Flux Density B × Cross-Sectional Area A)

Total Page:16

File Type:pdf, Size:1020Kb

Flux Density B × Cross-Sectional Area A) ELL 100 - Introduction to Electrical Engineering LECTURE 31: MAGNETIC CIRCUITS INTRODUCTION A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux ϕ (= magnetic field/flux density B × cross-sectional area A). The flux is usually generated by permanent magnets or electromagnets and confined to a path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, solenoids, loudspeakers, hard disks, MRI machines. 2 APPLICATIONS Motors Generators Transformers Circuit Relay Breakers Switches 3 APPLICATIONS Solenoids Hard Disks MRI Machines 4 Magnetomotive force (mmf) In an electric circuit, the current is induced due to the existence of an electromotive force (emf E, battery voltage). By analogy, we say that in a magnetic circuit the magnetic flux is induced due to the existence of a magnetomotive force (mmf F) caused by a current flowing through one or more turns of coil. The value of the mmf F is proportional to the current flowing through the coil and to the number of turns in the coil, and is expressed in units of “ampere-turns” or just amperes (number of turns is dimensionless). F = N.I 5 Magnetic field strength/intensity (H) The magnetomotive force per unit length of the magnetic circuit is termed the magnetic field strength/intensity (H). F H l where, F NI amperes where l is the length of the magnetic circuit or flux loop Units of H are ampere-turns per metre NI H amperes per metre (At/m) or just ampere per metre (A/m) l 6 Permeability of free space μ0 (magnetic constant) The permeability of free space or non-magnetic materials is B for a vaccum and non-magnetic materials 0 H 7 0 4 *10 Hm/ (The units of μ0 are H/m (Henry per meter)) where B (= ϕ/A) is the magnetic flux density (units of Tesla, T), A is the cross-sectional area through which the flux passes, ϕ is the magnetic flux (units of Weber (Wb)) and H is the magnetic field strength (units A/m). 7 SOLVED EXAMPLE Q. A coil of 200 turns is wound uniformly over a wooden ring having a mean circumference of 600 mm and a uniform cross-sectional area of 500 mm2. If the current through the coil is 4.0 A, calculate (a) the magnetic field strength; (b) the flux density; (c) the total flux. Ans: N = 200, I = 4 A, l = 600 mm = 0.6 m, A = 500 mm2 = 5×10-4 m2 (a) H = N.I / l = 200 × 4 / 0.6 = 1333.3 A/m -7 -3 (b) B = μ0H = 4π×10 × 1333.3 = 1.6755×10 T = 1.6755 mT (c) ϕ = B.A = 1.6755×10-3 × 5×10-4 = 8.376×10-7 Wb = 0.8376 μWb 8 SOLVED EXAMPLE Q. Calculate the magnetomotive force required to produce a flux of 0.015 Wb across an air-gap 2.5 mm long, having an effective area of 200 cm2. Ans: ϕ = 0.015 Wb, l = 2.5 mm = 2.5×10-3 m, A = 200 cm2 = 2×10-2 m2 B = ϕ / A = 0.015 / (2×10-2) = 0.75 T -7 5 H = B / μ0 = 0.75 / (4π×10 ) = 5.97×10 A/m F (mmf) = H.l = 5.97×105 × 2.5×10-3 = 1.49×103 A 9 Relative Permeability μr The ratio of the flux density B produced in a material to the flux density produced in vacuum (or in a non-magnetic core) for a particular applied magnetic field strength H. For air and non-magnetic materials, μr = 1 For ferromagnetic materials, e.g. some forms of nickel–iron alloys, the relative permeability can be as large as ~100000 i.e. ~106. For a material having a relative permeability μr, BHr 0 where, = 0 r is the absolute