Article “Peter D
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Tōhoku Rick Jardine
INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces. -
Pleat Folding, 6.849 Fall 2010
Demaine, Demaine, Lubiw Courtesy of Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Used with permission. 1999 1 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Albers at Bauhaus, 1927–1928] 2 Circular Variation from Bauhaus [Albers at Bauhaus, 1927–1928] 3 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 4 Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. 5 “Black Hexagon” Demaine, Demaine, Fizel 2006 Courtesy of Erik Demaine, Martin Demaine, and Jenna Fizel. Used with permission. 6 Hyparhedra: Platonic Solids [Demaine, Demaine, Lubiw 1999] 7 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 8 “Computational Origami” Erik & Martin Demaine MoMA, 2008– Elephant hide paper ~9”x15”x7” Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Computational/. 9 Peel Gallery, Houston Nov. 2009 Demaine & Demaine 2009 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Limit/. 10 “Natural Cycles” Erik & Martin Demaine JMM Exhibition of Mathematical Art, San Francisco, 2010 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/NaturalCycles/. 11 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/BlindGlass/. Demaine & Demaine 2010 12 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Demaine, Demaine, Hart, Price, Tachi 2009/2010] 13 θ = 30° n = 16 Courtesy of Erik D. -
Algorithmic Folding Complexity∗
Algorithmic Folding Complexity∗ Jean Cardinal1, Erik D. Demaine2, Martin L. Demaine2, Shinji Imahori3, Tsuyoshi Ito4, Masashi Kiyomi5, Stefan Langerman1, Ryuhei Uehara5, Takeaki Uno6 1 D´epartement d'Informatique, Universit´eLibre de Bruxelles, CP 212, B-1050 Brussels, Belgium. e-mail: fjcardin,[email protected] 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol- ogy, Cambridge, MA 02139, USA. e-mail: fedemaine,[email protected] 3 Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan. e-mail: [email protected] 4 Institute for Quantum Computing and School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. e-mail: [email protected] 5 School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan. e-mail: fmkiyomi,[email protected] 6 National Institute of Informatics, Chiyoda-ku, Tokyo 101-8430, Japan. e-mail: [email protected] Abstract. How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We first show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is O(lg2 n). We also show that a lower bound of the complexity of the problems is Ω(lg2 n= lg lg n). Next we show that almost all mountain-valley patterns require Ω(n= lg n) folds, which means that the uniform and pleat foldings are relatively easy problems. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Sinai Awarded 2014 Abel Prize
Sinai Awarded 2014 Abel Prize The Norwegian Academy of Sci- Sinai’s first remarkable contribution, inspired ence and Letters has awarded by Kolmogorov, was to develop an invariant of the Abel Prize for 2014 to dynamical systems. This invariant has become Yakov Sinai of Princeton Uni- known as the Kolmogorov-Sinai entropy, and it versity and the Landau Insti- has become a central notion for studying the com- tute for Theoretical Physics plexity of a system through a measure-theoretical of the Russian Academy of description of its trajectories. It has led to very Sciences “for his fundamen- important advances in the classification of dynami- tal contributions to dynamical cal systems. systems, ergodic theory, and Sinai has been at the forefront of ergodic theory. mathematical physics.” The He proved the first ergodicity theorems for scat- Photo courtesy of Princeton University Mathematics Department. Abel Prize recognizes contribu- tering billiards in the style of Boltzmann, work tions of extraordinary depth he continued with Bunimovich and Chernov. He Yakov Sinai and influence in the mathemat- constructed Markov partitions for systems defined ical sciences and has been awarded annually since by iterations of Anosov diffeomorphisms, which 2003. The prize carries a cash award of approxi- led to a series of outstanding works showing the mately US$1 million. Sinai received the Abel Prize power of symbolic dynamics to describe various at a ceremony in Oslo, Norway, on May 20, 2014. classes of mixing systems. With Ruelle and Bowen, Sinai discovered the Citation notion of SRB measures: a rather general and Ever since the time of Newton, differential equa- distinguished invariant measure for dissipative tions have been used by mathematicians, scientists, systems with chaotic behavior. -
Annual Report 2010–11
ANNUAL REPORT 2010–11 ANNUAL REPORT 2010–11 The National Gallery of Australia is a Commonwealth (cover) authority established under the National Gallery Act 1975. Thapich Gloria Fletcher Dhaynagwidh (Thaynakwith) people The vision of the National Gallery of Australia is the Eran 2010 cultural enrichment of all Australians through access aluminium to their national art gallery, the quality of the national 270 cm (diam) collection, the exceptional displays, exhibitions and National Gallery of Australia, Canberra programs, and the professionalism of Gallery staff. acquired through the Founding Donors 2010 Fund, 2010 Photograph: John Gollings The Gallery’s governing body, the Council of the National Gallery of Australia, has expertise in arts administration, (back cover) corporate governance, administration and financial and Hans Heysen business management. Morning light 1913 oil on canvas In 2010–11, the National Gallery of Australia received 118.6 x 102 cm an appropriation from the Australian Government National Gallery of Australia, Canberra totalling $50.373 million (including an equity injection purchased with funds from the Ruth Robertson Bequest Fund, 2011 of $15.775 million for development of the national in memory of Edwin Clive and Leila Jeanne Robertson collection and $2 million for the Stage 1 South Entrance and Australian Indigenous Galleries project), raised $27.421 million, and employed 262 full‑time equivalent staff. © National Gallery of Australia 2011 ISSN 1323 5192 All rights reserved. No part of this publication can be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the publisher. -
