Interview with Joseph Keller

Total Page:16

File Type:pdf, Size:1020Kb

Interview with Joseph Keller Interview with Joseph Keller he moved to Stanford University, where he is now an emeritus professor. Keller has received many awards and honors throughout his career, including the von Karman Prize of the Society for Industrial and Applied Mathematics (1979), the Timoshenko Medal of the American Society of Mechanical Engineers (1984), the National Medal of Science (1988), the National Academy of Sciences Award in Applied Mathe- matics and Numerical Analysis (1995), the Nemmers Joe Keller at home in Stanford, CA. Prize from Northwestern University (1996), and Joseph B. Keller is one of the premier applied math- the Wolf Prize (1997). ematicians of recent times. The problems he has What follows is the edited text of an interview worked on span a wide range of areas, including with Keller conducted in March 2004 by Notices se- wave propagation, semiclassical mechanics, geo- nior writer and deputy editor Allyn Jackson. physical fluid dynamics, epidemiology, biome- chanics, operations research, finance, and the math- Early Years ematics of sports. His best-known work includes Notices: How did you get interested in mathemat- the Geometrical Theory of Diffraction, which is an ics? extension of the classical theory of optics and in- Keller: I was always good at mathematics as a spired the introduction of geometric methods in child. My father, who was not educated but was a the study of partial differential equations, and the smart guy, used to give my Einstein-Brillouin-Keller Method, which provided brother and me mathematical new ways to compute eigenvalues in quantum me- puzzles when we were kids. chanics. Keller has had about fifty doctoral students Here’s an example. A goose met and many collaborators. With a publication list of a flock of geese, and the goose over four hundred articles, he remains active in re- said, “Hello, 100 geese.” The search; his most recent paper appeared this year leader of the flock said, “We are in the Proceedings of the National Academy of Sci- not 100 geese. But if we were ences. twice as many as we are, plus Keller was born in Paterson, New Jersey, in 1923. half of that, and you, then we He received his bachelor’s degree from New York would be 100. How many were University in 1943. He was an instructor in physics there?” That was a typical ex- at Princeton during 1943–44 and then became a re- ample, which I happen to re- search assistant in the Columbia University Divi- member. sion of War Research during 1944–45. After re- In my high school, which was ceiving his Ph.D. from NYU in 1948, he joined the East Side High School in Paterson, faculty there and participated in the building of the New Jersey, I had several good Courant Institute of Mathematical Sciences. In 1979 mathematics teachers. One of Keller at age 4. AUGUST 2004 NOTICES OF THE AMS 751 them was Mr. Dougherty. After I left high school, Chevalley. One course I had was with Pauli. Of I didn’t hear from him until maybe twenty years course many of the people were away during the later. I was a faculty member at the Courant Insti- war, some at Los Alamos. tute. I got a letter from him saying that he had just I was able to continue studying at Princeton by purchased a copy of one of Morris Kline’s books. teaching in programs in which the armed services On the dust jacket there was a curve, and he had put people to be trained as engineers before the end tried to figure out the equation of that curve, and of the war. After I was at Princeton for one year, he didn’t succeed. He wrote 1943–44, it was recognized that the war would end that he knows that Kline is a before the students ever came out as engineers. The very busy man, but perhaps I program was terminated, so I had to find a new po- could ask him about the equa- sition. I went to the American Institute of Physics, tion of that curve. So I took which sent me to the Columbia University Divi- the letter to Kline, and he re- sion of War Research. The position was working for membered Dougherty because the Office of Scientific Research and Development, Doughtery used to bring a in offices on the fiftieth floor of the Empire State team from our high school for Building. The work was to analyze the use of sonar the Pi Mu Epsilon examination, in submarine detection. That’s what I worked on which was held at NYU every during the rest of the war. year. I had been a