CARACTERIZAÇÃO MORFOLÓGICA DE SEMENTES DE ESPÉCIES INVASORAS DA FAMÍLIA CONVOLVULACEAE Juss.1

Total Page:16

File Type:pdf, Size:1020Kb

CARACTERIZAÇÃO MORFOLÓGICA DE SEMENTES DE ESPÉCIES INVASORAS DA FAMÍLIA CONVOLVULACEAE Juss.1 DESCRIÇÃO DE ESPÉCIES INVASORAS DA FAMÍLIA CONVOLVULACEAE 1 CARACTERIZAÇÃO MORFOLÓGICA DE SEMENTES DE ESPÉCIES INVASORAS DA FAMÍLIA CONVOLVULACEAE Juss.1 DORIS GROTH2 ABSTRACT - The deficiency of specialized bibliography had caused great difficulties and changes in the identification of the species, in the procedures of a Seed Testing Laboratory. Therefore, through the morphological characteristics of Convolvulaceae weed seed species, which occur in Brazil and in other tropical and temperate regions, it was elaborated a taxonomical key and drawings in order to help the seed identification of 36 species. It was also presented the main synonyms and some considerations about the species, as identification problems and others. The taxonomical key were based mainly on the colour and pilosity of the seed coat (surface) and the hilum area, the size and the outline of the hilum, which are very stable characteristics. It was used also the size (length, wideness and thickness) of the seeds. The shape of the Convolvulaceae seeds, vary with the amount of seeds developed in the fruit and is not a consistent characteristic that can be used in identification. Index terms: seed identification, weed seeds, Convolvulaceae, Convolvulus, Dichondra, Jaquemontia, Ipomoea, Merremia. MORPHOLOGICAL CHARACTERIZATION OF CONVOLVULACEAE Juss. WEED SEED SPECIES RESUMO - A deficiência de bibliografia especializada tem causado grandes dificuldades e incorreções na identificação das espécies. Baseando-se nas características morfológicas das sementes de espécies invasoras da família Convolvulaceae, que ocorrem no Brasil e em outras regiões de clima tropical e temperado, foi elaborada uma chave dicotômica e desenhos para auxiliar na identificação de sementes de 36 espécies. São apresentados,também, os principais sinônimos e algumas considerações sobre a espécie, como problemas na identificação e outros. Na elaboração da chave dicotômica foram utilizadas a coloração e a pilosidade da superfície do tegumento e da área hilar, o contorno e o tamanho do hilo, que são características muito estáveis. Foram utilizadas, também, as dimensões das sementes. A forma das sementes das Convolvulaceae, varia muito em função da quantidade de sementes que se desenvolvem no fruto e não é uma característica muito consistente. Termos para indexação: identificação de sementes, espécies invasoras, Convolvulaceae, Convolvulus, Dichondra, Jaquemontia, Ipomoea, Merremia. INTRODUCTION directly or as allergens; they obstruct lakes, irrigation ditches and drainage-ways; they reduce support capacity of natural Plant species are considered weeds when they interfere or cultivated pastures; they reduce the availability of fish and with man’s activities or his welfare. Such plants grow where wildlife; they make roadsides utility rights-of-way and they are not wanted. They reduce yield and quality of crop landscape plantings unsightly; some of them are toxic and and forage species; they poison livestock and man either can compromise animal live (United States, 1970; Koehn, 1977). Another point is the development of the seed trade, 1 Aceito para publicação em 22.09.2001; trabalho apresentado no 25th Congress of the International Seed Testing Association., em Pretória, África 2 Engª Agrª, Drª, Profª Titular da FEAGRI/UNICAMP; Av. Papa Pio XII, do Sul, de 15 a 24 abril 1998. 99 apt.61, 13066-710, Campinas-SP; e-mail: [email protected] Revista Brasileira de Sementes, vol. 23, nº 2, p.1-13, 2001 2 D. GROTH survival and dissemination with crop seeds. The spread of MATERIAL AND METHODS weed seeds by the combine is another problem, because it The seeds used in this study were obtained at the field disseminates most of the smaller and lighter seeds ripe at the and from Seed Testing Laboratory. The description were done time of harvest (Harper, 1960). No plant is absolutely a weed. On the other hand, plants almost universally desired may be utilizing methods described by Gunn (1969), Groth (1980, occasionally regarded as weed. 1984a), Groth et al. (1979, 1983) and Koehn (1977), that consider the shape, the