Mathematical Genealogy of the Wellesley College Department Of
Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe -
A Salamander Sculpture Barn Raising
BRIDGES Mathematical Connections in Art, Music, and Science A Salamander Sculpture Barn Raising George W. Hart Computer Science Department. Stony Brook University Stony Brook, NY 11794-4400, USA E-mrul:[email protected] Abstract Salamanders is a thirty-piece wooden sculpture that was group assembled by thirty volunteers in an exciting sculpture "barn raising" when I was artist-in-residence at M.I.T. in OctoberlNovember 2003. It is composed of laser-cut salamander-shaped components which lie in the planes of a rhombic triacontahedron and were mathematically designed to weave through each other and exactly fit together on the outside. 1. Introduction M.e. Escher playfully incorporated chameleons and other reptiles or amphibians in his two-dimensional geometric artwork [1]. In homage to his creative spirit, I designed my sculpture Salamanders to feature flat salamanders which interweave in three dimensions. Figure 1 shows it hanging temporarily inside a window overlooking the construction of Frank O. Gehry's new Stata Center at M.I.T. [2], where the sculpture will eventually reside. Figure 1: Salamanders 54 2004 Bridges Proceedings My ultimate concept, if funding can be found, is for a large metal double sphere as shown in Figure 2. The inner and outer spheres are each made of thirty identical two-headed salamander shapes. Each part is parallel to an identical part similarly oriented in the other sphere. I find it visually interesting to show that the same salamander parts can be joined in these two contrasting arrangements---one very open and one very interlocked. It is a puzzle with two very different solutions. -
Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- Mogenization
in \Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- mogenization. Naples, Complesso Monte S. Angelo, June 18-22 and 23-27, 2001, Ed. L. Carbone and R. De Arcangelis, 191{211, Gakkotosho, Tokyo, 2003". On Homogenization and Γ-convergence Luc TARTAR1 In memory of Ennio DE GIORGI When in the Fall of 1976 I had chosen \Homog´en´eisationdans les ´equationsaux d´eriv´eespartielles" (Homogenization in partial differential equations) for the title of my Peccot lectures, which I gave in the beginning of 1977 at Coll`egede France in Paris, I did not know of the term Γ-convergence, which I first heard almost a year after, in a talk that Ennio DE GIORGI gave in the seminar that Jacques-Louis LIONS was organizing at Coll`egede France on Friday afternoons. I had not found the definition of Γ-convergence really new, as it was quite similar to questions that were already discussed in control theory under the name of relaxation (which was a more general question than what most people mean by that term now), and it was the convergence in the sense of Umberto MOSCO [Mos] but without the restriction to convex functionals, and it was the natural nonlinear analog of a result concerning G-convergence that Ennio DE GIORGI had obtained with Sergio SPAGNOLO [DG&Spa]; however, Ennio DE GIORGI's talk contained a quite interesting example, for which he referred to Luciano MODICA (and Stefano MORTOLA) [Mod&Mor], where functionals involving surface integrals appeared as Γ-limits of functionals involving volume integrals, and I thought that it was the interesting part of the concept, so I had found it similar to previous questions but I had felt that the point of view was slightly different. -
Conformational Transition in Immunoglobulin MOPC 460" by Correction. in Themembership List of the National Academy of Scien
Corrections Proc. Natl. Acad. Sci. USA 74 (1977) 1301 Correction. In the article "Kinetic evidence for hapten-induced Correction. In the membership list of the National Academy conformational transition in immunoglobulin MOPC 460" by of Sciences that appeared in the October 1976 issue of Proc. D. Lancet and I. Pecht, which appeared in the October 1976 Natl. Acad. Sci. USA 73,3750-3781, please note the following issue of Proc. Nati. Acad. Sci. USA 73,3549-3553, the authors corrections: H. E. Carter, Britton Chance, Seymour S. Cohen, have requested the following changes. On p. 3550, right-hand E. A. Doisy, Gerald M. Edelman, and John T. Edsall are affil- column, second line from bottom, and p. 3551, left-hand col- iated with the Section ofBiochemistry (21), not the Section of umn, fourth line from the top, "Fig. 2" should be "Fig. 1A." Botany (25). In the legend of Table 2, third line, note (f) should read "AG, = -RTlnKj." On p. 3553, left-hand column, third paragraph, fifth line, "ko" should be replaced by "Ko." Correction. In the Author Index to Volume 73, January-De- cember 1976, which appeared in the December 1976 issue of Proc. Natl. Acad. Sci. USA 73, 4781-4788, the limitations of Correction. In the article "Amino-terminal sequences of two computer alphabetization resulted in the listing of one person polypeptides from human serum with nonsuppressible insu- as the author of another's paper. On p. 4786, it should indicate lin-like and cell-growth-promoting activities: Evidence for that James Christopher Phillips had an article beginning on p.