The Potential of Biotechnology for Ozark Chinquapin Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Photo by The Ozark Chinquapin Foundation American Chestnut (Castanea dentata) Allegheny Chinquapin (Castanea pumila) Ozark Chinquapin (Castanea ozarkensis) The Potential of Biotechnology for Ozark Chinquapin Conservation Hannah Pilkey; SUNY-College of Environmental Science & Forestry Blight Tolerant American Chestnut “Darling 58” Graph courtesy of Andy Newhouse, SUNY-ESF Research Objective Can the same methods used to produce a transgenic American chestnut, be used to develop a transgenic Ozark chinquapin tree? Regenerating Ozark Chinquapin Embryos Somatic embryo mass Shoots emerging from Micropropagation “OC001-14” somatic embryos of shoots Oxalate Oxidase (OxO) Gene From Wheat Ubiquitous enzyme, found in many plants Detoxifies the oxalic acid produced by the fungus NOT a pesticide, does not kill the fungus Changes the fungus’ lifestyle from a pathogen, to a saprotroph (like on Chinese chestnut & some oaks) Slide by Bill Powell Genetic Transformation • Agrobacterium (AGL1) -mediated transformation • p35s-OxO binary vector • “OC001-14” somatic embryos • 10-week period of selection in bioreactors OxO Detected in Ozark Chinquapin Embryos 100 bp 100 bp + AC + OC (Darling) wt AC wt OC Natural Blight-Resistance in Ozark Chinquapin Research by Leslie Bost https://ozarkchinquapinmembership.org/blight-screening/ Oxalic Acid Leaf Disc Assay Final Thoughts Does Ozark chinquapin have a gene similar to OxO? Other enzymatic pathways? • Oxalate-CoA ligase • Oxalyl-CoA decarboxylase • Formyl-CoA hydrolase • Formate dehydrogenase Genes can be put into the genome of Ozark chinquapin if it is needed in the future, but protocol should be optimized to increase number of transformants. Thank you! Dr. Scott Merkle Steve Bost and The Ozark Chinquapin Foundation The American Chestnut Foundation Questions? www.esf.edu/chestnut Contact: [email protected].