Re-activation of the glucose oxidase and a laccase required relative humidities of greater than 75% and greater than 92%, respectively. Catalytic reduction of oxygen gas by glucose oxidase was promoted by creating 2013:38 an open structure through addition of clay to the coating formulation at a level above the critical pigment volume concentration. For laccase-catalysed reduction of oxygen gas, it was possible to use lignin derivatives as substrates for the enzymatic reaction. At 7°C all three laccases retained more than 20% of the activity they
    [Show full text]
  • Direct Spectrophotometric Determination of Serum and Urinary Oxalate with Oxalate Oxidase1) by G. Kohlbecker
    Kohibecker and Bute: Direct spcctrophotometric determination of oxalate 1103 J. Gin. Chem. Clin. Biochem. Vol. 19,1981, pp. 1103-1106 Direct Spectrophotometric Determination of Serum and Urinary Oxalate with Oxalate Oxidase1) By G. Kohlbecker Institut f r Molekularbiologie und Biochemie, Freie Universit t Berlin and M. Butz Urologische Klinik und Poliklinik, Klinikum St eglitz, Freie Universit t Berlin (Received May 20, 1981) Summary: A new enzymatic method for direct photometric determination of oxalate in serum and urine is described, using oxalate oxidase. The resulting H202 is measured with a coupled enzyme system of catalase and aldehyde de- hydrogenase. Percentage recovery of added oxalate was 99 ± 4 in serum, and 98 ± 4 in urine (n = 10). Oxalate serum levels varied from 16.9 to 44.8 μηηοΙ/L Oxalate values can be determined within 20 minutes, without time consuming pretreatment of samples. The detection limit is 5 μπιοΐ/ΐ. Direkte spektrophotometrische Bestimmung von Serum- und Urin-Oxalat mit Oxalat-Oxidase Zusammenfassung: Es wird eine neue enzymatische Methode zur direkten photometrischen Bestimmung von Oxalat in Serum und Urin mittels Oxalatoxidase beschrieben. In einer gekoppelten Reaktion wird H202 enzymatisch durch Katalase und Aldehyddehydrogenase gemessen. Die Wiederfindung von zugesetztem Oxalat betrug 99 ± 4% in Serum und 98 ± 4% in Urin (n = 10). Die Oxalatkonzentrationen in Serum variierten von 16,9 bis 44,8 /imol/l. Oxalatwerte k nnen ohne zeitraubende Probenvorbehandlung innerhalb 20 Minuten ermittelt werden. Die Erfassungsgrenze liegt bei 5 μπιοΐ/ΐ. Introduction aldehyde dehydrogenase reaction for H2O2 determina- tion (12) is widely accepted in laboratory practice be- Reliable measurement of oxalate is required in the cause of its specifity.
    [Show full text]
  • Relationship Between Oxalate, Oxalate Oxidase Activity, Oxalate Sensitivity, and White Mold Susceptibility in Phaseolus Coccineus
    Genetics and Resistance Relationship Between Oxalate, Oxalate Oxidase Activity, Oxalate Sensitivity, and White Mold Susceptibility in Phaseolus coccineus Timothy J. Chipps, Barbara Gilmore, James R. Myers, and Henrik U. Stotz Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis 97331. Current address of T. J. Chipps: Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland 97239. Current address of B. Gilmore: U.S. Department of Agriculture, National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97330. Accepted for publication 22 November 2004. ABSTRACT Chipps, T. J., Gilmore, B., Myers, J. R., and Stotz, H. U. 2005. Relation- Pole’. Sensitivity to oxalate ranked highest for Wolven Pole, lowest for PI ship between oxalate, oxalate oxidase activity, oxalate sensitivity, and white 255956, and intermediate for PI 535278. Oxalate concentrations were mold susceptibility in Phaseolus coccineus. Phytopathology 95:292-299. similar in infected stem tissues of the partially resistant lines and lower than Wolven Pole. Moreover, oxalate oxidase and superoxide dismutase Sclerotinia sclerotiorum is a necrotrophic pathogen that devastates the activities were absent in the more resistant lines but induced in Wolven yields of numerous crop species, including beans. The disease in common Pole. Collectively, these results suggest that genetic differences in bean and pea is referred to as white mold. We examined the relationship susceptibility to S. sclerotiorum among different P. coccineus lines are between oxalate, an established virulence factor of S. sclerotiorum, and partially dependent on oxalic acid. partial white mold resistance of scarlet runner bean (Phaseolus coc- cineus). P. coccineus genotypes PI 255956 (‘Mayan White Runner’) and Additional keywords: activity gels, oxalate-deficient mutant fungus, PI 535278 (Tars-046A) were more resistant than susceptible ‘Wolven Phaseolus vulgaris, straw test.