permeability 10 Reluctance S It is the opposition that a magnetic circuit offers to the passage of magnetic flux through it (ratio of mmf applied to the flux induced). BA (1) mmf, F Hl (2) Dividing (1) by (2), BAHA A 0 r F Hl Hl0 r l Thus, S = F / ϕ = l / (μA), where μ = μ0 μr (S has units of A/Wb) The inverse of reluctance is known as permeance (ease of flux passage)11 SOLVED EXAMPLE Q. The simple magnetic circuit shown has a cross-sectional area of 50 cm2 and mean length of 2 m. The relative permeability of the core is 100. The coil has 250 turns and the flux produced is 100 µWb. Find: iron core (a) Reluctance of the magnetic circuit l=2m (b) Current flowing through the coil N=250 50 sq. cm ɸ=100µWb mean length 12 Ans: l (a) Reluctance, S A 75 0 r 4 *10 *100 4 *10 2 S3.18*106 A / Wb 4 *1054 *50*10 iron core mmf NI l=2m (b) Magnetic field strength, H ll Hl I N=250 50 sq. cm N B 100*106 H 159.15 A / m mean 45 ɸ=100µWb A 50*10 *4 *10 length Hl 159.15*2 IA 1.27 N 250 13 SOLVED EXAMPLE Q. The air gap in a magnetic circuit is 1.5 mm long and 2500 mm2 in cross- sectional area. Calculate (a) The reluctance of the air gap (b) The mmf required to set up a flux of 800 µWb in the air gap. l Ans: (a) Reluctance, S A 77 0 rr 4 *10 *1 4 *10 ( of air =1) 1.5*103 mmf MagneticS field strength, H 4.77*105 A / Wb 4 *1076 *2500*10 l mmf Hl B 800*106 (b) H 2.55*105 A / m A 2500*1067 *4 *10 mmf Hl 2.55*1053 *1.5*10 382.5 A 14 EXERCISES Q. A mild steel (relative permeability of 400) ring having a cross-sectional area of 500 mm2 and a mean circumference of 400 mm has a coil of 200 turns wound uniformly around it. Calculate (a) The reluctance of the ring (b) The current required to produce a flux of 800 µWb in the ring. Q. A rectangular shaped core is made of mild steel (relative permeability of 940) plates 15 mm × 20 mm cross-section. The mean length of the magnetic path is 18 cm. The exciting coil has 300 turns with a current of 0.7 A flowing through it. Calculate: (a) Magneto-motive force (b) Flux density (c) Reluctance (d) Magnetic flux 15 MAGNETIC CIRCUIT ANALOGY WITH ELECTRICAL CIRCUIT Flux, ɸ Reluctance, S Current, I Current, I Potential Resistance, R MMF= NI EMF, E difference, V Magnetic circuit Analogous electrical circuit 16 MAGNETIC CIRCUIT ANALOGY WITH ELECTRICAL CIRCUIT 17 SERIES CONNECTION IN MAGNETIC CIRCUIT The applied mmf is equal to the sum of the mmfs dropped across each series element, while the flux through each series element is the same. lc lc ɸϕ ii lc RRc + c A N lg cc N lg NiNi - Rg lg Rg ggA ɸ R1 R2 R3 Rn F FRRRRReq 1 2 3 ........ n (Ri denote reluctances) 18 PARALLEL CONNECTION IN MAGNETIC CIRCUIT The same mmf appears across all the reluctances in parallel, while the total flux is the sum of the individual fluxes in each parallel element. ɸ ɸ1 ɸ2 + R = 1 R R g /(μ A ) 1 R22 = Ni 1 0 1 g /(μ A ) - 2 0 2 where R = R || R = R R / (R + R ) FR eq eq 1 2 1 2 1 2 19 SOLVED EXAMPLE Q. A ring of 30-cm mean diameter is made using a cylindrical iron rod of diameter 2.5 cm. A saw-cut 1-mm wide is made through the ring to create an air- gap. A coil with 500 turns of wire is wound on the ring. Calculate the current required in the exciting coil to produce a flux of 4 mWb in the ring. Assume the relative permeability of iron at this flux density as 800. Neglect any leakage or fringing of the magnetic field. Ans: