2004 Steele Prizes

Total Page:16

File Type:pdf, Size:1020Kb

2004 Steele Prizes 2004 Steele Prizes The 2004 Leroy P. Steele Prizes were awarded at the The 2004 Steele Prizes were awarded to JOHN W. 110th Annual Meeting of the AMS in Phoenix in MILNOR for Mathematical Exposition, to LAWRENCE C. January 2004. EVANS and NICOLAI V. KRYLOV for a Seminal Contri- The Steele Prizes were established in 1970 in honor bution to Research, and to CATHLEEN SYNGE MORAWETZ of George David Birkhoff, William Fogg Osgood, and for Lifetime Achievement. The text that follows William Caspar Graustein. Osgood was president of presents, for each awardee, the selection commit- the AMS during 1905–06, and Birkhoff served in that tee’s citation, a brief biographical sketch, and the capacity during 1925–26. The prizes are endowed awardee’s response upon receiving the prize. under the terms of a bequest from Leroy P. Steele. Up to three prizes are awarded each year in the follow- Mathematical Exposition: John W. Milnor ing categories: (1) Lifetime Achievement: for the Citation cumulative influence of the total mathematical work The Leroy P. Steele Prize for Mathematical Exposi- of the recipient, high level of research over a period tion is awarded to John W. Milnor in recognition of time, particular influence on the development of of a lifetime of expository contributions ranging a field, and influence on mathematics through Ph.D. across a wide spectrum of disciplines including students; (2) Mathematical Exposition: for a book topology, symmetric bilinear forms, characteristic or substantial survey or expository-research paper; classes, Morse theory, game theory, algebraic K- (3) Seminal Contribution to Research (limited for theory, iterated rational maps…and the list goes on. 2004 to analysis): for a paper, whether recent or not, The phrase “sublime elegance” is rarely associated that has proved to be of fundamental or lasting im- with mathematical exposition, but it applies to all portance in its field or a model of important research. of Milnor’s writings, whether they be research or Each Steele Prize carries a cash award of $5,000. expository. Reading his books, one is struck with The Steele Prizes are awarded by the AMS Council the ease with which the subject is unfolding, and acting on the recommendation of a selection it only becomes apparent after reflection that this committee. For the 2004 prizes the members of ease is the mark of a master. Improvement of the selection committee were: M. Salah Baouendi, Milnor’s treatments often seems impossible. Andreas R. Blass, Sun-Yung Alice Chang, Michael G. A portion of Kauffman’s review of Symmetric Crandall (chair), Craig L. Huneke, Daniel J. Kleitman, Bilinear Forms by Milnor and Husemoller conveys Tsit-Yuen Lam, Robert D. MacPherson, and Lou P. the beauty evident in all of Milnor’s expository Van den Dries. work: “…Appendix 4, where this result is proved, The list of previous recipients of the Steele Prize is alone worth the price of the book. It contains may be found in the November 2003 issue of the Milnor’s proof of a Gauss sum formula (due to Notices, pages 1294–8, or on the World Wide Web, R. J. Milgram) that uses elegant combinatorics and http://www.ams.org/prizes-awards. Fourier analysis to produce an argument whose APRIL 2004 NOTICES OF THE AMS 421 John W. Milnor Lawrence C. Evans Nicolai V. Krylov corollaries include the divisibility theorem, the Response law of quadratic reciprocity and its equivalent It is a great pleasure to receive this award, and I in the language of forms over Z: the Weil reci- certainly want to thank the members of the Selec- procity theorem. The proof is short, beautiful, and tion Committee for their consideration. It is of mysterious.” course also a tribute to my many coauthors: let me Milnor’s many expository contributions to the mention Dale Husemoller, Larry Siebenmann, mathematical literature have influenced more than Jonathan Sondow, Mike Spivak, Jim Stasheff, and one generation of mathematicians. Moreover, the Robert Wells. examples that they provide have set a standard of I have always suspected that the key to the most clarity, elegance, and beauty for which every math- interesting exposition is the choice of a subject that ematician should strive. the author doesn’t understand too well. I have the Biographical Sketch unfortunate difficulty that it is almost impossible for me to understand a complicated argument unless John Milnor was born in Orange, New Jersey, in I try to write it down. Over the years I have run into 1931. He spent his undergraduate and graduate stu- a great many difficult bits of mathematics, and thus dent years at Princeton, working on knot theory I keep finding myself writing things down. (And also under the supervision of Ralph Fox, and also dab- rewriting, since I never get things right the first bling in game theory with his fellow students John few times. Years ago, I was the despair of secretaries