    [Show full text]
  • Banana Peel Oxalate Oxidase-Detection, Purification, Characterization and Physiological Role
    Innovare International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 7, Issue 1, 2015 Original Article BANANA PEEL OXALATE OXIDASE-DETECTION, PURIFICATION, CHARACTERIZATION AND PHYSIOLOGICAL ROLE SHADMA ANJUM ** , SHANTHY SUNDARAM *, G. K. RAI. ** *Centre for Biotechnology, University of Allahabad, Allahabad, ** Centre of Food Technology, University of Allahabad, Allahabad. Email: [email protected] Received: 13 Jul 2014 Revised and Accepted: 25 Aug 2014 ABSTRACT Objective: Enzymes like oxalate oxidase (EC 1.2.3.4) and superoxide dismutase (EC 1.15.1.1) from germin family are known to generate active oxygen species. In the mammalian system, excess accumulations of oxalate causes kidney stones. Oxalate oxidase, an H2O2-generating enzyme, used for detection of oxalate. The aim of the present work is to screen out the activity of enzymes from all three stages of banana (Musa paradisica L. Variety “Bhusawal”) peel and to isolate, purified and characterized oxalate oxidase from this. With that describe the physiological role of both oxalate oxidase and superoxide dismutase in the plant. Methods: Oxalate oxidase activity can be detected directly in SDS-PAGE gel. Purification was done by using ion-exchange chromatography and SDS- PAGE Gel. Results: Highest activity 5.99+0.021 unit /mg of oxalate oxidase were detected in leaky ripe stage of banana peel after purification. In crude extract of unripe banana peel activity of superoxide dismutase were found high (2.41unit/mg) compared to oxalate oxidase (0.269+ 0.020 unit/mg). Their occurence in different ripening stage of banana peel shows its role in plant defense mechanism. Conclusion: The purified enzyme of oxalate oxidase from banana peel is useful in the determination of oxalate content in common food, which is necessary for the prescription of the low oxalate diet for a patient with urinary and kidney stone where as superoxide dismutase work against ageing.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • Supplementary Table 9. Functional Annotation Clustering Results for the Union (GS3) of the Top Genes from the SNP-Level and Gene-Based Analyses (See ST4)
    Supplementary Table 9. Functional Annotation Clustering Results for the union (GS3) of the top genes from the SNP-level and Gene-based analyses (see ST4) Column Header Key Annotation Cluster Name of cluster, sorted by descending Enrichment score Enrichment Score EASE enrichment score for functional annotation cluster Category Pathway Database Term Pathway name/Identifier Count Number of genes in the submitted list in the specified term % Percentage of identified genes in the submitted list associated with the specified term PValue Significance level associated with the EASE enrichment score for the term Genes List of genes present in the term List Total Number of genes from the submitted list present in the category Pop Hits Number of genes involved in the specified term (category-specific) Pop Total Number of genes in the human genome background (category-specific) Fold Enrichment Ratio of the proportion of count to list total and population hits to population total Bonferroni Bonferroni adjustment of p-value Benjamini Benjamini adjustment of p-value FDR False Discovery Rate of p-value (percent form) Annotation Cluster 1 Enrichment Score: 3.8978262119731335 Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR GOTERM_CC_DIRECT GO:0005886~plasma membrane 383 24.33290978 5.74E-05 SLC9A9, XRCC5, HRAS, CHMP3, ATP1B2, EFNA1, OSMR, SLC9A3, EFNA3, UTRN, SYT6, ZNRF2, APP, AT1425 4121 18224 1.18857065 0.038655922 0.038655922 0.086284383 UP_KEYWORDS Membrane 626 39.77128335 1.53E-04 SLC9A9, HRAS,