A = πr2 = 3.14×(0.025 m)2 = 4.91×10-4 m2 B = ϕ / A = (4×10-3 Wb) / (4.91×10-4 m2) 2 = 8.15 Wb/m 20 First consider air gap: -7 H1 = B / μ0 = 8.15/(4π×10 ) A/m = 6.49×106 A/m -3 l1 = 1 mm = 10 m 3 mmf across air gap F1 = H1 l1 = 6.49×10 A Now consider iron ring: Total mmf F = F1 + F2 -7 H2 = B / (μr μ0) = 8.15/(800×4π×10 ) A/m = 1.41×104 A = 8.1×103 A/m Current I = F / N l2 ~ 2πR = 2×3.14×0.15 m = 0.94 m = (1.41×104)/500 = 28.24 A 3 mmf across iron ring F2 = H2 l2 = 7.63×10 A 21 SOLVED EXAMPLE Q. An iron ring of mean circumference 50-cm has an air gap of 0.1-cm length and a winding of 300 turns. If the relative permeability of iron is 400 when a current of 1 ampere flows through the coil, find the flux density in the air gap. Ans: Let B be the flux density in the iron ring. Its value would also be the same in the air gap. First consider iron ring: -7 H1 = B / (μr μ0) = B / (400×4π×10 ) = 1989.44 B l1 = 50 cm = 0.5 m mmf across iron ring F1 = H1 l1 = 995 B 22 Now consider air gap: -7 H2 = B / μ0 = B / (4π×10 ) = 7.96×105 B -3 l2 = 0.1 cm = 10 m mmf across air gap F2 = H2 l2 = 796 B Total mmf F = F1 + F2 = (995 + 796)B = 1791 B But given total mmf F = N.I = 300×1 = 300 2 => B = 300/1791 = 0.1675 Wb/m 23 EXERCISES Q.
Recommended publications
  • Permanent Magnet Guidelines
    MMPA PMG-88 PERMANENT MAGNET GUIDELINES I. Basic physics of permanent magnet materials II. Design relationships, figures of merit and optimizing techniques III. Measuring IV. Magnetizing V. Stabilizing and handling VI. Specifications, standards and communications VII. Bibliography MAGNETIC MATERIALS PRODUCERS ASSOCIATION 8 SOUTH MICHIGAN AVENUE • SUITE 1000 • CHICAGO, ILLINOIS 60603 INTRODUCTION This guide is a supplement to our MMPA Standard No. 0100. It relates the information in the Standard to permanent magnet circuit problems. The guide is a bridge between unit property data and a permanent magnet component having a specific size and geometry in order to establish a magnetic field in a given magnetic circuit environment. The MMPA 0100 defines magnetic, thermal, physical and mechanical properties. The properties given are descriptive in nature and not intended as a basis of acceptance or rejection. Magnetic measure- ments are difficult to make and less accurate than corresponding electrical mea- surements. A considerable amount of detailed information must be exchanged between producer and user if magnetic quantities are to be compared at two locations. MMPA member companies feel that this publication will be helpful in allowing both user and producer to arrive at a realistic and meaningful specifica- tion framework. Acknowledgment The Magnetic Materials Producers Association acknowledges the out- standing contribution of Rollin J. Parker to this industry and designers and manufacturers of products usingpermanent magnet materials. Mr Parker the Technical Consultant to MMPA compiled and wrote this document. We also wish to thank the Standards and Engineering Com- mittee of MMPA which reviewed and edited this document. December 1987 3M July 1988 5M August 1996 1M December 1998 1 M CONTENTS The guide is divided into the following sections: Glossary of terms and conversion tables- A very important starting point since the whole basis of communication in the magnetic material industry involves measurement of defined unit properties.