outline, the size (length, wideness and The seed is one of the distinctive features of the thickness) of the seeds, the colour and pilosity of the seed spermatophytes which sets them apart from the so called lower coat (surface) and hilum area, the size and the outline of the plants. Seed identification is a necessary part of seed testing, hilum. At minimum of 10 fruits and 20 seeds were studied. crop improvement, wildlife management, archaeology, paleobotany and taxonomy. The seed characteristics are The size rank was mentioned, but in exceptional conditions remarkably stable, under varying environmental conditions; can appear seeds very shorter or longer and this size was indicated in parenthesis. The drawings, made with the stereo- therefore, they provide reliable criteria for positive microscope ”Zeiss” and the light camera, are accompained identification of unknown seeds. with a milimeter scale, that indicate the increase utilized. The Convolvulaceae is a tropical family and seeds of several genus of this family frequently occur in lots of commercial seeds, such as clover, line, lespedeza, lucern, RESULTS AND DISCUSSION soybean, maize, wheat, common beans, rice and sorghum. On the other hand, weeds of most genus, that occur in crop Seeds of the Convolvulaceae family were described by plants have clambing habit that produce some problems on Groth (1980, 1984a - b; 1991, 1997a - b, 1998), Groth et al. cultural practices, harvest and industrial processing, leading (1979), Groth & Boaretto (1985), Kissmann & Groth (1992, to decreased seed yield and product quality. 1999) and Koehn (1977). The Convolvulaceae seeds may be There are many different types of identification keys and recogniz by their wedge shape (in cross section) and basal various methods, which can be used in developing them. hilum. Occasionally, the seeds are flattened or spheroid. There Larger the number of contrasting features that exist between are three hila types: the ipomoea-type hilum is large, nearly the material being treated the easier it is to develop and use circular in outline, usually emarginate at the base and usually the key. surrounded by a flat space and a hilar ridge; the convolvulus- The objective of these work was based on the type hilum is small, wider than long and is not surrounded by morphological characteristics of some Convolvulaceae weed a ridge; the cuscuta-type hilum is a short slit or a whitish line seed species, which occur in Brazil and in other tropical and or a raised point. The embryo is axile linear (anular or temperate regions, to elaborate a taxonomical key and spiralled) and without cotyledons in Cuscuta; axile folded drawings in order to help the correct seed identification of 36 and with obovate cotyledons in Convolvulus, or elliptic species and to present the main synonyms and some cotyledons in Dichondra, or subkidney-shaped to orbicular considerations about the species, as identification problems cotyledons in Jaquemontia or with bilobed cotyledons in and others. Ipomoea and Merremia. Key to seed identification 1. Hilum a short slit or whitish line or a raised point; seed less than 1,25mm in diameter or 0,5-1,25mm in diameter; seed more than 1,25mm in diameter or 1,25mm long, 1,25-2,0mm wide, 1,8-2,0mm thick ....................... Cuscuta spp. (Figure 1) 1. Hilum without these characteristics. 2. Convolvulus-type hilum. 3. Seed coat roughened. 4. Seed more than 3,0mm long and seed coat with numerous blunt tubercles or short thick wavy lines. 5. Seed coat dull, ochre to light greyish-brown; seed 3,0-4,0mm long, 2,0-3,0mm wide, more rounded than sectoroid-shaped ..................................................................................... Convolvulus arvensis L. (Figure 1) Revista Brasileira de Sementes, vol. 23, nº 2, p.1-13, 2001 DESCRIÇÃO DE ESPÉCIES INVASORAS DA FAMÍLIA CONVOLVULACEAE 3 Cuscuta indecora Cholsy Convolvulus arvensis L. Convolvulus crenatifolius Ruiz et Pav. Ipomoea amnicola Morong Dichondra microcalyx Hall.f.Fabris. Ipomoea alba L. Ipomoea asarifolia Ipomoea carnea Jacq ssp. (Desr.) Roem.& Schult. fistulosa (Mart.ex Choisy) D.Austin Ipomoea cairica (L.) Sweet. Ipomoea coccinea L. Ipomoea ramosissima (Poir.) Choisy Ipomoea indica (Burm.f.) Merr. FIG. 1. Ventral view of Convolvulaceae weed seeds. Revista Brasileira de Sementes, vol. 23, nº 2, p.1-13, 2001 4 D. GROTH 5. Seed coat dull, black at the maturity; seed 3,0-3,8mm long, 2,5-3,2mm wide, broadly-ellipsoid to obovoid- sectoroid-shaped ............................................................ Convolvulus crenatifolius Ruiz et Pav. (Figure 1) 4. Seed less than 3,0mm long; seed coat without tubercles. 6. Margins narrow winged; seed coat with numerous blister-like protuberances or short irregularly wavy lines. 7. Wing and seed coat yellowish to yellowish-brown; seed about 2,0mm long, 1,4-1,7mm wide, 1,2-1,3mm thick ...................................................................................... Jacquemontia densiflora Hall.f. (Figure 3) 7. Wing yellowish and seed coat yellowish to brown; seed 2,5-3,2mm long, 1,8-2,3mm wide, 1,5-1,7mm thick ...........................................................................................Jacquemontia velutina Choisy (Figure 3) 6. Margins not winged; seed coat only with numerous blister-like protuberances; seed 2,3-2,7(-3,0)mm long, 1,8-2,2mm wide, 1,5-1,6mm thick ................................... Jacquemontia tamnifolia (L.) Griseb. (Figure 3) 3. Seed not roughned,
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Richard Chinn Environmental Training, Inc. Info
    Scientific Name Common Name Region 6 Habit Scientific Name Common Name Region 6 Habit Abies balsamea FIR,BALSAM FACW NT Amaranthus californicus AMARANTH,CALIFORNIA NI ANF Abutilon theophrasti VELVET-LEAF NI AIF Amaranthus crassipes AMARANTH,TROPICAL FAC+ AIF Acacia greggii ACACIA,CATCLAW UPL NST Amaranthus greggii AMARANTH,GREGGIS FAC ANF Acacia smallii HUISACHE FACU NTS Amaranthus obcordatus AMARANTH,TRANS PECOS NI ANF Acalypha rhomboidea COPPER-LEAF,COMMON UPL* ANF Amaranthus palmeri AMARANTH,PALMER'S FACU- ANF Acalypha virginica MERCURY,THREE-SEEDED UPL* ANF Amaranthus retroflexus AMARANTH,RED-ROOT FACU- ANF Acer negundo BOX-ELDER FACW- NT Amaranthus rudis AMARANTH,TALL FAC ANF Acer rubrum MAPLE,DRUMMOND RED FACW NT Amaranthus spinosus AMARANTH,SPINY FACU- ANF Acer rubrum MAPLE,TRIDENT RED NI NT Amaranthus tuberculatus AMARANTH,ROUGH-FRUIT NI ANF Acer rubrum MAPLE,RED FAC NT Ambrosia artemisiifolia RAGWEED,ANNUAL FACU- ANF Acer saccharinum MAPLE,SILVER FAC NT Ambrosia grayi BURSAGE,WOOLLY-LEAF FACW PNF Acer saccharum MAPLE,SUGAR UPL NT Ambrosia psilostachya RAGWEED,NAKED-SPIKE FAC- PNF Achillea millefolium YARROW,COMMON FACU PNF Ambrosia trifida RAGWEED,GREAT FAC ANF Acorus calamus SWEETFLAG OBL PIEF Amelanchier alnifolia SERVICE-BERRY,SASKATOON FAC- NS Adiantum capillus-veneris FERN,SOUTHERN MAIDEN-HAIR FACW+ PNF3 Amelanchier arborea SERVICE-BERRY,DOWNY FACU NT Adiantum pedatum FERN,NORTHERN MAIDEN-HAIR FAC PNF3 Amianthium muscaetoxicum FLYPOISON FAC PNF Adiantum tricholepis FERN,HAIRY MAIDEN-HAIR FAC PNF3 Ammannia auriculata AMMANNIA,RED-STEM
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • High Risk, Widely Naturalized, Agricultural Weed, Tropical Vine, Seed Contaminant
    Family: Convolvulaceae Taxon: Ipomoea triloba Synonym: Ipomoea krugii Urb. Common Name: little bell three-lobed morning-glory Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 15 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 y 406 Host
    [Show full text]
  • Theo Witsell Botanical Report on Lake Atalanta Park November 2013
    A Rapid Terrestrial Ecological Assessment of Lake Atalanta Park, City of Rogers, Benton County, Arkansas Prairie grasses including big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparium), and side‐oats grama (Bouteloua curtipendula) thrive in a southwest‐facing limestone glade overlooking Lake Atalanta. This area, on a steep hillside east of the Lake Atalanta dam, contains some of the highest quality natural communities remaining in the park. By Theo Witsell Arkansas Natural Heritage Commission November 30, 2013 CONTENTS Executive Summary ....................................................................................................................................... 3 Background and History ................................................................................................................................ 3 Site Description ............................................................................................................................................. 4 General Description .................................................................................................................................. 4 Karst Features ........................................................................................................................................... 5 Ecological Significance .............................................................................................................................. 5 Plant Communities ...................................................................................................................................