    [Show full text]
  • MECHANISM of the REACTION CATALYZED by the OXALATE DECARBOXYLASE from Bacillus Subtilis
    MECHANISM OF THE REACTION CATALYZED BY THE OXALATE DECARBOXYLASE FROM Bacillus subtilis By DRAŽENKA SVEDRUŽIĆ A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Draženka Svedružić This thesis is dedicated to my brother Željko, my parents and Chris. Ova je teza posvećena mome bratu Željku, mojim roditeljima i Krisu. ACKNOWLEDGMENTS This study was supported by grants from the National Institutes of Health (DK61666 and DK53556) and by the University of Florida Chemistry Department. Partial funding was also received from Dr. Ammon B. Peck. Thanks go to my doctoral dissertation committee: Dr. Steven A. Benner, Dr. Ammon B. Peck, Dr. Michael J. Scott, Dr. Jon D. Stewart, and especially my advisor, Dr. Nigel G. J. Richards, for making this research project a reality, but also for his constant support and guidance. Dr. Laurie A. Renhardt, Yang Liu and Dr. Wallace W. Cleland I thank for fruitful collaboration on heavy atom isotope effects research. Also, I thank Dr. Wallace W. Cleland for hospitality during my stay in Madison, Wisconsin. Thanks go to my EPR collaborators Dr. Lee Walker, Dr. Andrzej Ozarowski and Dr. Alexander Angerhofer. I am grateful to my coworkers and friends in the Richards research group, especially Dr. Christopher H. Chang for proofreading, countless discussions, valuable insights, guidance and support. Special thanks go to Stefan Jonsson for all his help, Sue Abbatiello for her mass spectrometry efforts and Lukas Koroniak for help with NMR experiments. Also thanks go to all members of Richards group, especially Mihai, Jemy and Cory, for providing a pleasant and supporting environment in and out of lab.
    [Show full text]
  • The Potential of Biotechnology for Ozark Chinquapin Conservation
    Photo by The Ozark Chinquapin Foundation American Chestnut (Castanea dentata) Allegheny Chinquapin (Castanea pumila) Ozark Chinquapin (Castanea ozarkensis) The Potential of Biotechnology for Ozark Chinquapin Conservation Hannah Pilkey; SUNY-College of Environmental Science & Forestry Blight Tolerant American Chestnut “Darling 58” Graph courtesy of Andy Newhouse, SUNY-ESF Research Objective Can the same methods used to produce a transgenic American chestnut, be used to develop a transgenic Ozark chinquapin tree? Regenerating Ozark Chinquapin Embryos Somatic embryo mass Shoots emerging from Micropropagation “OC001-14” somatic embryos of shoots Oxalate Oxidase (OxO) Gene From Wheat Ubiquitous enzyme, found in many plants Detoxifies the oxalic acid produced by the fungus NOT a pesticide, does not kill the fungus Changes the fungus’ lifestyle from a pathogen, to a saprotroph (like on Chinese chestnut & some oaks) Slide by Bill Powell Genetic Transformation • Agrobacterium (AGL1) -mediated transformation • p35s-OxO binary vector • “OC001-14” somatic embryos • 10-week period of selection in bioreactors OxO Detected in Ozark Chinquapin Embryos 100 bp 100 bp + AC + OC (Darling) wt AC wt OC Natural Blight-Resistance in Ozark Chinquapin Research by Leslie Bost https://ozarkchinquapinmembership.org/blight-screening/ Oxalic Acid Leaf Disc Assay Final Thoughts Does Ozark chinquapin have a gene similar to OxO? Other enzymatic pathways? • Oxalate-CoA ligase • Oxalyl-CoA decarboxylase • Formyl-CoA hydrolase • Formate dehydrogenase Genes can be put into the genome of Ozark chinquapin if it is needed in the future, but protocol should be optimized to increase number of transformants. Thank you! Dr. Scott Merkle Steve Bost and The Ozark Chinquapin Foundation The American Chestnut Foundation Questions? www.esf.edu/chestnut Contact: [email protected].