    [Show full text]
  • Ch Pter 1 Electricity and Magnetism Fundamentals
    CH PTER 1 ELECTRICITY AND MAGNETISM FUNDAMENTALS PART ONE 1. Who discovered the relationship between magnetism and electricity that serves as the foundation for the theory of electromagnetism? A. Luigi Galvani B. Hans Christian Oersted C.Andre Ampere D. Charles Coulomb 2. Who demonstrated the theory of electromagnetic induction in 1831? A. Michael Faraday B.Andre Ampere C.James Clerk Maxwell D. Charles Coulomb 3. Who developed the electromagnetic theory of light in 1862? A. Heinrich Rudolf Hertz B. Wilhelm Rontgen C. James Clerk Maxwell D. Andre Ampere 4. Who discovered that a current-carrying conductor would move when placed in a magnetic field? A. Michael Faraday B.Andre Ampere C.Hans Christian Oersted D. Gustav Robert Kirchhoff 5. Who discovered the most important electrical effects which is the magnetic effect? A. Hans Christian Oersted B. Sir Charles Wheatstone C.Georg Ohm D. James Clerk Maxwell 6. Who demonstrated that there are magnetic effects around every current-carrying conductor and that current-carrying conductors can attract and repel each other just like magnets? A. Luigi Galvani B.Hans Christian Oersted C. Charles Coulomb D. Andre Ampere 7. Who discovered superconductivity in 1911? A. Kamerlingh Onnes B.Alex Muller C.Geory Bednorz D. Charles Coulomb 8. The magnitude of the induced emf in a coil is directly proportional to the rate of change of flux linkages. This is known as A. Joule¶s Law B. Faraday¶s second law of electromagnetic induction C.Faraday¶s first law of electromagnetic induction D. Coulomb¶s Law 9. Whenever a flux inking a coil or current changes, an emf is induced in it.
    [Show full text]
  • Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux Core Characteristics Master of Science Thesis
    Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics Master of Science Thesis JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ c JOHAN KINDMARK FREDRIK ROSEN,´ 2013. Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology SE–412 96 G¨oteborg Sweden Telephone +46 (0)31–772 1000 Chalmers Bibliotek, Reproservice G¨oteborg, Sweden 2013 Powder Material for Inductor Cores Evaluation of MPP, Sendust and High flux core characteristics JOHAN KINDMARK FREDRIK ROSEN´ Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology Abstract The aim of this thesis was to investigate the performanceof alternative powder materials and compare these with conventional iron and ferrite cores when used as inductors. Permeability measurements were per- formed where both DC-bias and frequency were swept, the inductors were put into a small buck converter where the overall efficiency was measured. The BH-curve characteristics and core loss of the materials were also investigated. The materials showed good performance compared to the iron and ferrite cores. High flux had the best DC-bias characteristics while Sendust had the best performance when it came to higher fre- quencies and MPP had the lowest core losses.
    [Show full text]
  • Advanced Magnetism and Electromagnetism
    ELECTRONIC TECHNOLOGY SERIES ADVANCED MAGNETISM AND ELECTROMAGNETISM i/•. •, / .• ;· ... , -~-> . .... ,•.,'. ·' ,,. • _ , . ,·; . .:~ ~:\ :· ..~: '.· • ' ~. 1. .. • '. ~:;·. · ·!.. ., l• a publication $2 50 ADVANCED MAGNETISM AND ELECTROMAGNETISM Edited by Alexander Schure, Ph.D., Ed. D. - JOHN F. RIDER PUBLISHER, INC., NEW YORK London: CHAPMAN & HALL, LTD. Copyright December, 1959 by JOHN F. RIDER PUBLISHER, INC. All rights reserved. This book or parts thereof may not be reproduced in any form or in any language without permission of the publisher. Library of Congress Catalog Card No. 59-15913 Printed in the United States of America PREFACE The concepts of magnetism and electromagnetism form such an essential part of the study of electronic theory that the serious student of this field must have a complete understanding of these principles. The considerations relating to magnetic theory touch almost every aspect of electronic development. This book is the second of a two-volume treatment of the subject and continues the attention given to the major theoretical con­ siderations of magnetism, magnetic circuits and electromagnetism presented in the first volume of the series.• The mathematical techniques used in this volume remain rela­ tively simple but are sufficiently detailed and numerous to permit the interested student or technician extensive experience in typical computations. Greater weight is given to problem solutions. To ensure further a relatively complete coverage of the subject matter, attention is given to the presentation of sufficient information to outline the broad concepts adequately. Rather than attempting to cover a large body of less important material, the selected major topics are treated thoroughly. Attention is given to the typical practical situations and problems which relate to the subject matter being presented, so as to afford the reader an understanding of the applications of the principles he has learned.