member of I had very good colleagues there, primarily physi- that team. When Kline read cists. My boss was a physicist named Henry Pri- Dougherty’s letter, he said, makoff, and I shared an office with another grad- “Joe, there is something funny uate student, Martin Klein, who is now a professor about that figure. I had given in the history of science at Yale. I got to meet a lot the draftsman a portion of it in of people there who were working in various as- the first quadrant, and he was pects of submarine detection. For example, I met supposed to flip it over to fill Conyers Herring, now an emeritus professor of out the whole picture. But he Joe Keller, top right, with his physics here at Stanford. did it incorrectly, and conse- brother Herbert B. Keller and Incidentally, during the time I was working there, quently there is no simple their parents, early 1950s. an airplane hit the Empire State Building. It hap- equation that would give that pened on a Saturday, and I was late to work. By the figure.” Kline was amazed that time I arrived, the building was cordoned off and Dougherty had found this, and he sent him a copy I couldn’t get in. That was a precursor of the World of the book as a reward. Dougherty was then teach- Trade Center disaster, although this one was an ac- ing at a state college in Pennsylvania. He was no cident. It was due to the fact that the cloud level longer at the high school—he had “graduated”. was very low and the pilot couldn’t see. I was always interested in mathematics. When I We worked there on the following kind of ques- went to college, I thought I would major in math- tion: How much sound is reflected back from a sub- ematics, but the first year I took a course in physics. marine? We had devices, called projectors, which I found that so attractive that I switched my major are like underwater loudspeakers and which sent to physics. By the end of my stay I had majored in out sound waves. The waves would hit whatever was both mathematics and physics. Then I got an in- out there, and some of the waves would be re- structorship in physics at Princeton—that was dur- flected back and picked up by a device called a re- ing World War II. ceiver. The sonar officer would listen, oftentimes Notices: Somebody told me that you were in- with earphones, to the reflected sound, if there volved in a course that Einstein was teaching. Is that was any. When he heard something, then he con- true? cluded there was an object out there, and he would Keller: No. When I was at Princeton, I had two try to locate it precisely. The problem was to cal- contacts with Einstein. Once I walked past him on culate how the waves traveled through the water, the street. Another time I went to a lecture by spread out, became weaker, hit the object, and Bertrand Russell, and Einstein was in the audience. then how much was scattered back, and what the I fell asleep, but Einstein didn’t. So I figured it was strength of the signal would be when it got back easy for me, and hard for Einstein. to the receiving sonar. We wanted to know, for ex- Notices: Did you hang around much with the ample, at what range would it be possible to de- mathematicians in Princeton? tect a submarine, and what was the best frequency Keller: Oh sure, because during the war there to use? The projector sent out a beam, and the beam were very few graduate students, so I hung around spread out, and if you didn’t detect anything, then with all of them. I was taking half mathematics and you would change direction and do it again. How half physics courses. I had courses from Lefschetz much should you move each time, through what and Tucker and Church and Bohnenblust and angle? How long should you wait for the signal to 752 NOTICES OF THE AMS VOLUME 51, NUMBER 7 come back? How deep is the submarine, and should you look down and up? There were all kinds of questions like that. We had a laboratory in Mountain Lakes, New Jersey. Occasionally I was sent out there to test the projectors and receivers. One of the nicest jobs I had was testing an “underwater flashlight”. It was an underwater, handheld sonar device the size of a large flashlight, and it was to be used by troops who were coming up on a beach to locate land mines and other obstructions underwater. I would have to go out swimming in the lake, which was great in nice weather, to test this device. It sent out a signal, and when the signal bounced back, I would hear it on earphones.