Nash and Lloyd Shapley. However, like his mathe- who would produce beautifully typed manuscripts, matical grandfather, Solomon Lefschetz, he had only to have them repeatedly cut, pasted, and great difficulty sticking to one subject. Under the scribbled over. Computers have eliminated this inspiration of Norman Steenrod and later John particular problem, but it still makes life difficult Moore, he branched out into algebraic and differ- for coauthors.) ential topology. This led to problems in pure al- I am very happy to report that as mathematics gebra, including algebraic K-theory and the study keeps growing, there are more and more subjects of quadratic forms. More recently, conversations that I have to fight to understand. with William Thurston and Adrien Douady led to studies in real and complex dynamical systems, Seminal Contribution to Research: which have occupied him for the last twenty years. Lawrence C. Evans and Nicolai V. Krylov But he is still restless: one current activity is an Citation attempted exposition of problems of complexity The Steele Prize for Seminal Research is awarded in the life sciences. to Lawrence C. Evans and Nicolai V. Krylov for the After many years at Princeton at the university “Evans-Krylov theorem” as first established in the and also at the Institute for Advanced Study, and papers: after shorter stays at the University of California, Lawrence C. Evans, “Classical solutions of fully Los Angeles, and the Massachusetts Institute of nonlinear convex, second order elliptic equations”, Technology, Milnor moved to the State University Communications in Pure and Applied Mathematics of New York at Stony Brook, where he has been the 35 (1982), no. 3, 333–363; and director of the Institute for Mathematical Sciences N. V. Krylov, “Boundedly inhomogeneous ellip- since 1989. tic and parabolic equations”, Izvestiya Akad. Nauk 422 NOTICES OF THE AMS VOLUME 51, NUMBER 4 SSSR, ser. mat. 46 (1982), no. 3, 487–523; and trans- I was not especially afraid to look at so-called “fully lated in Mathematics of the USSR, Izvestiya 20 nonlinear” elliptic equations in the late 1970s and (1983), no. 3, 459–492. early 1980s. Fully nonlinear elliptic equations are of interest These are important PDEs, examples of which in many subjects, including the theory of controlled are the Monge-Ampère equation and Hamilton- diffusion processes and differential geometry. It is Jacobi-Bellman equations in stochastic optimal therefore of great interest to understand when these control theory. And they are really, really nonlin- equations have classical solutions. The first results ear. But their solutions satisfy maximum principles, of any generality exhibiting classical solutions of the and this was a clue. It turns out that (i) when the subclass of uniformly elliptic equations under suit- nonlinearity is convex, we can get “one-sided” con- able convexity conditions are due to the recipients trol on second derivatives; and that then (ii) the in the cited works. These authors, independently PDE itself provides a functional relationship among and with different arguments, established the Hölder the various second derivatives, yielding thereby continuity of second derivatives in the interior, via “two-sided” control. (Earlier Calabi had derived a priori estimates, a result now known as the Evans- third derivative bounds for the Monge-Ampère Krylov theorem. The Evans-Krylov theorem was equation, and Brezis and I had treated the very both a capstone on fundamental contributions of special case of the maximum of two linear elliptic the recipients and others and a harbinger of things operators.) to follow from the community. All success in mathematics turns largely upon While the Steele Prize for Seminal Research is persistence and luck; and while I can take some explicitly awarded for the named works, it is noted credit for the persistence, the luck was, well, luck— that both recipients have made a variety of distin- chiefly in that, quite unknown to me, one N. V. guished contributions to the theory of nonlinear Krylov in the Soviet Union had turned his attention partial differential equations. to these same problems at about the same time. Biographical Sketch: Lawrence C. Evans And Nick’s contributions to the subject have been Lawrence C. Evans was born November 1, 1949, in extraordinary, including not only the interior Hölder Atlanta, Georgia. He received his B.A. from Van- second derivative estimates, for which indepen- derbilt University in 1971 and his Ph.D. from the dent discovery we are being honored, but also his University of California, Los Angeles, in 1975; his previous, and great, work with Mikhail Safonov on advisor at UCLA was M. G. Crandall. Evans held Hölder bounds and the Harnack inequality for non- positions at the University of Kentucky from 1975 divergence structure second-order elliptic equa- to 1980, at the University of Maryland from 1980 tions with discontinuous coefficients.