    [Show full text]
  • Magnetics Design for Switching Power Supplies Lloydh
    Magnetics Design for Switching Power Supplies LloydH. Dixon Section 1 Introduction Experienced SwitchMode Power Supply design- ers know that SMPS success or failure depends heav- ily on the proper design and implementation of the magnetic components. Parasitic elements inherent in high frequency transformers or inductors cause a va- riety of circuit problems including: high losses, high voltage spikes necessitating snubbers or clamps, poor cross regulation between multiple outputs, noise cou- pling to input or output, restricted duty cycle range, Figure 1-1 Transformer Equivalent Circuit etc. Figure I represents a simplified equivalent circuit of a two-output forward converter power transformer, optimized design, (3) Collaborate effectively with showing leakage inductances, core characteristics experts in magnetics design, and possibly (4) Become including mutual inductance, dc hysteresis and satu- a "magnetics expert" in his own right. ration, core eddy current loss resistance, and winding Obstacles to learning magnetics design distributed capacitance, all of which affect SMPS In addition to the lack of instruction in practical performance. magnetics mentioned above, there are several other With rare exception, schools of engineering pro- problems that make it difficult for the SMPS designer vide very little instruction in practical magnetics rele- to feel "at home" in the magnetics realm: vant to switching power supply applications. As a .Archaic concepts and practices. Our great- result, magnetic component design is usually dele- grandparents probably had a better understanding gated to a self-taught expert in this "black art". There of practical magnetics than we do today. Unfor- are many aspects in the design of practical, manu- tunately, in an era when computation was diffi- facturable, low cost magnetic devices that unques- cult, our ancestors developed concepts intended tionably benefit from years of experience in this field.
    [Show full text]
  • Electromagnets and Their Applications
    International Journal of Industrial Electronics and Electrical Engineering, ISSN(p): 2347-6982, ISSN(e): 2349-204X Volume-5, Issue-8, Aug.-2017, http://iraj.in ELECTROMAGNETS AND THEIR APPLICATIONS SHAHINKARIMAGHAIE Bachelor of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran E-mail: [email protected] Abstract- Electric current flowing through a wire wound around an iron nail creates a magnetic field, which caused an iron nail to become a temporary magnet. The nail can then be used to pick up paper clips. When the electric current is cut off, the nail loses its magnetic property and the paper clips fall off. The students will make an elecromagnet that will attract a paper clip. They will then increase the strength of an electromagnet(improve on their initial design) so that it will attract an increased number of paper clips. The participants will also compare the properties of magnets and electromagnets. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field. Electromagnets are widely used as components of other electrical devices, such as motors. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel. We will investigate engineering and industrial applications of the case study. Keywords- Electromagnet, Application, Engineering. I. INTRODUCTION William Sturgeon. If you have ever played with a really powerful magnet, you have probably noticed Electromagnet, device in which magnetism is one problem. You have to be pretty strong to separate produced by an electric current. Any electric current the magnets again! Today, we have many uses for produces a magnetic field, but the field near an powerful magnets, but they wouldn’t be any good to ordinary straight conductor is rarely strong enough to us if we were not able to make them release the be of practical use.