    [Show full text]
  • Proteome-Wide Characterization of Sugarbeet Seed Vigor and Its Tissue Specific Expression
    Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression Julie Catusse*†, Jean-Marc Strub†‡, Claudette Job*, Alain Van Dorsselaer†, and Dominique Job*§ *Centre National de la Recherche Scientifique-Universite´Claude Bernard Lyon 1, Institut National des Sciences Applique´es–Bayer CropScience Joint Laboratory, Unite´Mixte de Recherche 5240, Bayer CropScience, 14-20 rue Pierre Baizet, F69263 Lyon Cedex 9, France; and ‡Laboratoire de Spectrome´trie de Masse Bio-Organique, De´partement des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, Unite´Mixte de Recherche 7178, Centre National de la Recherche Scientifique-Universite´Louis Pasteur, Ecole Europe´enne de Chimie, Mate´riaux et Polyme`res, 25 rue Becquerel, F67087 Strasbourg Cedex 2, France Edited by Roland Douce, Universite´de Grenoble, Grenoble, France, and approved April 11, 2008 (received for review January 19, 2008) Proteomic analysis of mature sugarbeet seeds led to the identifi- The use of metabolic inhibitors (␣-amanitin and cyclohexi- cation of 759 proteins and their specific tissue expression in root, mide) showed that transcription is not required for the comple- cotyledons, and perisperm. In particular, the proteome of the tion of germination in Arabidopsis, implying that the potential of perispermic storage tissue found in many seeds of the Caryophyl- germination is largely programmed during seed maturation on lales is described here. The data allowed us to reconstruct in detail the mother plant (4). Therefore, in this work, we have charac- the metabolism of the seeds toward recapitulating facets of seed terized sugarbeet seed¶ vigor by proteomics. This was challeng- development and provided insights into complex behaviors such as ing, however, because there are virtually no genomics data germination.
    [Show full text]
  • Oxalate Decarboxylase from Agrobacterium Tumefaciens C58 Is Translocated by a Twin Arginine Translocation System
    J. Microbiol. Biotechnol. (2008), 18(7), 1245–1251 Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System Shen, Yu-Hu1,2, Rui-Juan Liu2, and Hai-Qing Wang2* 1School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China 2Northwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xining, 810001, China Received: December 10, 2008 / Accepted: February 1, 2008 Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes are members of the bicupin subclass and are thus thought catalyzing the conversion of oxalate to formate and CO2. to contain two β-barrels, each comprising six β-strands The OXDCs found in fungi and bacteria belong to a [18]. functionally diverse protein superfamily known as the The best-characterized OXDCs are enzymes that have a cupins. Fungi-originated OXDCs are secretory enzymes. wood-rotting fungal origin, such as Flammulina velutipes However, most bacterial OXDCs are localized in the [17, 23], Postia placenta [24], Aspergillus niger [12, 26], cytosol, and may be involved in energy metabolism. In and the bacterium Bacillus subtilis [30, 31]. The fungal Agrobacterium tumefaciens C58, a locus for a putative OXDCs are secreted enzymes, and a secretion signal has oxalate decarboxylase is present. In the study reported been found in the Flammulina velutipes oxalate decarboxylase here, an enzyme was overexpressed in Escherichia coli that can mediate the secretion of heterologous proteins into and showed oxalate decarboxylase activity. Computational the medium and periplasmic space in Schizosaccharomyces analysis revealed the A. tumefaciens C58 OXDC contains pombe [3]. It is believed that oxalate synthesized by a signal peptide mediating translocation of the enzyme fungi contribute to lignin degradation, nutrient availability, into the periplasm that was supported by expression of pathogenesis, and competition.
    [Show full text]