Recommended publications
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • Sinai Awarded 2014 Abel Prize
    Sinai Awarded 2014 Abel Prize The Norwegian Academy of Sci- Sinai’s first remarkable contribution, inspired ence and Letters has awarded by Kolmogorov, was to develop an invariant of the Abel Prize for 2014 to dynamical systems. This invariant has become Yakov Sinai of Princeton Uni- known as the Kolmogorov-Sinai entropy, and it versity and the Landau Insti- has become a central notion for studying the com- tute for Theoretical Physics plexity of a system through a measure-theoretical of the Russian Academy of description of its trajectories. It has led to very Sciences “for his fundamen- important advances in the classification of dynami- tal contributions to dynamical cal systems. systems, ergodic theory, and Sinai has been at the forefront of ergodic theory. mathematical physics.” The He proved the first ergodicity theorems for scat- Photo courtesy of Princeton University Mathematics Department. Abel Prize recognizes contribu- tering billiards in the style of Boltzmann, work tions of extraordinary depth he continued with Bunimovich and Chernov. He Yakov Sinai and influence in the mathemat- constructed Markov partitions for systems defined ical sciences and has been awarded annually since by iterations of Anosov diffeomorphisms, which 2003. The prize carries a cash award of approxi- led to a series of outstanding works showing the mately US$1 million. Sinai received the Abel Prize power of symbolic dynamics to describe various at a ceremony in Oslo, Norway, on May 20, 2014. classes of mixing systems. With Ruelle and Bowen, Sinai discovered the Citation notion of SRB measures: a rather general and Ever since the time of Newton, differential equa- distinguished invariant measure for dissipative tions have been used by mathematicians, scientists, systems with chaotic behavior.
    [Show full text]
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • Selected Papers
    Selected Papers Volume I Arizona, 1968 Peter D. Lax Selected Papers Volume I Edited by Peter Sarnak and Andrew Majda Peter D. Lax Courant Institute New York, NY 10012 USA Mathematics Subject Classification (2000): 11Dxx, 35-xx, 37Kxx, 58J50, 65-xx, 70Hxx, 81Uxx Library of Congress Cataloging-in-Publication Data Lax, Peter D. [Papers. Selections] Selected papers / Peter Lax ; edited by Peter Sarnak and Andrew Majda. p. cm. Includes bibliographical references and index. ISBN 0-387-22925-6 (v. 1 : alk paper) — ISBN 0-387-22926-4 (v. 2 : alk. paper) 1. Mathematics—United States. 2. Mathematics—Study and teaching—United States. 3. Lax, Peter D. 4. Mathematicians—United States. I. Sarnak, Peter. II. Majda, Andrew, 1949- III. Title. QA3.L2642 2004 510—dc22 2004056450 ISBN 0-387-22925-6 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America.
    [Show full text]
  • Professor Richard Courant (1888 – 1972)
    Professor Richard Courant (1888 – 1972) From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Richard_Courant Field: Mathematics Institutions: University of Göttingen University of Münster University of Cambridge New York University Alma mater: University of Göttingen Doctoral advisor: David Hilbert Doctoral students: William Feller Martin Kruskal Joseph Keller Kurt Friedrichs Hans Lewy Franz Rellich Known for: Courant number Courant minimax principle Courant–Friedrichs–Lewy condition Biography: Courant was born in Lublinitz in the German Empire's Prussian Province of Silesia. During his youth, his parents had to move quite often, to Glatz, Breslau, and in 1905 to Berlin. He stayed in Breslau and entered the university there. As he found the courses not demanding enough, he continued his studies in Zürich and Göttingen. Courant eventually became David Hilbert's assistant in Göttingen and obtained his doctorate there in 1910. He had to fight in World War I, but he was wounded and dismissed from the military service shortly after enlisting. After the war, in 1919, he married Nerina (Nina) Runge, a daughter of the Göttingen professor for Applied Mathematics, Carl Runge. Richard continued his research in Göttingen, with a two-year period as professor in Münster. There he founded the Mathematical Institute, which he headed as director from 1928 until 1933. Courant left Germany in 1933, earlier than many of his colleagues. While he was classified as a Jew by the Nazis, his having served as a front-line soldier exempted him from losing his position for this particular reason at the time; however, his public membership in the social-democratic left was a reason for dismissal to which no such exemption applied.[1] After one year in Cambridge, Courant went to New York City where he became a professor at New York University in 1936.