    [Show full text]
  • Electric Units and Standards
    DEPARTMENT OF COMMERCE OF THE Bureau of Standards S. W. STRATTON, Director No. 60 ELECTRIC UNITS AND STANDARDS list Edition 1 Issued September 25. 1916 WASHINGTON GOVERNMENT PRINTING OFFICE DEPARTMENT OF COMMERCE Circular OF THE Bureau of Standards S. W. STRATTON, Director No. 60 ELECTRIC UNITS AND STANDARDS [1st Edition] Issued September 25, 1916 WASHINGTON GOVERNMENT PRINTING OFFICE 1916 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 15 CENTS PER COPY A complete list of the Bureau’s publications may be obtained free of charge on application to the Bureau of Standards, Washington, D. C. ELECTRIC UNITS AND STANDARDS CONTENTS Page I. The systems of units 4 1. Units and standards in general 4 2. The electrostatic and electromagnetic systems 8 () The numerically different systems of units 12 () Gaussian systems, and ratios of the units 13 “ ’ (c) Practical ’ electromagnetic units 15 3. The international electric units 16 II. Evolution of present system of concrete standards 18 1. Early electric standards 18 2. Basis of present laws 22 3. Progress since 1893 24 III. Units and standards of the principal electric quantities 29 1. Resistance 29 () International ohm 29 Definition 29 Mercury standards 30 Secondary standards 31 () Resistance standards in practice 31 (c) Absolute ohm 32 2. Current 33 (a) International ampere 33 Definition 34 The silver voltameter 35 ( b ) Resistance standards used in current measurement 36 (c) Absolute ampere 37 3. Electromotive force 38 (a) International volt 38 Definition 39 Weston normal cell 39 (b) Portable Weston cells 41 (c) Absolute and semiabsolute volt 42 4.
    [Show full text]
  • Effective Permeability of Multi Air Gap Ferrite Core 3-Phase
    energies Article Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters Piotr Dworakowski 1,* , Andrzej Wilk 2 , Michal Michna 2 , Bruno Lefebvre 1, Fabien Sixdenier 3 and Michel Mermet-Guyennet 1 1 Power Electronics & Converters, SuperGrid Institute, 69100 Villeurbanne, France; [email protected] (B.L.); [email protected] (M.M.-G.) 2 Faculty of Electrical and Control Engineering, Gda´nskUniversity of Technology, 80-233 Gdansk, Poland; [email protected] (A.W.); [email protected] (M.M.) 3 Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, ECLyon, CNRS, Ampère, 69100 Villeurbanne, France; [email protected] * Correspondence: [email protected] Received: 4 February 2020; Accepted: 11 March 2020; Published: 14 March 2020 Abstract: The magnetizing inductance of the medium frequency transformer (MFT) impacts the performance of the isolated dc-dc power converters. The ferrite material is considered for high power transformers but it requires an assembly of type “I” cores resulting in a multi air gap structure of the magnetic core. The authors claim that the multiple air gaps are randomly distributed and that the average air gap length is unpredictable at the industrial design stage. As a consequence, the required effective magnetic permeability and the magnetizing inductance are difficult to achieve within reasonable error margins. This article presents the measurements of the equivalent B(H) and the equivalent magnetic permeability of two three-phase MFT prototypes. The measured equivalent B(H) is used in an FEM simulation and compared against a no load test of a 100 kW isolated dc-dc converter showing a good fit within a 10% error.
    [Show full text]
  • Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with Dual-V Type Magnets
    energies Article Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets Wenjing Hu, Xueyi Zhang *, Hongbin Yin, Huihui Geng, Yufeng Zhang and Liwei Shi School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China; [email protected] (W.H.); [email protected] (H.Y.); [email protected] (H.G.); [email protected] (Y.Z.); [email protected] (L.S.) * Correspondence: [email protected]; Tel.: +86-137-089-41973 Received: 15 February 2020; Accepted: 17 March 2020; Published: 22 March 2020 Abstract: Due to the increasing energy crisis and environmental pollution, the development of drive motors for new energy vehicles (NEVs) has become the focus of popular attention. To improve the sine of the air-gap flux density and flux regulation capacity of drive motors, a new hybrid excitation synchronous motor (HESM) has been proposed. The HESM adopts a salient pole rotor with built-in dual-V permanent magnets (PMs), non-arc pole shoes and excitation windings. The fundamental topology, operating principle and analytical model for a magnetic field are presented. In the analytical model, the rotor magnetomotive force (MMF) is derived based on the minimum reluctance principle, and the permeance function considering a non-uniform air-gap is calculated using the magnetic equivalent circuit (MEC) method. Besides, the electromagnetic performance including the air-gap magnetic field and flux regulation capacity is analyzed by the finite element method (FEM). The simulation results of the air-gap magnetic field are consistent with the analytical results. The experiment and simulation results of the performance show that the flux waveform is sinusoidal-shaped and the air-gap flux can be adjusted effectively by changing the excitation current.