    [Show full text]
  • Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.
    [Show full text]
  • Convolvulaceae) in Southern Nigeria
    Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (1), pp.29-46 COMPARATIVE MORPHOLOGY OF LEAF EPIDERMIS IN THE GENUS IPOMOEA (CONVOLVULACEAE) IN SOUTHERN NIGERIA Kehinde Abiola BOLARINWA 1, Oyetola Olusegut OYEBANJI 2, James Dele OLOWOKUDEJO 2 1Biology Unit, Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 2Department of Botany, University of Lagos, Nigeria *Corresponding author e-mail: [email protected] Received 15 March 2018; accepted 8 May 2018 ABSTRACT Leaf epidermal morphology of eight species of Ipomoea found in Southern Nigeria has been studied using light microscope. Epidermal characters such as stomata type, epidermal cell type, anticlinal wall patterns, trichomes, presence of glands, stomata number and size, epidermal cell number and size, cell wall thickness, gland number and gland length vary within and amongst the species. The cells of adaxial and abaxial epidermises are polygonal or irregular with straight, sinuous or curved anticlinal wall pattern. Stomata are present on both adaxial and abaxial surfaces. Stomata complex is paracytic except in I. asarifolia and I. purpurea where its staurocytic; stomata index is higher on the abaxial side while trichome is absent on the abaxial surface of I. cairica and I. purpurea, likewise on the adaxial surface of I. involucrata. Glands are observed in all the species. Interspecific variation was further revealed in the quantitative micromorphology characters of Ipomoea species studied which was statistically supported at p<0.001 significance level. The taxonomic significance of these features in identification and elucidation of species affinity is discussed. KEY WORDS: Ipomoea, epidermal cell, stomata type, taxonomy, quantitative and qualitative characters.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Annotated Checklist of Thai Convolvulaceae Taxonomic Research for the Account of the Convolvulaceae of Thailand Has Been Carried
    THAI FOR. BULL. (BOT.) 33: 171–184. 2005. Annotated checklist of Thai Convolvulaceae GEORGE STAPLES*, BUSBUN NA SONGKHLA**, CHUMPOL KHUNWASI** & PAWEENA TRAIPERM** ABSTRACT. An annotated checklist to the Convolvulaceae of Thailand is presented. The account covers 24 genera, 127 species and four infraspecific taxa. The present checklist includes the accepted name for each taxon plus selected synonyms and misapplied names that have been used in late 20th century taxonomic literature about the Thai flora. Taxa known to be cultivated in Thailand, but not yet escaped or naturalised, are included in the checklist and indicated as such. Taxonomic research for the account of the Convolvulaceae of Thailand has been carried on independently by the first author and a team from Chulalongkorn University. A significant number of changes have come to light, relative to the last comprehensive list of taxa for the family (Kerr 1951, 1954). These include nomenclatural and taxonomic changes as well as new distribution records for Thailand. During a visit to Bangkok in December 2002 the authors met and decided to combine their efforts to produce a new comprehensive checklist of names for Thai Convolvulaceae as a precursor to the full account of the family now in preparation. It is hoped that having an up-to-date checklist of names available now will be useful to collectors, researchers, and students during the time that the full flora account is being written. The present checklist includes the accepted name for each taxon plus selected synonyms and misapplied names that have been used in late zoth century taxonomic literature about the Thai flora.