    [Show full text]
  • Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- Mogenization
    in \Homogenization 2001, Proceedings of the First HMS2000 International School and Conference on Ho- mogenization. Naples, Complesso Monte S. Angelo, June 18-22 and 23-27, 2001, Ed. L. Carbone and R. De Arcangelis, 191{211, Gakkotosho, Tokyo, 2003". On Homogenization and Γ-convergence Luc TARTAR1 In memory of Ennio DE GIORGI When in the Fall of 1976 I had chosen \Homog´en´eisationdans les ´equationsaux d´eriv´eespartielles" (Homogenization in partial differential equations) for the title of my Peccot lectures, which I gave in the beginning of 1977 at Coll`egede France in Paris, I did not know of the term Γ-convergence, which I first heard almost a year after, in a talk that Ennio DE GIORGI gave in the seminar that Jacques-Louis LIONS was organizing at Coll`egede France on Friday afternoons. I had not found the definition of Γ-convergence really new, as it was quite similar to questions that were already discussed in control theory under the name of relaxation (which was a more general question than what most people mean by that term now), and it was the convergence in the sense of Umberto MOSCO [Mos] but without the restriction to convex functionals, and it was the natural nonlinear analog of a result concerning G-convergence that Ennio DE GIORGI had obtained with Sergio SPAGNOLO [DG&Spa]; however, Ennio DE GIORGI's talk contained a quite interesting example, for which he referred to Luciano MODICA (and Stefano MORTOLA) [Mod&Mor], where functionals involving surface integrals appeared as Γ-limits of functionals involving volume integrals, and I thought that it was the interesting part of the concept, so I had found it similar to previous questions but I had felt that the point of view was slightly different.
    [Show full text]
  • Scientific Curriculum of Emanuele Haus
    Scientific curriculum of Emanuele Haus October 25, 2018 Personal data • Date of birth: 31st July 1983 • Place of birth: Milan (ITALY) • Citizenship: Italian • Gender: male Present position • (December 2016 - present): Fixed-term researcher (RTD-A) at the University of Naples “Federico II”. Previous positions • (November 2016 - December 2016): Research collaborator (“co.co.co.”) at the University of Roma Tre, within the ERC project “HamPDEs – Hamil- tonian PDEs and small divisor problems: a dynamical systems approach” (principal investigator: Michela Procesi). • (August 2014 - July 2016): “assegno di ricerca” (post-doc position) at the University of Naples “Federico II”, within the STAR project “Water waves, PDEs and dynamical systems with small divisors” (principal investi- gator: Pietro Baldi) and the ERC project “HamPDEs – Hamiltonian PDEs and small divisor problems: a dynamical systems approach” (principal in- vestigator: Michela Procesi, local coordinator: Pietro Baldi). • (March 2013 - July 2014): “assegno di ricerca” (post-doc position) at the University of Rome “La Sapienza”, within the ERC project “HamPDEs – Hamiltonian PDEs and small divisor problems: a dynamical systems approach” (principal investigator: Michela Procesi). • (January 2012 - December 2012): post-doc position at the Labora- toire de Mathématiques “Jean Leray” (Nantes), within the ANR project “HANDDY – Hamiltonian and Dispersive equations: Dynamics” (principal investigator: Benoît Grébert). Abilitazione Scientifica Nazionale (National Scientific Qualification) • In 2018, I have obtained the Italian Abilitazione Scientifica Nazionale for the rôle of Associate Professor in the sector 01/A3 (Mathematical Analysis, Probability and Mathematical Statistics). Qualification aux fonctions de Maître de Conférences • In 2013, I have obtained the French Qualification aux fonctions de Maître de Conférences in Mathematics (section 25 of CNRS).