    [Show full text]
  • Chapter 7 Magnetism and Electromagnetism
    Chapter 7 Magnetism and Electromagnetism Objectives • Explain the principles of the magnetic field • Explain the principles of electromagnetism • Describe the principle of operation for several types of electromagnetic devices • Explain magnetic hysteresis • Discuss the principle of electromagnetic induction • Describe some applications of electromagnetic induction 1 The Magnetic Field • A permanent magnet has a magnetic field surrounding it • A magnetic field is envisioned to consist of lines of force that radiate from the north pole to the south pole and back to the north pole through the magnetic material Attraction and Repulsion • Unlike magnetic poles have an attractive force between them • Two like poles repel each other 2 Altering a Magnetic Field • When nonmagnetic materials such as paper, glass, wood or plastic are placed in a magnetic field, the lines of force are unaltered • When a magnetic material such as iron is placed in a magnetic field, the lines of force tend to be altered to pass through the magnetic material Magnetic Flux • The force lines going from the north pole to the south pole of a magnet are called magnetic flux (φ); units: weber (Wb) •The magnetic flux density (B) is the amount of flux per unit area perpendicular to the magnetic field; units: tesla (T) 3 Magnetizing Materials • Ferromagnetic materials such as iron, nickel and cobalt have randomly oriented magnetic domains, which become aligned when placed in a magnetic field, thus they effectively become magnets Electromagnetism • Electromagnetism is the production
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Magnetics in Switched-Mode Power Supplies Agenda
    Magnetics in Switched-Mode Power Supplies Agenda • Block Diagram of a Typical AC-DC Power Supply • Key Magnetic Elements in a Power Supply • Review of Magnetic Concepts • Magnetic Materials • Inductors and Transformers 2 Block Diagram of an AC-DC Power Supply Input AC Rectifier PFC Input Filter Power Trans- Output DC Outputs Stage former Circuits (to loads) 3 Functional Block Diagram Input Filter Rectifier PFC L + Bus G PFC Control + Bus N Return Power StageXfmr Output Circuits + 12 V, 3 A - + Bus + 5 V, 10 A - PWM Control + 3.3 V, 5 A + Bus Return - Mag Amp Reset 4 Transformer Xfmr CR2 L3a + C5 12 V, 3 A CR3 - CR4 L3b + Bus + C6 5 V, 10 A CR5 Q2 - + Bus Return • In forward converters, as in most topologies, the transformer simply transmits energy from primary to secondary, with no intent of energy storage. • Core area must support the flux, and window area must accommodate the current. => Area product. 4 3 ⎛ PO ⎞ 4 AP = Aw Ae = ⎜ ⎟ cm ⎝ K ⋅ΔB ⋅ f ⎠ 5 Output Circuits • Popular configuration for these CR2 L3a voltages---two secondaries, with + From 12 V 12 V, 3 A a lower voltage output derived secondary CR3 C5 - from the 5 V output using a mag CR4 L3b + amp postregulator. From 5 V 5 V, 10 A secondary CR5 C6 - CR6 L4 SR1 + 3.3 V, 5 A CR8 CR7 C7 - Mag Amp Reset • Feedback to primary PWM is usually from the 5 V output, leaving the +12 V output quasi-regulated. 6 Transformer (cont’d) • Note the polarity dots. Xfmr CR2 L3a – Outputs conduct while Q2 is on.
    [Show full text]