Recommended publications
  • Dedicated to Lou Kauffman for His 70Th Birthday 1. Knot Theory
    Dedicated to Lou Kauffman for his 70th birthday KNOT THEORY: FROM FOX 3-COLORINGS OF LINKS TO YANG-BAXTER HOMOLOGY AND KHOVANOV HOMOLOGY JOZEF´ H. PRZYTYCKI Abstract: This paper is an extended account of my “Introductory Plenary talk at Knots in Hellas 2016” conference1. We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators; here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and ex- panded. No deep knowledge of Knot Theory, homological algebra, or statistical mechanics is assumed as we work from basic principles. Because of this, some topics will be only briefly described.
    [Show full text]
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • George W. Whitehead Jr
    George W. Whitehead Jr. 1918–2004 A Biographical Memoir by Haynes R. Miller ©2015 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. GEORGE WILLIAM WHITEHEAD JR. August 2, 1918–April 12 , 2004 Elected to the NAS, 1972 Life George William Whitehead, Jr., was born in Bloomington, Ill., on August 2, 1918. Little is known about his family or early life. Whitehead received a BA from the University of Chicago in 1937, and continued at Chicago as a graduate student. The Chicago Mathematics Department was somewhat ingrown at that time, dominated by L. E. Dickson and Gilbert Bliss and exhibiting “a certain narrowness of focus: the calculus of variations, projective differential geometry, algebra and number theory were the main topics of interest.”1 It is possible that Whitehead’s interest in topology was stimulated by Saunders Mac Lane, who By Haynes R. Miller spent the 1937–38 academic year at the University of Chicago and was then in the early stages of his shift of interest from logic and algebra to topology. Of greater importance for Whitehead was the appearance of Norman Steenrod in Chicago. Steenrod had been attracted to topology by Raymond Wilder at the University of Michigan, received a PhD under Solomon Lefschetz in 1936, and remained at Princeton as an Instructor for another three years. He then served as an Assistant Professor at the University of Chicago between 1939 and 1942 (at which point he moved to the University of Michigan).
    [Show full text]
  • Millennium Prize for the Poincaré
    FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T.
    [Show full text]
  • Interview of Albert Tucker
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange About Harlan D. Mills Science Alliance 9-1975 Interview of Albert Tucker Terry Speed Evar Nering Follow this and additional works at: https://trace.tennessee.edu/utk_harlanabout Part of the Mathematics Commons Recommended Citation Speed, Terry and Nering, Evar, "Interview of Albert Tucker" (1975). About Harlan D. Mills. https://trace.tennessee.edu/utk_harlanabout/13 This Report is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in About Harlan D. Mills by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Princeton Mathematics Community in the 1930s (PMC39)The Princeton Mathematics Community in the 1930s Transcript Number 39 (PMC39) © The Trustees of Princeton University, 1985 ALBERT TUCKER CAREER, PART 2 This is a continuation of the account of the career of Albert Tucker that was begun in the interview conducted by Terry Speed in September 1975. This recording was made in March 1977 by Evar Nering at his apartment in Scottsdale, Arizona. Tucker: I have recently received the tapes that Speed made and find that these tapes carried my history up to approximately 1938. So the plan is to continue the history. In the late '30s I was working in combinatorial topology with not a great deal of results to show. I guess I was really more interested in my teaching. I had an opportunity to teach an undergraduate course in topology, combinatorial topology that is, classification of 2-dimensional surfaces and that sort of thing.
    [Show full text]
  • The Arf-Kervaire Invariant Problem in Algebraic Topology: Introduction
    THE ARF-KERVAIRE INVARIANT PROBLEM IN ALGEBRAIC TOPOLOGY: INTRODUCTION MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL ABSTRACT. This paper gives the history and background of one of the oldest problems in algebraic topology, along with a short summary of our solution to it and a description of some of the tools we use. More details of the proof are provided in our second paper in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the proof. A rigorous account can be found in our preprint The non-existence of elements of Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has numerous links to related papers and talks we have given on the subject since announcing our result in April, 2009. CONTENTS 1. Background and history 3 1.1. Pontryagin’s early work on homotopy groups of spheres 3 1.2. Our main result 8 1.3. The manifold formulation 8 1.4. The unstable formulation 12 1.5. Questions raised by our theorem 14 2. Our strategy 14 2.1. Ingredients of the proof 14 2.2. The spectrum Ω 15 2.3. How we construct Ω 15 3. Some classical algebraic topology. 15 3.1. Fibrations 15 3.2. Cofibrations 18 3.3. Eilenberg-Mac Lane spaces and cohomology operations 18 3.4. The Steenrod algebra. 19 3.5. Milnor’s formulation 20 3.6. Serre’s method of computing homotopy groups 21 3.7. The Adams spectral sequence 21 4. Spectra and equivariant spectra 23 4.1.