    [Show full text]
  • The Mathematical Heritage of Henri Poincaré
    http://dx.doi.org/10.1090/pspum/039.1 THE MATHEMATICAL HERITAGE of HENRI POINCARE PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume 39, Part 1 THE MATHEMATICAL HERITAGE Of HENRI POINCARE AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 39 PROCEEDINGS OF THE SYMPOSIUM ON THE MATHEMATICAL HERITAGE OF HENRI POINCARfe HELD AT INDIANA UNIVERSITY BLOOMINGTON, INDIANA APRIL 7-10, 1980 EDITED BY FELIX E. BROWDER Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-22916 1980 Mathematics Subject Classification. Primary 01-XX, 14-XX, 22-XX, 30-XX, 32-XX, 34-XX, 35-XX, 47-XX, 53-XX, 55-XX, 57-XX, 58-XX, 70-XX, 76-XX, 83-XX. Library of Congress Cataloging in Publication Data Main entry under title: The Mathematical Heritage of Henri Poincare\ (Proceedings of symposia in pure mathematics; v. 39, pt. 1— ) Bibliography: p. 1. Mathematics—Congresses. 2. Poincare', Henri, 1854—1912— Congresses. I. Browder, Felix E. II. Series: Proceedings of symposia in pure mathematics; v. 39, pt. 1, etc. QA1.M4266 1983 510 83-2774 ISBN 0-8218-1442-7 (set) ISBN 0-8218-1449-4 (part 2) ISBN 0-8218-1448-6 (part 1) ISSN 0082-0717 COPYING AND REPRINTING. Individual readers of this publication, and nonprofit librar• ies acting for them are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in re• views provided the customary acknowledgement of the source is given.
    [Show full text]
  • Program of the Sessions--Austin
    Program of the Sessions Austin, Texas, October 8±10, 1999 Friday, October 8 Special Session on Harmonic Analysis and PDEs, I 4:00 PM ± 6:50 PM Room 6.104, Robert Lee Moore Hall Meeting Registration Organizers: William Beckner, University of Texas 1:00 PM ± 5:00 PM RLM, Robert Lee Moore Hall at Austin Luis A. Caffarelli, University of Texas AMS Exhibit and Book Sale at Austin Toti Daskalopoulos, University of 1:00 PM ± 5:00 PM RLM, Robert Lee Moore Hall California, Irvine Tatiana Toro, University of Invited Address Washington 4:00PM Regularity of Zakharov System Evolutions. 3:00 PM ± 3:50 PM Room 106, Burdine Hall (6) James E Colliander, University of California, (1) Characterization of non-smooth domains via Berkeley (948-35-298) potential theory. 4:30PM Small Solutions of the Kadomtsev-Petviashvili Carlos E. Kenig, University of Chicago, and Tatiana (7) Equation. Preliminary report. Toro*, University of Washington (948-28-260) Jim Colliander, University of California Berkeley, Carlos E Kenig, University of Chicago, and Gigliola Special Session on Wavelets and Approximation Staf®lani*, Stanford University (948-35-278) Theory, I 5:30PM Multilinear singular integrals. (8) Christoph M Thiele, UC Los Angeles (948-42-231) 4:00 PM ± 5:50 PM Room 5.122, Robert Lee Moore Hall 6:00PM Boundary unique continuation: doubling property I (9) and nodal domains. Preliminary report. Organizers: Don Hong, Eastern Tennessee State University Paul MacManus, N.U.I. Maynooth, Ireland, and Andrea Nahmod*, University of Massachusetts, Michael Prophet, Murray State Amherst (948-42-208) University 6:30PM Recent Regularity Results for Nonlinear Wave 4:00PM Orthogonal lifting: constructing nonseparable (10) Equations.
