Advanced Magnetism and Electromagnetism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
James Clerk Maxwell
James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. -
Ch Pter 1 Electricity and Magnetism Fundamentals
CH PTER 1 ELECTRICITY AND MAGNETISM FUNDAMENTALS PART ONE 1. Who discovered the relationship between magnetism and electricity that serves as the foundation for the theory of electromagnetism? A. Luigi Galvani B. Hans Christian Oersted C.Andre Ampere D. Charles Coulomb 2. Who demonstrated the theory of electromagnetic induction in 1831? A. Michael Faraday B.Andre Ampere C.James Clerk Maxwell D. Charles Coulomb 3. Who developed the electromagnetic theory of light in 1862? A. Heinrich Rudolf Hertz B. Wilhelm Rontgen C. James Clerk Maxwell D. Andre Ampere 4. Who discovered that a current-carrying conductor would move when placed in a magnetic field? A. Michael Faraday B.Andre Ampere C.Hans Christian Oersted D. Gustav Robert Kirchhoff 5. Who discovered the most important electrical effects which is the magnetic effect? A. Hans Christian Oersted B. Sir Charles Wheatstone C.Georg Ohm D. James Clerk Maxwell 6. Who demonstrated that there are magnetic effects around every current-carrying conductor and that current-carrying conductors can attract and repel each other just like magnets? A. Luigi Galvani B.Hans Christian Oersted C. Charles Coulomb D. Andre Ampere 7. Who discovered superconductivity in 1911? A. Kamerlingh Onnes B.Alex Muller C.Geory Bednorz D. Charles Coulomb 8. The magnitude of the induced emf in a coil is directly proportional to the rate of change of flux linkages. This is known as A. Joule¶s Law B. Faraday¶s second law of electromagnetic induction C.Faraday¶s first law of electromagnetic induction D. Coulomb¶s Law 9. Whenever a flux inking a coil or current changes, an emf is induced in it. -
Electricity Outline
Electricity Outline A. Electrostatics 1. Charge q is measured in coulombs 2. Three ways to charge something. Charge by: Friction, Conduction and Induction 3. Coulomb’s law for point or spherical charges: q1 q2 2 FE FE FE = kq1q2/r r 9 2 2 where k = 9.0 x 10 Nm /Coul 4. Electric field E = FE/qo (qo is a small, + test charge) F = qE Point or spherically symmetric charge distribution: E = kq/r2 E is constant above or below an ∞, charged sheet. 5. Faraday’s Electric Lines of Force rules: E 1. Lines originate on + and terminate on - _ 2. The E field vector is tangent to the line of force + 3. Electric field strength is proportional to line density 4. Lines are ┴ to conducting surfaces. 5. E = 0 inside a hollow or solid conductor 6. Electric potential difference (voltage): ΔV = W/qo We usually drop the Δ and just write V. Sometimes the voltage provided by a battery is know as the electromotive force (emf) ε 7. Potential Energy due to point charges or spherically symmetric charge distribution V= kQ/r 8. Equipotential surfaces are surfaces with constant voltage. The electric field vector is always to an equipotential surface. 9. Emax Air = 3,000,000 N/coul = 30,000 V/cm. If you exceed this value, you will create a conducting path by ripping e-s off air molecules. B. Capacitors 1. Capacitors A. C = q/V; unit of capacitance is the Farad = coul/volt B. For Parallel plate capacitors: V = E d C is proportional to A/d where A is the area of the plates and d is the plate separation. -
Chapter 7 Magnetism and Electromagnetism
Chapter 7 Magnetism and Electromagnetism Objectives • Explain the principles of the magnetic field • Explain the principles of electromagnetism • Describe the principle of operation for several types of electromagnetic devices • Explain magnetic hysteresis • Discuss the principle of electromagnetic induction • Describe some applications of electromagnetic induction 1 The Magnetic Field • A permanent magnet has a magnetic field surrounding it • A magnetic field is envisioned to consist of lines of force that radiate from the north pole to the south pole and back to the north pole through the magnetic material Attraction and Repulsion • Unlike magnetic poles have an attractive force between them • Two like poles repel each other 2 Altering a Magnetic Field • When nonmagnetic materials such as paper, glass, wood or plastic are placed in a magnetic field, the lines of force are unaltered • When a magnetic material such as iron is placed in a magnetic field, the lines of force tend to be altered to pass through the magnetic material Magnetic Flux • The force lines going from the north pole to the south pole of a magnet are called magnetic flux (φ); units: weber (Wb) •The magnetic flux density (B) is the amount of flux per unit area perpendicular to the magnetic field; units: tesla (T) 3 Magnetizing Materials • Ferromagnetic materials such as iron, nickel and cobalt have randomly oriented magnetic domains, which become aligned when placed in a magnetic field, thus they effectively become magnets Electromagnetism • Electromagnetism is the production -
