Embedded Computing Design
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Wind River Vxworks Platforms 3.8
Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................ -
Schedule 14A Employee Slides Supertex Sunnyvale
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 SCHEDULE 14A Proxy Statement Pursuant to Section 14(a) of the Securities Exchange Act of 1934 Filed by the Registrant Filed by a Party other than the Registrant Check the appropriate box: Preliminary Proxy Statement Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2)) Definitive Proxy Statement Definitive Additional Materials Soliciting Material Pursuant to §240.14a-12 Supertex, Inc. (Name of Registrant as Specified In Its Charter) Microchip Technology Incorporated (Name of Person(s) Filing Proxy Statement, if other than the Registrant) Payment of Filing Fee (Check the appropriate box): No fee required. Fee computed on table below per Exchange Act Rules 14a-6(i)(1) and 0-11. (1) Title of each class of securities to which transaction applies: (2) Aggregate number of securities to which transaction applies: (3) Per unit price or other underlying value of transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was determined): (4) Proposed maximum aggregate value of transaction: (5) Total fee paid: Fee paid previously with preliminary materials. Check box if any part of the fee is offset as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the previous filing by registration statement number, or the Form or Schedule and the date of its filing. (1) Amount Previously Paid: (2) Form, Schedule or Registration Statement No.: (3) Filing Party: (4) Date Filed: Filed by Microchip Technology Incorporated Pursuant to Rule 14a-12 of the Securities Exchange Act of 1934 Subject Company: Supertex, Inc. -
Application Support for Agilent Logic Analyzers
Application Support for Agilent Logic Analyzers Configuration Guide May 1, 2005 Configuring a logic analyzer for your Table of Contents specific application is as easy as one, two, three. To configure a system Agilent Logic Analyzer Family Selection Guide. 2 select the combination of products and capabilities that will 1 connect Designed In Probing . 4 1 connect Connectorless . 4 Connector. 5 General Purpose Probing . 6 Create the physical and electrical Flying-Lead Sets . 6 connection between the logic analyzer Wedge Probe Adapter . 6 and your device under test. IC Package Adapters . 7 Device Specific (Processor/Bus) Real-Time Trace Probes . 8 Processor, DSP and FPGA Solutions . 10 - 17 2 acquire Bus Interconnect Solutions. 18 - 24 2 acquire Provide accurate and reliable measurements, with power to cover Modular Logic Analysis Systems – 16900 Series Mainframes and future technology trends. Logic Analyzer Modules. 25 Modular Logic Analysis Systems – Pattern Generator Module and Oscilloscopes . 27 1680 Series Standalone Logic Analyzers . 28 3 view & analyze 1690 Series PC-Hosted Logic Analyzers. 28 Consolidate large amounts of data 3 view & analyze rapidly into displays that provide Post-Processing Analysis Tools . 29 insight into your system’s behavior in Pattern Generator Analysis Tools. 29 a format you understand. Third Party Contact Information . 30 Support, Services, and Assistance . 31 Use information in each of the sections listed to help you configure a system that will meet your specific measurement needs. Agilent Logic Analyzer -
Protocol Analyzer
Protocol Analyzer TPI4000 Series Datasheet Features & Benefits Multiple Protocols and Test Functions in a Single Instrument User-customizable and Configurable Protocol Database Simultaneous Analysis, Generation, and Statistics True 100% Line Rate Traffic Capture and Optional Traffic Generation Time-correlated Views and Triggers across Every Port and Protocol “Drag and Drop” Ease of Use for Triggering and Filtering Bit-level Control of Generated Traffic Actual Statistics (Total Population, not Sampling) Applications Protocol Compliance Stress Testing Communication Compatibility Performance Optimization Interoperability Testing Datasheet One Instrument – Multiple Functions Meet Your Performance Requirements The TPI4000 Series provides multiple test functionality within a single piece At speeds up to 10 Gb/s, test at full line rate to ensure your design hits its of hardware making it the most versatile serial tester on the market. performance requirements. A single TPI4000 protocol analyzer can handle: TheUltimateHigh-speed Serial Test and Protocol Analysis: Guaranteed 100% full line rate capture Debug Platform Multiple Protocols: Support for Ethernet, Fibre Channel, Serial RapidIO, Serial FDPD, Avionics Full-duplex Switched Ethernet (AFDX), and others Reduce Time to Market with Faster Analysis and Debug including custom protocols The nature of serial debug is that you may have problems that show up Traffic Generation: Test your device with good and bad protocol data only after days or weeks of testing. These types of problems are hard Impairment Testing: Introduce extreme delay conditions into your system to simulate or capture. However, with the TPI4000 Series’ advanced to see debugging functions, including state-of-the-art triggering and filtering, you Bit Error Rate Testing: Detect errors that exceed 10–12 can find even the most obscure problems fast. -
Powerspan II User Manual 80A1010 MA001 09 4 Contents