    [Show full text]
  • Which Morningglory Do I Have?
    Which Morningglory Do I Have? With the adoption of herbicide resistant crops in today’s crop production systems, weed population shifts can and do occur. In particular, fields where crops resistance to glyphosate are grown in a continuous or semi-continuous basis, morningglory populations will increase due to the tolerance of this species to glyphosate (Roundup and other names). This, of course leads to the question of ‘Which morningglory do I have in my field?’ In North Carolina, we have many morningglory species. Generally, four species occur most frequently. These are ivyleaf, entireleaf, tall, and pitted. SCIENTIFIC NAMES: Ivyleaf Morningglory (Ipomoea hederacea) Entirelaef Morningglory (Ipomoea hederacea var. integriuscula). Tall Morningglory (Ipomoea purpurea) Pitted Morningglory (Ipomoea lacunosa) COTYLEDON SHAPE AND CONFIGURATION: Of course, the earlier a weed is identified, the better chance a grower has of controlling it. So the first feature to try to identify morningglories is the cotyledon. If a grower knows what the weed is before the first true leaf appears, he/she has the upper hand. Most morningglories have cotyledons that are shaped like butterfly wings. The shape and configuration of these "wings" will help separate the species. Ivy/Entire. As you can see by the scientific names above, ivyleaf and entireleaf morningglory are very similar. In fact, when you look at the cotyledon, you can not distinguish between the two. The butterfly wings on the cotyledons of both of these have rounded tips and the angle of the wings is <90 degrees. The outer edges of the wings are not parallel with one another. This is sometimes referred to as an "open butterfly" cotyledon.
    [Show full text]
  • Nicotiana Benthamiana and Has Functionally Diversified in Angiosperms Heleen Coenen1†, Tom Viaene1†, Michiel Vandenbussche2 and Koen Geuten1*
    Coenen et al. BMC Plant Biology (2018) 18:129 https://doi.org/10.1186/s12870-018-1349-7 RESEARCH ARTICLE Open Access TM8 represses developmental timing in Nicotiana benthamiana and has functionally diversified in angiosperms Heleen Coenen1†, Tom Viaene1†, Michiel Vandenbussche2 and Koen Geuten1* Abstract Background: MADS-box genes are key regulators of plant reproductive development and members of most lineages of this gene family have been extensively studied. However, the function and diversification of the ancient TM8 lineage remains elusive to date. The available data suggest a possible function in flower development in tomato and fast evolution through numerous gene loss events in flowering plants. Results: We show the broad conservation of TM8 within angiosperms and find that in contrast to other MADS-box gene lineages, no gene duplicates have been retained after major whole genome duplication events. Through knock-down of NbTM8 by virus induced gene silencing in Nicotiana benthamiana, we show that NbTM8 represses miR172 together with another MADS-box gene, SHORT VEGETATIVE PHASE (NbSVP). In the closely related species Petunia hybrida, PhTM8 is not expressed under the conditions we investigated and consistent with this, a knock-out mutant did not show a phenotype. Finally, we generated transgenic tomato plants in which TM8 was silenced or ectopically expressed, but these plants did not display a clear phenotype. Therefore, no clear function could be confirmed for Solanum lycopersium. Conclusions: While the presence of TM8 is generally conserved, it remains difficult to propose a general function in angiosperms. Based on all the available data to date, supplemented with our own results, TM8 function seems to have diversified quickly throughout angiosperms and acts as repressor of miR172 in Nicotiana benthamiana, together with NbSVP.
    [Show full text]