Lecture 8: Magnets and Magnetism Magnets
Lecture 8: Magnets and Magnetism Magnets •Materials that attract other metals •Three classes: natural, artificial and electromagnets •Permanent or Temporary •CRITICAL to electric systems: – Generation of electricity – Operation of motors – Operation of relays Magnets •Laws of magnetic attraction and repulsion –Like magnetic poles repel each other –Unlike magnetic poles attract each other –Closer together, greater the force Magnetic Fields and Forces •Magnetic lines of force – Lines indicating magnetic field – Direction from N to S – Density indicates strength •Magnetic field is region where force exists Magnetic Theories Molecular theory of magnetism Magnets can be split into two magnets Magnetic Theories Molecular theory of magnetism Split down to molecular level When unmagnetized, randomness, fields cancel When magnetized, order, fields combine Magnetic Theories Electron theory of magnetism •Electrons spin as they orbit (similar to earth) •Spin produces magnetic field •Magnetic direction depends on direction of rotation •Non-magnets → equal number of electrons spinning in opposite direction •Magnets → more spin one way than other Electromagnetism •Movement of electric charge induces magnetic field •Strength of magnetic field increases as current increases and vice versa Right Hand Rule (Conductor) •Determines direction of magnetic field •Imagine grasping conductor with right hand •Thumb in direction of current flow (not electron flow) •Fingers curl in the direction of magnetic field DO NOT USE LEFT HAND RULE IN BOOK Example Draw magnetic field lines around conduction path E (V) R Another Example •Draw magnetic field lines around conductors Conductor Conductor current into page current out of page Conductor coils •Single conductor not very useful •Multiple winds of a conductor required for most applications, – e.g. -
Magnetic Induction
Online Continuing Education for Professional Engineers Since 2009 Basic Electric Theory PDH Credits: 6 PDH Course No.: BET101 Publication Source: US Dept. of Energy “Fundamentals Handbook: Electrical Science – Vol. 1 of 4, Module 1, Basic Electrical Theory” Pub. # DOE-HDBK-1011/1-92 Release Date: June 1992 DISCLAIMER: All course materials available on this website are not to be construed as a representation or warranty on the part of Online-PDH, or other persons and/or organizations named herein. All course literature is for reference purposes only, and should not be used as a substitute for competent, professional engineering council. Use or application of any information herein, should be done so at the discretion of a licensed professional engineer in that given field of expertise. Any person(s) making use of this information, herein, does so at their own risk and assumes any and all liabilities arising therefrom. Copyright © 2009 Online-PDH - All Rights Reserved 1265 San Juan Dr. - Merritt Island, FL 32952 Phone: 321-501-5601 DOE-HDBK-1011/1-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 1 of 4 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. Department of Energy Fundamentals Handbook ELECTRICAL SCIENCE Module 1 Basic Electrical Theory Basic Electrical Theory TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. iv LIST OF TABLES .................................................. -
A Selection of New Arrivals September 2017
A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation). -
Equipotential Surfaces and Their Properties 7