    [Show full text]
  • Pierre Deligne
    www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984.
    [Show full text]
  • Math, Physics, and Calabi–Yau Manifolds
    Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901).
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • An Interview with Albert W. Tucker
    Swarthmore College Works Mathematics & Statistics Faculty Works Mathematics & Statistics 6-1-1983 An Interview With Albert W. Tucker Stephen B. Maurer Swarthmore College, [email protected] A. W. Tucker Follow this and additional works at: https://works.swarthmore.edu/fac-math-stat Part of the Discrete Mathematics and Combinatorics Commons Let us know how access to these works benefits ouy Recommended Citation Stephen B. Maurer and A. W. Tucker. (1983). "An Interview With Albert W. Tucker". Two-Year College Mathematics Journal. Volume 14, Issue 3. 210-224. DOI: 10.2307/3027090 https://works.swarthmore.edu/fac-math-stat/120 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Mathematics & Statistics Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. An Interview with Albert W. Tucker Author(s): Stephen B. Maurer and Albert W. Tucker Source: The Two-Year College Mathematics Journal, Vol. 14, No. 3 (Jun., 1983), pp. 210-224 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/3027090 Accessed: 19-10-2016 15:25 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The Two-Year College Mathematics Journal This content downloaded from 130.58.65.20 on Wed, 19 Oct 2016 15:25:11 UTC All use subject to http://about.jstor.org/terms An Interview with Albert W.
    [Show full text]
  • Arxiv:1804.09589V3 [Math.GT] 10 Dec 2019
    DISTINGUISHING SLICE DISKS USING KNOT FLOER HOMOLOGY ANDRAS´ JUHASZ´ AND IAN ZEMKE Abstract. We study the classification of slice disks of knots up to isotopy and diffeomorphism using an invariant in knot Floer homology. We compute the invariant of a slice disk obtained by deform-spinning, and show that it can be effectively used to distinguish non-isotopic slice disks with diffeomorphic complements. Given a slice disk of a composite knot, we define a numerical stable diffeomorphism invariant called the rank. This can be used to show that a slice disk is not a boundary connected sum, and to give lower bounds on the complexity of certain hyperplane sections of the slice disk. 1. Introduction In this paper, we consider the classification of smooth slice disks in D4 for a knot K in S3. Even though the existence problem of slice disks, and the closely related slice-ribbon conjecture of Fox are in the center of research in low-dimensional topology, this natural question has been little studied in the literature. We introduce several notions of equivalence: ambient isotopy fixing S3 pointwise, diffeomorphism, and stable versions of these where one can take connected sums with 2-knots. Our interest lies in exploring the potential of an invariant of slice disks in knot Floer homology defined by Marengon and the first author [JM16]. Until the availability of the powerful techniques of [JZ18], which provide formulas for the trace and cotrace maps in the link Floer TQFT, computing the invariant of any non-trivial slice disk was beyond reach. We now provide formulas for infinite families of slice disks, and show that the invariant can effectively distinguish slice disks up to both stable isotopy and stable diffeomorphism.
    [Show full text]
  • Theory of Games and Economic Behavior (TGEB)
    6872 FM UG 3/10/04 1:58 PM Page vii © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Introduction HAROLD W. KUHN Although John von Neumann was without doubt “the father of game theory,” the birth took place after a number of miscarriages. From an isolated and amazing minimax solution of a zero-sum two-person game in 1713 [1] to sporadic considerations by E. Zermelo [2], E. Borel [3], and H. Steinhaus [4], nothing matches the path-breaking paper of von Neumann, published in 1928 [5]. This paper, elegant though it is, might have remained a footnote to the history of mathematics were it not for collaboration of von Neumann with Oskar Morgenstern in the early ’40s. Their joint efforts led to the publication by the Princeton University Press (with a $4,000 subvention from a source that has been variously identified as being the Carnegie Foundation or the Institute for Advanced Study) of the 616-page Theory of Games and Economic Behavior (TGEB). I will not discuss here the relative contributions of the two authors of this work. Oskar Morgenstern has written his own account [6] of their col- laboration, which is reprinted in this volume; I would recommend to the reader the scholarly piece [7] by Robert J. Leonard, who has noted that Morgenstern’s “reminiscence sacrifices some of the historical complexity of the run-up to 1944” and has given a superb and historically complete account of the two authors’ activities in the relevant period.
    [Show full text]