® PowerSpan II™ User Manual 80A1010_MA001_09 November 2009 6024 Silver Creek Valley Road, San Jose, California 95138 Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775 Printed in U.S.A. ©2009 Integrated Device Technology, Inc. GENERAL DISCLAIMER Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc. CODE DISCLAIMER Code examples provided by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of the code examples below is completely at your own risk. IDT MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE NONINFRINGEMENT, QUALITY, SAFETY OR SUITABILITY OF THE CODE, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU- LAR PURPOSE, OR NON-INFRINGEMENT. FURTHER, IDT MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING CODE EXAMPLES CONTAINED IN ANY IDT PUBLICATION OR PUBLIC DISCLOSURE OR THAT IS CONTAINED ON ANY IDT INTERNET SITE. IN NO EVENT WILL IDT BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE OR SPECIAL DAMAGES, HOWEVER THEY MAY ARISE, AND EVEN IF IDT HAS BEEN PREVIOUSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES. -
Abkürzungs-Liste ABKLEX
Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte -
Optimizing Radar and Advanced Sensor Functions with Fpgas
White Paper Optimizing Radar and Advanced Sensors Functions With FPGAs Introduction Modern warfare in urban and coastal environments depends heavily upon situational awareness. Soldiers in the air, at sea, and on the ground need to understand the environment around them and identify threats as early as possible. State-of-the-art military sensors have unprecedented requirements in the volume of environmental data to be measured and processed. To handle this data and provide “actionable intelligence” to the soldier as soon as possible, sensor system logic requires optimized combinations of logic and digital signal processing (DSP) density, high-speed transceivers, power-versus-performance design flexibility, and high-assurance design flow to meet end-user requirements. As shown in Figure 1, radar systems are used in many different platform sizes, both military and non-military. As more of these systems adopt array and conformal array technologies, the digital logic requirements of these systems will increase, and need to fit into smaller components and boards. Figure 1. Radar Applications Altera’s simple and reliable tool flow, intellectual property (IP) library, and power efficient logic devices are highly advantageous to designers in the military-focused advanced sensor market. Convergence of Military Electronics Systems Military systems and vehicles traditionally have housed many separate electronic subsystems. Among the most sophisticated of these are targeting radar, surveillance radar, electronic warfare and countermeasures, imaging, and radio communications equipment. As shown in Figure 2, these functions have been converging in many military systems, utilizing multi-mode active electronically scanned arrays (AESA). This increases the digital- and state-logic requirements of the system significantly, and demands industry responses with more sophisticated fixed and programmable logic devices (PLDs). -
Análisis Computacional De Mallados Cuadrangulares En Geometrías Complejas Para Implementación En El Método De Los Elementos Finitos
Universidad CEU Cardenal Herrera Departamento de Matemáticas, Física, y Ciencias Tecnológicas Análisis computacional de mallados cuadrangulares en geometrías complejas para implementación en el método de los elementos finitos TESIS DOCTORAL Presentada por: D. César Blecua Udías Dirigida por: Dr. D. Antonio Falcó Montesinos VALENCIA 2017 TESIS DOCTORAL Análisis computacional de mallados cuadrangulares en geometrías complejas para implementación en el método de los elementos finitos El Doctor Don Antonio Falcó Montesinos, profesor de la Universidad CEU Cardenal Herrera informa que la Tesis, Análisis computacional de mallados cuadrangulares en geometrías complejas para implementación en el método de los elementos finitos, de la que es autor Don César Blecua Udías, ha sido realizada bajo su dirección y reúne todas las condiciones científicas y formales necesarias para su defensa. Vº Bº del director: DR. D. ANTONIO FALCÓ MONTESINOS Valencia, 23 de enero de 2017 Para hacer las cosas bien es necesario: primero el amor; segundo, la técnica. A. Gaudí ´Indice 1. Motivaci´on y presentaci´on 5 2. Introducci´on y antecedentes 13 2.1. Clasificaci´onde algoritmos de mallado cuadrangular . .... 13 2.1.1. Mallado estructurado y no estructurado . 13 2.1.2. Mallado cuadrangular indirecto y directo . 14 2.1.2.1. M´etodos indirectos . 14 2.1.2.2. M´etodos directos . 16 2.1.2.2.1. Por descomposici´on . 16 2.1.2.2.2. Por frente de avance . 17 2.2. Mallado en GPU . 19 2.3. Programaci´onen GPUs . 20 2.4. Programaci´onen CPUs de m´ultiples n´ucleos . .. 27 2.5. AccesoaOpenCL......................... 28 3. Resultados 31 3.1. -
Ilore: Discovering a Lineage of Microprocessors