OSBINCBSE.COM OSBINCBSE.COM osbincbse.com ELECTROSTATICS - I – Electrostatic Force 1. Frictional Electricity 2. Properties of Electric Charges 3. Coulomb’s Law 4. Coulomb’s Law in Vector Form 5. Units of Charge 6. Relative Permittivity or Dielectric Constant 7. Continuous Charge Distribution i) Linear Charge Density ii) Surface Charge Density iii) Volume Charge Density OSBINCBSE.COM OSBINCBSE.COM OSBINCBSE.COM osbincbse.com OSBINCBSE.COM Frictional Electricity: Frictional electricity is the electricity produced and transfer of electrons from one body to other. + + + + + + + + + + + + by rubbing two suitable bodies Electrons in glass are loosely bound in it than the glass and silk are rubbed together,Glass the comparative from glass get transferred to silk.Silk As a result, glass becomes positively charged and s charged. Electrons in fur are loosely bound in it than the e . ebonite and fur are rubbed together, the comparati + + + - - - - - - - - - - + + + + from fur get transferred to ebonite. + + + As a result, ebonite becomes negatively charged and Ebonite charged. electrons in silk. So,Flannel when ly loosely bound electrons ilk becomes negatively lectrons in ebonite. So, when vely loosely bound electrons fur becomes positively OSBINCBSE.COM OSBINCBSE.COM osbincbse.com It is very important to note that the electrification of the body (whether positive or negative) is due to transfer of electrons from one body to another. i.e. If the electrons are transferred from a body, then the deficiency of electrons makes the body positive. If the electrons are gained by a body, then the excess of electrons makes the body negative. If the two bodies from the following list are rubbed, then the body appearing early in the list is positively charges whereas the latter is negatively charged. -
Charging by Contact As the Primary Source Hazard from Static Electricity
World Open Journal of Electrical and Electronics Engineering Vol. 1, No. 1, October 2013, PP: 01 - 17 Available online at http://scitecpub.com/Journals.php Research article Charging by contact as the primary source hazard from static electricity. Bronisław M. WIECHUŁA Doctor of Technical Sciences in Electrical discipline since 1984, specializes in the protection against static electricity employee: Central Mining Institute Katowice – Poland E-mail: [email protected] ________________________________________________________________ Abstract In this article, attention was paid on charging by contact of materials that should be considered as the primary source hazard from static electricity. Here explains the causes of interference that caused by the charged material and describes the distortions caused charging by contact of a material. In addition, it also devoted attention to the hazard from static electricity caused by the adverse effects of electric field by the man, the technological system, or the surrounding atmosphere potentially explosive. Furthermore, based on historical records can be traced silhouettes of a scholar who have made further discoveries accidental phenomena caused by random charged material happened after charging by contact. The presence charge induced on the material same character is manifested in that the material is charged. Described the principle charging by contact through material non-metallic, which appears to be a primary causative agent of charging material. The presence of charges induced on the charged material is detected by an electroscope. In the final part of this paper presents the result of research charging by contact in the form of dissipative brush discharge. For comparison, an example of the risk of explosion from static electricity caused by continuous charging by contact during pneumatic transport of dust by a flexible hose with grounded metal braid. -
Contributions of Maxwell to Electromagnetism
GENERAL I ARTICLE Contributions of Maxwell to Electromagnetism P V Panat Maxwell, one of the greatest physicists of the nineteenth century, was the founder ofa consistent theory ofelectromag netism. However, it must be noted that significant discov eries and intelligent efforts of Coulomb, Volta, Ampere, Oersted, Faraday, Gauss, Poisson, Helmholtz and others preceded the work of Maxwell, enhancing a partial under P V Panat is Professor of standing of the connection between electricity and magne Physics at the Pune tism. Maxwell, by sheer logic and physical understanding University, His main of the earlier discoveries completed the unification of elec research interests are tricity and magnetism. The aim of this article is to describe condensed matter theory and quantum optics. Maxwell's contribution to electricity and magnetism. Introduction Historically, the phenomenon of magnetism was known at least around the 11th