    [Show full text]
  • FOCUS August/September 2005
    FOCUS August/September 2005 FOCUS is published by the Mathematical Association of America in January, February, March, April, May/June, FOCUS August/September, October, November, and Volume 25 Issue 6 December. Editor: Fernando Gouvêa, Colby College; [email protected] Inside Managing Editor: Carol Baxter, MAA 4 Saunders Mac Lane, 1909-2005 [email protected] By John MacDonald Senior Writer: Harry Waldman, MAA [email protected] 5 Encountering Saunders Mac Lane By David Eisenbud Please address advertising inquiries to: Rebecca Hall [email protected] 8George B. Dantzig 1914–2005 President: Carl C. Cowen By Don Albers First Vice-President: Barbara T. Faires, 11 Convergence: Mathematics, History, and Teaching Second Vice-President: Jean Bee Chan, An Invitation and Call for Papers Secretary: Martha J. Siegel, Associate By Victor Katz Secretary: James J. Tattersall, Treasurer: John W. Kenelly 12 What I Learned From…Project NExT By Dave Perkins Executive Director: Tina H. Straley 14 The Preparation of Mathematics Teachers: A British View Part II Associate Executive Director and Director By Peter Ruane of Publications: Donald J. Albers FOCUS Editorial Board: Rob Bradley; J. 18 So You Want to be a Teacher Kevin Colligan; Sharon Cutler Ross; Joe By Jacqueline Brennon Giles Gallian; Jackie Giles; Maeve McCarthy; Colm 19 U.S.A. Mathematical Olympiad Winners Honored Mulcahy; Peter Renz; Annie Selden; Hortensia Soto-Johnson; Ravi Vakil. 20 Math Youth Days at the Ballpark Letters to the editor should be addressed to By Gene Abrams Fernando Gouvêa, Colby College, Dept. of 22 The Fundamental Theorem of ________________ Mathematics, Waterville, ME 04901, or by email to [email protected].
    [Show full text]
  • Arxiv:2105.10149V2 [Math.HO] 27 May 2021
    Extended English version of the paper / Versión extendida en inglés del artículo 1 La Gaceta de la RSME, Vol. 23 (2020), Núm. 2, Págs. 243–261 Remembering Louis Nirenberg and his mathematics Juan Luis Vázquez, Real Academia de Ciencias, Spain Abstract. The article is dedicated to recalling the life and mathematics of Louis Nirenberg, a distinguished Canadian mathematician who recently died in New York, where he lived. An emblematic figure of analysis and partial differential equations in the last century, he was awarded the Abel Prize in 2015. From his watchtower at the Courant Institute in New York, he was for many years a global teacher and master. He was a good friend of Spain. arXiv:2105.10149v2 [math.HO] 27 May 2021 One of the wonders of mathematics is you go somewhere in the world and you meet other mathematicians, and it is like one big family. This large family is a wonderful joy.1 1. Introduction This article is dedicated to remembering the life and work of the prestigious Canadian mathematician Louis Nirenberg, born in Hamilton, Ontario, in 1925, who died in New York on January 26, 2020, at the age of 94. Professor for much of his life at the mythical Courant Institute of New York University, he was considered one of the best mathematical analysts of the 20th century, a specialist in the analysis of partial differential equations (PDEs for short). 1From an interview with Louis Nirenberg appeared in Notices of the AMS, 2002, [43] 2 Louis Nirenberg When the news of his death was received, it was a very sad moment for many mathematicians, but it was also the opportunity of reviewing an exemplary life and underlining some of its landmarks.
    [Show full text]
  • Louis Nirenberg
    Obituary Louis Nirenberg (1925–2020) Mathematician who transformed the study of partial differential equations. fter the Second World War, PDE in Novosibirsk, which helped to redefine mathe matics in the United States the relationship between the Soviet Union flourished owing to a convergence of and the United States. There, he forged close interests. Mathematicians had shown friendships in an environment he compared to their worth to military and indus- a voyage at sea. A later geopolitically signifi- Atry patrons, who underwrote far-reaching cant trip took him to China toward the end of empires of theories and people, including the the Cultural Revolution. After being assigned consummate problem-solver Louis Nirenberg. a PhD thesis in Italian as the subject for a term One of the world’s most cited and paper during his graduate studies, he devel- productive mathematicians, Nirenberg was oped a lifelong affinity for Italy. also among the most collaborative. His work Nirenberg was known for using methods in continued to make waves until he was well their most fruitful generality. “I have made a into his eighties, and reshaped how mathe- living off the maximum principle,” he quipped, maticians understand and study dynamical referring to a fundamental technique for systems, from cells to markets. Winning the establishing inequalities in PDE. He demon- 2015 Abel Prize (shared with John Nash, made strated its versatile potential to researchers in NEW YORK UNIVERSITY ARCHIVES NEW YORK famous by the 2001 film A Beautiful Mind) was many fields. As a young man, he had worried just a bookend to a fêted career.
    [Show full text]