iLORE: Discovering a Lineage of Microprocessors Samuel Lewis Furman Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science & Applications Kirk Cameron, Chair Godmar Back Margaret Ellis May 24, 2021 Blacksburg, Virginia Keywords: Computer history, systems, computer architecture, microprocessors Copyright 2021, Samuel Lewis Furman iLORE: Discovering a Lineage of Microprocessors Samuel Lewis Furman (ABSTRACT) Researchers, benchmarking organizations, and hardware manufacturers maintain repositories of computer component and performance information. However, this data is split across many isolated sources and is stored in a form that is not conducive to analysis. A centralized repository of said data would arm stakeholders across industry and academia with a tool to more quantitatively understand the history of computing. We propose iLORE, a data model designed to represent intricate relationships between computer system benchmarks and computer components. We detail the methods we used to implement and populate the iLORE data model using data harvested from publicly available sources. Finally, we demonstrate the validity and utility of our iLORE implementation through an analysis of the characteristics and lineage of commercial microprocessors. We encourage the research community to interact with our data and visualizations at csgenome.org. iLORE: Discovering a Lineage of Microprocessors Samuel Lewis Furman (GENERAL AUDIENCE ABSTRACT) Researchers, benchmarking organizations, and hardware manufacturers maintain repositories of computer component and performance information. However, this data is split across many isolated sources and is stored in a form that is not conducive to analysis. A centralized repository of said data would arm stakeholders across industry and academia with a tool to more quantitatively understand the history of computing. -
FP6 OPTICON Final Report
Final Report OPTICON Optical Infrared Co-ordination Network for Astronomy Integrating Activity implemented as Integrated Infrastructure Initiative Contract number: RII3-CT-2004-001566 Project Co-ordinator: Professor Gerard Gilmore, The Chancellor, Masters and Scholars of the University of Cambridge. Project website: www.astro-opticon.org Project Duration: 60 months from 01-01-2004 to 31-12-2008 Project funded by the European Community under the “Structuring the European Research Area” Specific Programme Research Infrastructures action Table of contents A. ACTIVITY REPORT ........................................................................................................................................ 3 1. PROGRESS REPORT..................................................................................................................................... 4 2. LIST OF DELIVERABLES.......................................................................................................................... 114 B. MANAGEMENT REPORT (FINANCIAL INFORMATION)..................................................................... 127 1. SUMMARY FINANCIAL REPORT ................................................................................................... 128 A. ACTIVITY REPORT 1. FINAL REPORT 1.1 SUMMARY OF THE ACTIVITIES AND MAJOR ACHIEVEMENTS 1.2 MANAGEMENT ACTIVITY 1.3 NETWORKING ACTIVITIES (OTHER THAN MANAGEMENT) 1.3.1 NA2: COORDINATION AND INTEGRATION OF ENO FACILITIES 1.3.2 NA3: STRUCTURING EUROPEAN ASTRONOMY 1.3.3 NA4: MECHANISMS FOR SYNERGY -
Serial Front Panel Data Port (FPDP) Draft Standard VITA 17.1 – 199X
Serial Front Panel Data Port (FPDP) Draft Standard VITA 17.1 – 199x Draft 0.6 January 30, 2002 This draft standard is being prepared by the VITA Standards Organization (VSO) and is unapproved. Do not specify or claim conformance to this draft standard. VSO is the Public Domain Administrator of this draft standard and guards the contents from change except by sanctioned meetings of the task group under due process. VITA Standards Organization 7825 East Gelding Drive, Suite 104 Scottsdale, AZ 85260 Ph: 602-951-8866 Fx: 602-951-0720 URL: http://www.vita.com Table of Contents Chapter 1- Introduction..........................................................................................................................5 1.1 Standard Terminology.............................................................................................................5 Chapter 2 - Scope and Purpose.............................................................................................................7 2.1 Scope ......................................................................................................................................7 2.2 Purpose ...................................................................................................................................7 2.3 References ..............................................................................................................................7 Chapter 3 ..............................................................................................................................................8 -
Curtiss-Wright / VMETRO Powermidas
Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Curtiss-Wright / VMETRO M2200SR2/128 at our website: Click HERE PowerMIDASTM PMC I/O Subsystem for RACE++/RACEway & VMEbus ...essentially about bridging between: • PMC PMC • PMC Disk Recording • PMC RACE PowerMIDAS www.vmetro.com 1 Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com PowerMIDASTM PMC I/O Subsystem for RACE++/RACEway & VMEbus FEATURES • 266 MBytes/sec RACE++ 2nd generation RACEway compatible • Dual-Port RACE using two PXB++ (optional) • Twin 64-bit PCI buses each with 266 MBytes/sec bandwidth • 100 MHz i960RN I/O processor with 532 MBytes/sec Local Memory bandwidth • Twin i960RN version gives > 1 GByte/sec Memory bandwidth • One or two MPC 8240 PowerPC allows protocol- intensive I/O processing • “Swinging Buffers” operation for continuous Data Acquisition applications i960RN: max MB/s • Onboard Fast Ethernet I/F For streaming oriented applications • Ruggedized and Extended temperature range versions available A central element of the PowerMIDAS is the Intel i960RN processor.