century. Electrical charges were discovered in the mid 17th century. Since then, for a long time, these phenom ena were studied separately since no connection between them could be seen except by analogies. It was Oersted's discovery, in July 1820, that a voltaic current-carrying wire produces a mag netic field, which connected electricity and magnetism. An other significant step towards establishing this connection was taken by Faraday in 1831 by discovering the law of induction. Besides, Faraday was perhaps the first proponent of, what we call in modern language, field. His ideas of the 'lines of force' and the 'tube of force' are akin to the modern idea of a field and flux, respectively. Maxwell was backed by the efforts of these and other pioneers. -
09. Fields and Lines of Force. Darrigol (2000), Chap 3
09. Fields and Lines of Force. Darrigol (2000), Chap 3. A. Faraday and Dielectrics • 1835. Insulator in presence of electric source is in a 'state of tension' (essence of electricity). • In presence of electric source, an insulator becomes polarized: positive on one side, negative on the other. • Electric charge belongs to insulators, not conductors. • Insulator = "electric" or "dielectric". Three predictions: 1. No "absolute charge" (charge = "the beginning or ending of polarization"; so, every charge must be related to an opposite charge). 2. Any effect of the composition of the "electric" should prove "that the electricity is related to the electric, not the conductor". 3. "Must try again a very thin plate under induction and look for optical effects." (Kerr effect = change in refractive index of a material in response to an electric field.) Prediction 1: No "absolute charge". • Consider a hollow conductor: If charge derives from the beginning or ending of polarization, there can be no charge inside a conductor, since conductors do not exhibit polarization. • 1835. Inside bottom of copper boiler carries no charge, no matter how electrified the boiler globally is. • 1836. Builds a 12 foot conducting cube with wood, copper, wire, paper, and tin foil and "lived in it" to check internal electric state. • No electricity in "Faraday cage"! • Conclusion: Induction is "illimitable": no global loss of power along a polarized dielectric. • Or: Absolute charge does not exist, insofar as all charge is sustained by induction and is related to another, opposite charge. Prediction 2: Dependence of induced charge on type of dielectric. • Consider device containing two concentric brass spheres. -
Electrical Engineering Fundamentals and Direct Current ©
Electrical Engineering Fundamentals: DC Circuit Analysis Course No: E07-001 Credit: 7 PDH S. Bobby Rauf, P.E., CEM, MBA Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Electrical Engineering Fundamentals and Direct Current © Electrical Engineering for Non-Electrical Engineers Series © By S. Bobby Rauf 1 Preface Many Non-engineering professionals as well as engineers who are not electrical engineers tend to have a phobia related to electrical engineering. One reason for this apprehensiveness about electrical engineering is due to the fact that electrical engineering is premised concepts, methods and mathematical techniques that are somewhat more abstract than those employed in other disciplines, such as civil, mechanical, environmental and industrial engineering. Yet, because of the prevalence and ubiquitous nature of the electrical equipment, appliances, and the role electricity plays in our daily lives, the non-electrical professionals find themselves interfacing with systems and dealing with matters that broach into the electrical realm. Therein rests the purpose and objective of this text. This text is designed to serve as a resource for exploring and understanding basic electrical engineering concepts, principles, analytical strategies and mathematical strategies. If your objective as a reader is limited to the acquisition of basic knowledge in electrical engineering, then the material in this text should suffice. If, however, the reader wishes to progress their electrical engineering knowledge to intermediate or advanced level, this text could serve as a useful platform. As the adage goes, “a picture is worth a thousand words;” this text maximizes the utilization of diagram, graphs, pictures and flow charts to facilitate quick and effective comprehension of the concepts of electrical engineering.